Achieving Keyless CDNs
with Conclaves

Stephen Herwig

Christina Garman Dave Levin

@ PURDUE

UNIVERSITY.

Content Delivery Networks host their
customers’ websites

i

customer’s
origin server

Content Delivery Networks host their
customers’ websites

CDN'’s
edge server

-
& THi

b customer’s

origin server

CDNs reduce page load times

& &
edge server ‘
& i

b customer’s

origin server

CDNs reduce page load times

CDN'’s ‘
edge server ‘

i
O 71

customer’s j
origin server

CDNs mitigate and block attacks

N
i
¥y & IHI

| |
CDN'’s e
edge server

customer’s

l origin server
D

CDNs mitigate and block attacks

‘ CDN’s !\}gﬂ‘

edge server

*» & 1
“*’
|

a

customer’s
origin server

Customers share their keys with CDNs

& &
edge server ‘
& i

Customers share their keys with CDNs

& v
edge server ‘
& i

bank’s private key

Key sharing is widespread

Measurement and Analysis of
Private Key Sharing in the HTTPS Ecosystem

Frank Cangialosi*
Bruce M. Maggs*

“University of Maryland

ABSTRAC

The semantics of online authentication in the
straightforward: if Alice has a certificat
name to a public key, and if a remote entity can prove knowl-
edge of Bob’s private key, then (barring key compromise)
that remote entity must be Bob. However, in reality, many
websites—and the majority of the most popular ones—are
hosted at least in part by third parties such as Content Deliv-
ery Networks (CDNs) or web hosting providers. Put simply:
administrators of websites who deal with (extremely)
tive user data are giving their private keys to third parties.
Importantly, this sharing of s is undetectable by most
users, and widely unknown e

In this paper, we perform a large-scale measurement study
of key sharing in to analyze the prevalence
with which websites trust third-party hosting providers with
their secret keys, as well as the impact that this trust has on

are rather
binding Bob’s

s web.

responsible key management practices, such as revocation

sharing is

jority of the most popular
hosting providers often manage their customers’ keys, a
that they tend to react mor more thoroughly to
compromised or potentially compromised keys.

Online, end-to-end authentication is
step to secure communication. On the
5SL) and Transport Layer S

Tl « , but both

We refer to t our findings apply
Permission (o n ital or hard copics of all or part of this wark for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for com thers than the
author(s) must be honored. Abstracting with credit is permi
republish, to post on servers or to redistribute to lists,
nd. Request permissions from permi

October 24 - 28, 2016, Vienna, Austria

‘opyright held by the owner/author(s). Publication

39-4/16/10....515.00

DOL http://dx.doi.org/10.1145/2976749.2978301

Taejoong Chung!
Alan Mislove'

'Northeastern University

David Choffnes' Dave Levin-
Christo Wilson'

Duke University and Akamai Technologies

end-to-end link with a that is under that we
sole control.
However, the economics and performance
Internet complicaf model. We
efit from not only deploying content on servers they c
but also employing third-party hosting provider
mai, CloudFlare, and Amazon’s E
livering their content. Many of the world’s most popular
websites are hosted at least in part on Content Delivery N
works (CDNS) so as to benefit from worldwide deployment
and low-la s popular web-
v hosting providers,
in part to avoid having to set up and maintain a server and
the ociated infrastructure on their own. These hosting
arrangements are often non-obvious to users, and yet, with
HTTPS, they can have profound security implic: 5
Consider what happens when a user visits an HTTPS web-
site, example.com, served by a third party such as a CDN:
the user’s TCP connection terminates at one of the CDN’s
s, but the SSL S handshake results in an authen-
er's browser that it is
peaking directly to example.com. The only way the server
authenticated itself as example.com is if it had
one of example.com’s private keys. This is precisely what
happens to website administrators share their private
keys with third-party hosting providers, even though this vi-
olates one of the fundamental assumptions underlying end-
to-end authentication and security—that all private key:
should be kept priva
Such sharing of key
by prior , notably
sharing, and i
curity of the HTTPS ecosy
and difficult to quantify. Moreover,
vate ki with a much broader cl
ing providers than just CDNs, including
Amazon AWS and w i
Th ent to which b

sites are

with CDNs has been pointed out

b hosting services like Rackspac
an active role
in managing or acc
instance,
stomers’ ce
alf. Whatever the role, merely having
3 s private ke
curity implications. We therefore consider a domain to have
ate key if infer that the private key is
ted at an IP address belonging to a different organiz:
tion than the one that owns the domain (see §2.3)
In this paper, we quantify private key sharing
HTTPS e stem at an Internet-wide

v can h

Cangialosi et al., CCS 2016

Key sharing is widespread

Measurement and Analysis of
Private Key Sharing in the HTTPS Ecosystem

Frank Cangialosi* Taejoong Chungt David Choffnest Dave Levin*
Bruce M. Maggs® Alan Mislove' Christo Wilso

