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Abstract

Intel SGX hardware enables applications to protect
themselves from potentially-malicious OSes or hyper-
visors. In cloud computing and other systems, many
users and applications could benefit from SGX. Unfortu-
nately, current applications will not work out-of-the-box
on SGX. Although previous work has shown that a li-
brary OS can execute unmodified applications on SGX,
a belief has developed that a library OS will be ruinous
for performance and TCB size, making application code
modification an implicit prerequisite to adopting SG:

This paper demonstrates that these concerns are exag-
gerated, and that a fully-featured library OS can rapidly
deploy unmodified applications on SGX with overheads
comparable to applications modified to use y-
ers. We present a port of Graphene to SGX, as well a:
a number of improvements to ma il
fits of SGX more usable, such
dynamically-loaded libraries, and seci i cess
support. Graphene-SGX supports a wide range of un-
modified applications, including Apache, GCC, and the
R interpreter. The performance overheads of Graphene-
SGX range from matching a Linux process to less than
2x in most single-process cases; these overheads are
largely attributable to current SGX hardware or missed
opportunities to optimize Graphene internz
necessarily fundamental to leaving the application un-
modified. Graphene-SGX is open-source and has been
used concurrently by other groups for SGX re:

shim” la

and are not

1 Introduction

Intel SGX introduces a number of essential hardware fea-
tures that allow an application to protect itself from the
host OS, hypervisor, BIOS, and other software. With
SGX, part or all of an application can run in an en-
clave. Encl features include confidentiality and in-
tegrity protection for the enclave’s virtual address space;
restricting control flow into well-defined entry points for
an enclave; integrity checking memory contents at start
time; and remote attestation. SGX is particularly appeal-
ing in cloud computing, as users might not fully trust the
cloud provider. That said, for any suffi
application, using SGX may be prudent, even within
one administrative domain, as the security track record

tly-sensitive

USENIX Association

of commodity operating systems is not without blemish.
a significant number of users would benefit from
running applications on SGX as soon as possible.
Unfortunately, applications do not “just work™ on
SGX. SGX imposes a number of restrictions on enclave
code that require application changes or a layer of in-
direction. Some of these restrictions are motivated by
security, such as disallowing system calls inside of an
so that system call results can be sanitized by
shielding code in the enclave before use. Our experience
with supporting a rich array of applications on SGX, in-
cluding web servers, language runtimes, and command-
line programs, is that a number of software compone
orthogonal to the primary functionality of the appli
ion, rely on faithful emulation of arcane Linux system
call semantics, such as mmap and futex; any SGX wrap-
per library must either reproduce these
large swaths of code unrelated to security must be re-
placed. Although this paper focuses on SGX, we note

emantics, or

adapt applications to use hardware security features will
only increase in the near term.

As aresult, there is an increasingly widespread belief
that adopting SGX necessarily involves significant code
changes to applications. Although Haven [15] showed
that a library OS could run unmodified applications on
SGX, this work pre-dated availability of SGX hardware.
Since then, several papers have argued that the library OS
approach mpractical for SGX, both in performance
overhead and trusted computing ba:
that one must ins

brary OS increases the
TCB size by 5x, the service latency by 4x, and halves
the service throughput” [14]. Shinde et al. [49] argue that
using a library OS, including libc, increases TCB size by
two orders of magnitude over a thin wrapper.

This paper demonstrates that these concerns are
greatly exaggerated: one can use a library OS to quickly
deploy applications in SGX, gaining immediate secu-
rity benefits without crippling performance cost or TCB

2017 USENIX Annual Technical Conference 645
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placed. Although this paper focuses on SGX, we note
that a number of vendors are developing but
not identical, hardware protection mechanisms, includ-
ing IBM’s SecureBlue++ [16] and AMD SEV [27]
each with different idiosyncrasies. Thus, the need to
adapt applications to use hardware security features will
only increase in the near term.

As aresult, there is an increasingly widespread belief
that adopting SGX necessarily involves significant code
changes to applications. Although Haven [15] showed
that a library OS could run unmodified applications on
SGX, this work pre-dated availability of SGX hardware.
Since then, several papers have argued that the library OS
approach is impractical for SGX, both in performance
overhead and trusted computing base (TCB) bloat, and
that one must instead refactor one’s application for SGX.
For instance, a feasibility analysis in the SCONE paper
concludes that “On average, the library OS increases the

i s cy by 4x, and halves
the service throughput” [14]. Shinde et al. [49] argue that
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Evaluated to understand throughput and scalability
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Other results

Benchmark overhead of running WAFs (ModSecurity) in SGX
(overhead about the same as in Linux)

Perform detailed micro-benchmarks of each kernel server

Compare standard ocalls to exitless ocalls
(not always better)
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