University of Maryland tNortheastern University

ABSTRACT

The semantics of online authentication in the web are rather
straightforward: if Alice has a c ate binding Bob
name to a public ke remote entity
edge of Bob's private key, then (barring key compromise)
that remote entity must be Bob. However, in reality, many
websites—and the majority of the most popular ones—are
hosted at least in part by third parties such as Content Deliv-
ery Networks (CDNs) or web hosting providers. Put simpl!
administrators o es who deal with (extremely) sensi-
tive user data
Important]
users, and widely unknown eve researchers.

scale measurement study

, such as revocati
xtremely common,
with a small handful of hosting providers having keys from
the majority of the most popular webs We also find th
hosting providers often manage their customers’
that they tend to rea

1. INTRODUCTION
Online, end-to-end aut
step to secure communication. 3
ets Layer (SSL) and Transport Layer Security (
responsible for authentication for HTTPS traffic
with a Public Key Infrastructure (PKI), SSL S
verifiable identiti te chains and private com-
munication via encryption. Owing to the pi ivenes
success of SSL/TLS, users have developed a natural
tation that, if their brow: that they are conr
a website with a “secure” lock icon, then they have a secure

'TLS is ¢ or of SSL, but b ame certificates
We refer to “SSL certificates

Permission to make digital or hard copies of all or part of this work f¢

classroom use is granted without fee provided that copies are not ma

dvantage and that copies bear this notice and
ts for components of this work owned by others than the
with credit is permitted. To copy otherwise, or
rvers or to redistribute to lists, requires prior specific permission
est permissions from permissions @acm.org.
'16, October 24 enna, Austria

author(s). Publication rights li

DOL http://dx.doi.org/10.1145/2976749.2978301

*Duke University and Akamai Technologies

end-to-end link with a s s under that website’s
sole control.
However, the economi erformance demands of the
Internet complicate thi:
efit from not only deploying content on servers the
but also employ rd-party hosting providers like Aks
mai, CloudFlare, and Amazon’s EC2 servi assist in d
livering their content. Many of the world’s most popular
websites are hosted at least in part on Content Delivery Net-
orks (CDNSs) so as to benefit from worldwide deployment
and low-latency connectivity to users. Less popular w
tes are also often served by third-party hosting providers,
in part to avoid having to set up and maintz
ciated infrastructure on their own. These hosting
ements are often non-obvious to users, and yet, with
5, they can have profound security implications
er what happens when a user visits an H
te, example. com, served by a third par
the user’s TCP i

ated connection, convincing the user’s browser that it is

speaking directly to .com. The only way the server

could have authenticated itself as example.com is if it had

one of example.com’s private keys. This is precisely what

happens to website administrators share their private

keys with third-party hosting providers, even though this vi

olates one of the fundamental assumptions underlying end-

to-end authentication and security—that all private keys
should b

nas been pointed out

[23]. How
sharing, and its implications on the

urity of the HTTPS system, h: ned unstudied

and difficult to quantify. Moreover, websites share their pri-

with a much broader class of third-party host

s than just CDNs, including cloud provider

in managi
provider and type of serv
some CDNs go so far as to manage their customers’
on their behalf. Whatever the role, merely havin
to a website’s private key can have e se
curity implications. We therefore cons domain to have
“shared” its private key if we infer that the private key is
hosted at an IP address belonging to a different organi:
tion than the one that owns the domai §2.3)
In this paper, we quantify private sharing within the
TPS ecosystem at an Internet-wide scale, with two high-

Cangialosi et al., CCS 2016

43% of the top |0k
most popular websites

At least one key shared
0.8

0.6
0.4

0.2

on Third-party Providers

Fraction of Domains Hosted

0 2{0]0]¢ 1010] ¢ 600k 100 1M
Alexa Site Rank (bins of 10,000)

Key sharing is widespread

Measurement and Analysis of
Private Key Sharing in the HTTPS Ecosystem

Frank Cangialosi* Taejoong Chungt David Choffnest Dave Levin*
Bruce M. Maggs* Alan Mislove' Christo Wilson

*University of Maryland tNortheastern University

ABSTRACT

The semanti e ion in the web are rather
straightforward: if Alice has a certificate binding Bob’s
emote entity can prove knowl-
hen (barring key compromise)
that remote entity must be Bob. However, in reality, many
websites—and the majority of the most popular ones—are
hosted at least in part by third parties such as Content Deliv-
orks (CDN) or wi
strators o
tive user data are giving their private keys to third
Important] sharing of keys is tectable by most
: unknown even researcher.
In this paper, we pe
of key sharing in today > \
bsites trust third-party hosting p
well as the impact that this trust b

le measurement study

Its reveal that
with a small handful of hosting provic
of the most popular website
s often manage their customers
that they tend to re more slowly yet more thorou
compromised or potentially compromised k

1. INTRODUCTION

Online, end-to-end authentication is a fundamental first
> communication. On the web, Secure Sock-
SL) and Transport Layer Security (TLS)* are

responsible for authentication for HTTPS tr
with a Public Key Infr: PK L/TLS provides
fiable identities and private com-
i i i ss and
eloped a natural expec-
s that they are connected to
icon, then they have a secure

at both use the s
PP

of all or part of this work for p
e jes are not made or distributed
and that copies bear this notice and the full citation
r components of this work owned by others than the
Abstracting with credit is permitted. To copy otherw
republish, to post on ser distribute to lists, requires prior specific
and/or a fee. Request permissions from permissions @acm.org
CCS’16, October 24 — 28, 2016, Vienna, Austria
2016 Copyright held by the owner/author(s). Publication rights lic
N 978-1-4503-4139-4/16/10....515.00
/dx.doi.org/10.1145/2976749.2978301

Duke University and Akamai Technologies

end-to-end link with a server that is under that website’s
sole control.
However, the economics and performance nds of the
Internet complicate this simplified model. Web services ben-
it from not only deploying content on servers they control,
but also employing third-party hosting providers like

livering their content. Many of the world’s most popular
websites are hosted at least in part on Content Delivery Net-
ks (CDNs) so as to benefit from worldwide deployment
and low-laf s popular we
s are also often served by third-party hosting providers,
in part to avoid having to set up and m: a server and
sociated infrastructure on their own.
often non-obvious to users, and yet,
an have profound security implications
fer what happens when a user visits an HTTPS
-, example.com, served by a third party such
i at one of the CDN’s
results in an authen-

i

could hat

one of example. com’s private k

happens today: website administrato
with third-party hosting providers,
s rlying end-

that all pri

has been pointed out
, the
tions on the

Amazon AWS ing ces |
tent to which hostin play
keys varies ac
provider and ty servic - will see, for instance,
some CDNs go so far as to manage their customers’ cer-
s on their behalf. What
al access to a websit
curity implications. We therefore
“shared” its private key if we infer that the private key
hosted at an IP address belonging to a different organiz
tion than the one that owns the domain (s
In this paper, v 2

Cangialosi et al., CCS 2016

Fraction of Domains Hosted
on Third-party Providers

0.8

0.6

0.4

O
)V

o

most popular websites

43% of the top |0k

At least one key shared

0

200k

400k

10]0]

800k

Alexa Site Rank (bins of 10,000)

1M

The web has consolidated keys in the hands of a few CDNs

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

%y—»uu

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

& 1

Private keys stay at the key server (origin)

Keyless SSL

Introduced by Cloudflare to mitigate key sharing
S —d—1
<+ <+—>
3 » ad

-

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

&b — 1

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

& — T

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

& — T

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

&b — 1

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing
S —dh—1
D <+—>
3 » ad
-

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

LTI
prF P

Private keys stay at the key server (origin)

Key server performs actions requiring private key

Keyless SSL

Introduced by Cloudflare to mitigate key sharing

%Huu

y: ian

f

In practice:
CDN
Private keys stay at the key server-{origin)-

Key server performs actions requiring private key

The CDN learns all session keys

D

Can we Maintain privacy
using Legacy applications

on Third-party resources?

Maintain pr’ivacy The CDN is no more trusted
than a standard on-path attacker

Legacy applications

Third-party resources

i

Maintain pr’ivacy The CDN is no more trusted
than a standard on-path attacker

Legacy applications No changes to existing code-bases;
facilitates deployment and adoption

Third-party resources

Maintain pr’ivacy The CDN is no more trusted
than a standard on-path attacker

Legacy applications No changes to existing code-bases;
facilitates deployment and adoption

Third-party resources Leverage the existing infrastructure.
One additional assumption: TEES

Py
o 4—»‘4—»11“

Maintain pr’ivacy The CDN is no more trusted
than a standard on-path attacker

Legacy applications No changes to existing code-bases;
facilitates deployment and adoption

Third-party resources Leverage the existing infrastructure.
One additional assumption: TEES

‘ +—> ' <+—>
P Phoenix Il

Maintain pr’ivacy The CDN is no more trusted
than a standard on-path attacker

Legacy applications No changes to existing code-bases;
facilitates deployment and adoption

Third-party resources Leverage the existing infrastructure.
One additional assumption: TEES

Trusted execution environments

By default, assume all system components are

Application
Operating
System

Hardware —

Trusted execution environments

By default, assume all system components are

Application
Operating
System

<4
A —
Hardware N—— #

Small trusted CPU
Resistant to physical attacks

Trusted execution environments

By default, assume all system components are

Enclave: Isolated
application memory

Operating
System

<4
A —
Hardware N—— #

Small trusted CPU
Resistant to physical attacks

Trusted execution environments

By default, assume all system components are

Enclave: Isolated
application memory

Operating
System

<4
A —
Hardware N—— #

Small trusted CPU
Resistant to physical attacks

Model: Code and data can safely reside inside an enclave

Practical limitations of TEEs

Applications inside enclaves cannot make syscalls

Syscalls
Operati - x
perating
Service
System Untrusted

Hardware % E_E

libOSes

|dea: Implement a small “OS” inside the enclave

Enclave
Operating
System

Hardware

libOSes

|dea: Implement a small “OS” inside the enclave

Enclave

Application

Service

Operating
System

Service

Hardware

libOSes

|dea: Implement a small “OS” inside the enclave

Enclave

Application

"Syscalls"

\4

Service

Operating
System

Service

Hardware

libOSes

|dea: Implement a small “OS” inside the enclave

Enclave

Application

"Syscalls"

\4

. Service locally
when possible

Operating
System

Service

Hardware

libOSes

|dea: Implement a small “OS” inside the enclave

Enclave
Application
"Syscalls"
- . Service locally
when possible
Syscalls
Operating .
System

Hardware

Graphene-SGX

A libOS for Intel SGX that supports some services

Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX

Chia-Che Tsai

Stony Brook University Univers

Donald E. Porter
of North Carolina at Chapel Hill

Mona Vij
Intel Corporation

and Fortanix

Abstract

Intel SGX hardware enables applications to protect
themselves from potentially-malicious OSes or hyper-
visors. In cloud computing and other systems, many
users and applications could benefit from SGX. Unfortu-
nately, current applications will not work out-of-the-box
on SGX. Although previous work has shown that a li-
brary OS can execute unmodified applications on SGX,
a belief has developed that a library OS will be ruinous
for performance and TCB size, making application code
modification an implicit prerequisite to adopting SG:

This paper demonstrates that these concerns are exag-
gerated, and that a fully-featured library OS can rapidly
deploy unmodified applications on SGX with overheads
comparable to applications modified to use y-
ers. We present a port of Graphene to SGX, as well a:
a number of improvements to ma il
fits of SGX more usable, such
dynamically-loaded libraries, and seci i cess
support. Graphene-SGX supports a wide range of un-
modified applications, including Apache, GCC, and the
R interpreter. The performance overheads of Graphene-
SGX range from matching a Linux process to less than
2x in most single-process cases; these overheads are
largely attributable to current SGX hardware or missed
opportunities to optimize Graphene internz
necessarily fundamental to leaving the application un-
modified. Graphene-SGX is open-source and has been
used concurrently by other groups for SGX re:

shim” la

and are not

1 Introduction

Intel SGX introduces a number of essential hardware fea-
tures that allow an application to protect itself from the
host OS, hypervisor, BIOS, and other software. With
SGX, part or all of an application can run in an en-
clave. Encl features include confidentiality and in-
tegrity protection for the enclave’s virtual address space;
restricting control flow into well-defined entry points for
an enclave; integrity checking memory contents at start
time; and remote attestation. SGX is particularly appeal-
ing in cloud computing, as users might not fully trust the
cloud provider. That said, for any suffi
application, using SGX may be prudent, even within
one administrative domain, as the security track record

tly-sensitive

USENIX Association

of commodity operating systems is not without blemish.
a significant number of users would benefit from
running applications on SGX as soon as possible.
Unfortunately, applications do not “just work™ on
SGX. SGX imposes a number of restrictions on enclave
code that require application changes or a layer of in-
direction. Some of these restrictions are motivated by
security, such as disallowing system calls inside of an
so that system call results can be sanitized by
shielding code in the enclave before use. Our experience
with supporting a rich array of applications on SGX, in-
cluding web servers, language runtimes, and command-
line programs, is that a number of software compone
orthogonal to the primary functionality of the appli
ion, rely on faithful emulation of arcane Linux system
call semantics, such as mmap and futex; any SGX wrap-
per library must either reproduce these
large swaths of code unrelated to security must be re-
placed. Although this paper focuses on SGX, we note

emantics, or

adapt applications to use hardware security features will
only increase in the near term.

As aresult, there is an increasingly widespread belief
that adopting SGX necessarily involves significant code
changes to applications. Although Haven [15] showed
that a library OS could run unmodified applications on
SGX, this work pre-dated availability of SGX hardware.
Since then, several papers have argued that the library OS
approach mpractical for SGX, both in performance
overhead and trusted computing ba:
that one must ins

brary OS increases the
TCB size by 5x, the service latency by 4x, and halves
the service throughput” [14]. Shinde et al. [49] argue that
using a library OS, including libc, increases TCB size by
two orders of magnitude over a thin wrapper.

This paper demonstrates that these concerns are
greatly exaggerated: one can use a library OS to quickly
deploy applications in SGX, gaining immediate secu-
rity benefits without crippling performance cost or TCB

2017 USENIX Annual Technical Conference 645

Tsai et al ,ATC 2017

Graphene-SGX

A libOS for Intel SGX that supports some services

Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX

Chia-Che Tsai Donald E. Porter Mona Vij
Stony Brook University University of North Carolina at Chapel Hill Intel Corporation
and Fortanix

Abstract

Intel SGX hardware enables applications to protect
themselves from potentially-malicious OSes or hype
visors. In cloud computing and other systems, many
users and applications could benefit from SGX. Unfortu-
nately, current applications will not work out-of-the-box
on SGX. Although previous work has shown that a li-
brary OS can execute unmodified applications on SGX,
a belief has developed that a library OS will be ruinous
for performance and TCB size, making application code
modification an implicit prerequisite to adopting SGX.

This paper demonstrates that these concerns are exag-
gerated, and that a fully-featured library OS can rapidly
deploy unmodified applications on SGX with overheads
comparable to applications modified to use “shim” lay-
ers. We present a port of Graphene to SGX, as well as
a number of improvements to make the security bene-
fits of SGX more usable, such as integrity support for
dynamically-loaded libraries, and secure multi-process
support. Graphene-SGX supports a wide range of un-
modified applications, including Apache, GCC, and the
R interpreter. The performance overheads of Graphene-
SGX range from matching a Linux process to less than
2x in most single-process cases; these overlx are
largely attributable to current SGX hardware or missed
opportunities to optimize Graphene internals, and are not
necessarily fundamental to leaving the application un-
modified. Graphene-SGX is open-source and has been
used concurrently by other groups for SGX research.

1 Introduction

Intel SGX introduces a number of essential hardware fea-
tures that allow an application to protect itself from the
host OS, hypervisor, BIOS, and other software. With
SGX, part or all of an application can run in an en-
clave. Enclave features include confidentiality and in-
tegrity protection for the encl

restricting control flow into well-defined entry points for
an enclave; integrity

tim

ing in cloud computing, m

cloud provider. That said, for any sufficiently-se
application, using SGX may be prudent, even within
one administrative domain, as

USENIX Association

of commodity operating systems is not without blemish.
Thus, a significant number of users would benefit from
running applications on SGX as soon as possible

Unfortunately, applications do not “just work™ on
SGX. SGX imposes a number of restrictions on enclave
code that require application changes or a layer of in-
direction. Some of these restrictions are motivated by
security, such as disallowing system calls inside of an
enclave, so that system call results can be sanitized by
shielding code in the enclave before use. Our experience
with supporting a rich array of applications on SGX, in-
cluding web serv
line programs, is that a number of software components,
orthogonal to the primary functiona of the applica-
tion, rely on faithful emulation of arcane Linux sys
call semantics, such as mmap and fute:
per library must either reproduce th
large swaths of code unrelated to security must be re-
placed. Although this paper focuses on SGX, we note
that a number of vendors are developing but
not identical, hardware protection mechanisms, includ-
ing IBM’s SecureBlue++ [16] and AMD SEV [27]
each with different idiosyncrasies. Thus, the need to
adapt applications to use hardware security features will
only increase in the near term.

As aresult, there is an increasingly widespread belief
that adopting SGX necessarily involves significant code
changes to applications. Although Haven [15] showed
that a library OS could run unmodified applications on
SGX, this work pre-dated availability of SGX hardware.
Since then, several papers have argued that the library OS
approach is impractical for SGX, both in performance
overhead and trusted computing base (TCB) bloat, and
that one must instead refactor one’s application for SGX.
For instance, a feasibility analysis in the SCONE paper
concludes that “On average, the library OS increases the

i s cy by 4x, and halves
the service throughput” [14]. Shinde et al. [49] argue that
using a library OS, including libc, increases TCB size by
two orders of magnitude over a thin wrapper.

This paper demonstrates that these concerns are

use a library OS to quickly
deploy applications in SGX, gaining immediate secu-
rity benefits without crippling performance cost or TCB

2017 USENIX Annual Technical Conference 645

Tsai et al ,ATC 2017

raphene’s supported services:

bipes, signals, semaphores

Graphene-SGX

A libOS for Intel SGX that supports some services

What constitutes a CDN? Graphene’s supported services:

Multiple
enant Web server v exec

/ bipes, signals, semaphores

Needs

dJick Cache

Needs | Web Application

plaintext Firewall
Needs
safe Key Server

storage

Graphene-SGX

A libOS for Intel SGX that supports some services

What constitutes a CDN? Graphene’s supported services:

Multiple
enant Web server v exec

/ bipes, signals, semaphores

Needs

dJick Cache

Also critical to a CDN:

Needs | Web Application Reading & writing files
plaintext Firewall
Shared memory
Needs Access to private keys
safe Key Server

storage

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

What constitutes a CDN? Graphene’s supported services:

Multiple
enant Web server v exec

/ bipes, signals, semaphores

Needs

Jisk Cache

Needs | Web Application

plaintext Firewall
Needs
safe Key Server
storage

What constitutes a CDN?

Multiple
tenants

Needs
disk

Needs
plaintext

Needs
safe
storage

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Web server

Cache

Web Application
Firewall

Key Server

Graphene’s supported services:

/ bipes, signals, semaphores

Also critical to a CDN:

Reading & writing files
Shared memory

Access to private keys

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Web server Enclave

Cache

Web Application
Firewall

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave
Enclave

Web server

Cache

Enclaves mutually

Enclave

Web Application _)
Firewall authenticate via

attested TLS

Knauth et al., 2018

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave
Enclave

Private key operation
ﬁ

TLS
Web Application Enclaves.mutuqlly
Firewall authenticate via

attested TLS

Knauth et al., 2018

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave
Enclave

Private key operation
Web server y op Enclave
ﬁ

Cache B

Result

Enclaves mutually

Web Application .)
Firewall authenticate via

attested TLS

Knauth et al., 2018

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave
Web server

Enclave

Memory Server

Cache

Web Application
Firewall

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave

Web server

Shared memory read Enclave

—
-
Memory Server

Web Application
Firewall

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Shared memory read Enclave
+-—
Cache

Web Application
Firewall

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave
Web server

Enclave

Memory Server

Cache

Web Application
Firewall

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Enclave

Application

Operating
System

Hardware

(Conclaves) Shared memory

Service

Service

Enclave

Memory Server

(Conclaves) Shared memory

Enclave

Application fcntl()

Enclave

Service Memory Server

Operating
System

Hardware —

(Conclaves) Shared memory

Enclave

Application fcntl(Q)

"Syscall”

Enclave
\4

Service

Memory Server

Operating
System

Hardware —

(Conclaves) Shared memory

Enclave

Application fcntl()

"Syscall”

Enclave
\ 4

Service Memory Server

Operating
System

Hardware —"

(Conclaves) Shared memory

Enclave

Application fcntl()

"Syscall”

! Enclave

Service Memory Server

Coordinates locks
Maintains memory locations

Operating
System

Hardware —

(Conclaves) Shared memory

Enclave

Application fcntl()

"Syscall”

! Enclave

Service

Memory Server

Coordinates locks
Maintains memory locations

Operating
System

Hardware N—

(Conclaves) Shared memory

Enclave

Application fcntl()

"Syscall”

! Enclave

Service

Syscall

Memory Server

Coordinates locks
Maintains memory locations

v

Operating
System

Hardware N—

(Conclaves) Shared memory

Enclave

Application fcntl()

"Syscall”

! Enclave

Service

Memory Server

Coordinates locks
Maintains memory locations

Operating
System

Hardware

(Conclaves) Shared memory

Enclave

Application fcntl()

"Syscall”

! Enclave

Service

Memory Server

Coordinates locks
Syscall Maintains memory locations

v

Operating
System

Hardware -

Memory file
Encrypted on untrusted disk

(Conclaves) Shared memory

Enclave

Application fcntl() -

"Syscall”

! Enclave

Service

Memory Server

Coordinates locks
Syscall Maintains memory locations

v

Operating
System

Memory file
Hardware - Encrypted on untrusted disk

(Conclaves) Shared memory

Enclave

Application fent10) [t

Enclave

Service Memory Server

Coordinates locks
Maintains memory locations

Operati
System
Memory file
Hardware - Encrypted on untrusted disk

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Enclave
Web server

Enclave

Memory Server

Cache

Web Application
Firewall

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Web server
Enclave

Memory Server
Cache

Web Application Enclave

Firewall .
File Server

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Web server
Enclave

Memory Server
Cache

Web Application Enclave

Firewall .
File Server

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Web server
Enclave

Memory Server
Cache

Web Application File access Enclave

Firewall .
File Server

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Web server
Enclave

Memory Server
Cache

Web Application File access Enclave

Firewall .
File Server
Verified data

Insight: Treat enclaves like a distributed system
Implement services using kernel servers

Conclaves| File system access

Enclave

Application

Enclave

Service

Operating
System

Hardware —

Conclaves| File system access

Enclave

Application

Enclave

Service

Operating
System

Hard Merkle Tree
ardwarc Encrypted on untrusted disk

Conclaves| File system access

Enclave

Application read()

Enclave

Service

Operating
System

Hard Merkle Tree
ardwarc Encrypted on untrusted disk

Conclaves| File system access

Enclave

Application read()

"Syscall”

Enclave
\4

Service

Operating
System

Hard Merkle Tree
ardwarc Encrypted on untrusted disk

Conclaves| File system access

Enclave

Application read()

"Syscall”

Enclave
\4

Service File Server

Operating
System

Hard Merkle Tree
Sl Encrypted on untrusted disk

Conclaves| File system access

Enclave

Application read()

"Syscall” Enclave

v

ext2fs server

Block layer
A M Merkle root

Operating . libOS
System

Hard Merkle Tree
ardwarc Encrypted on untrusted disk

Conclaves| File system access

Enclave

Application read()

"Syscall” Enclave

v

ext2fs server

Block layer
A M Merkle root

: Syscall
Operating . / libOS
System Service '

Hard Merkle Tree
ardwarc Encrypted on untrusted disk

Conclaves| File system access

Enclave

Application read()

"Syscall” Enclave

v

ext2fs server

Block layer
A M Merkle root

Syscall

Merkle Tree
Encrypted on untrusted disk

Operating , libOS
System

Hardware

Conclaves| File system access

Enclave

Application read()

"Syscall” Enclave

v

ext2fs server

Block layer
A M Merkle root

Syscall

Merkle Tree
Encrypted on untrusted disk

Operating , libOS
System

Hardware

Conclaves| File system access

Enclave

Application read() Verifies branches
Decrypts blocks

"Syscall” Enclave

v

ext2fs server

Block layer
A M Merkle root

Syscall

Merkle Tree
Encrypted on untrusted disk

Operating , libOS
System

Hardware

Conclaves| File system access

Enclave

Application read() - Verifies branches

Decrypts blocks

"Syscall” Enclave

v

ext2fs server

Block layer
A M Merkle root

Syscall

Merkle Tree
Encrypted on untrusted disk

Operating , libOS
System

Hardware

Conclaves| File system access

Enclave

Application read() - Verifies branches
Decrypts blocks

Enclave

ext2fs server

Service

Block layer

A M Merkle root

Operating , libOS
System

Hardware Merkle Tree
w Encrypted on untrusted disk

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Enclave

Web server
Enclave

Memory Server
Cache

Web Application Enclave

Firewall
File Server

Execution environment is a distributed system of enclaves

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Conclave

Enclave

Enclave

Web server Enclave

Cache

Enclave

Web Application

Execution environment is a distributed system of enclaves

Phoenix The first truly keyless CDN

(Conclaves Containers of enclaves

Conclave

Conclaves supported services:
Enclave

i
Enclave

Web Server Enclave

/ pipes, signals, semaphores

Memory Server : "
Cache / Reading & writing files

v/ Shared memory
\/ Access to private keys

Enclave

Web Application

\/ Trusted time server

Execution environment is a distributed system of enclaves

(Phoenix) The first truly keyless CDN

i,

Phoenix The first truly keyless CDN

P
g<—>‘<—> Tl

Supports multi-tenancy
Both CDN and website can store private data

Other details in the paper

Websites delegate provisioning to CDNs

Phoenix supports many deployment configurations

Phoenix The first truly keyless CDN

Conclave Conclave Conclave

--E

lll

Supports multi-tenancy
Both CDN and website can store private data

Other details in the paper

Websites delegate provisioning to CDNs

Phoenix supports many deployment configurations

Phoenix The first truly keyless CDN

Conclave Conclave Conclave

--E

lll

ARTIFACT
NG Implemented on top of Graphene-SGX

susenix

4 ’ ASSOCIATION

Evaluated to understand throughput and scalability
PASSED

What is Phoenix’s request throughput!?

Fetch a file 10,000 times over non-persistent HT TPS connections
from among |28 concurrent clients

Workers

3500 3 3 !
3000 F
2500 |
2000 F
1500
1000 F
500 [

Throughput (requests/sec)

1 KiB 10 KiB 100 KiB
Downloaded file size

What is Phoenix’s request throughput!?

Fetch a file 10,000 times over non-persistent HT TPS connections
from among |28 concurrent clients

Throughput (requests/sec)

Linux - NGINX running on normal Linux
@ N @ # Workers
1 2 4 8
3500 5 5 ,
BOOO o Jl o
2500 o W
2000 | Jl i R
s00 - M =
1000 | [l R
so0 - |4 & M
0 | | |
1 KiB 10 KiB 100 KiB

Downloaded file size

What is Phoenix’s request throughput!?

Fetch a file 10,000 times over non-persistent HT TPS connections
from among |28 concurrent clients .. confidentiality
Linux ... confidentiality & integrity

= Phoenix-crypt =~ .. _
= Phoenix-vericrypt - 5 ,g # Workers

3500 3 , ,

sootf ® w
DEQQ) [bl
200f o ®
1500 : s
1000 | Mg W
500 I | Me My

Throughput (requests/sec)

10 KiB 100 KiB

Downloaded file size

Time per request (ms)

How does Phoenix scale to multiple tenants!?

1600
1400
1200
1000
800
600
Z10]0
200

0

Linux (shared NGINX)

Number of tenants

Time per request (ms)

How does Phoenix scale to multiple tenants!?

1600
1400
1200
1000
800
600
Z10]0
200

0

s Linux (shared NGINX)

481437 ms|

_ mmmmm Phoenix-crypt (shared nothing)
IS AU S 32
Number if enclave
BT 8) 27 ms
"= 0 B
1 2

Number of tenants

Time per request (ms)

How does Phoenix scale to multiple tenants!?

1600
1400
1200
1000
800
600
Z10]0
200

0

_inux (shared NGINX)

Phoenix-crypt (shared NGINX)
Phoenix-crypt (shared nothing)

Number of tenants

481437 ms|

Time per request (ms)

How does Phoenix scale to multiple tenants!?

1600
1400
1200
1000
800
600
Z10]0
200

0

s Linux (shared NGINX)
- mmmmm Phoenix-crypt (shared NGINX)
|

Phoenix-crypt (shared nothing)

1 2 4 6
Number of tenants

10M
1M
100K
10K
1K

SGX paging events

Other results

Benchmark overhead of running WAFs (ModSecurity) in SGX
(overhead about the same as in Linux)

Perform detailed micro-benchmarks of each kernel server

Compare standard ocalls to exitless ocalls
(not always better)

Run legacy apps in enclaves

r

[Enclave

[Enclave

,
Enclave

Ve

Web server
_

D

Ve

Cache

-

Ve

Web Application
Firewall

-

p
Enclave

[Key Server }

p
Enclave

{ Memory Server }

p
Enclave

[File Server]

Throughput (requests/sec)

3500

OO0 | Jl

7 I —

Ll S
1500 [B gl
BOQ [

Phoenix The first truly keyless CDN

(Conclaves) Containers of enclaves

Linux
m Phoenix-crypt

== Phoenix-vericrypt E , g # Workers

1 KiB 10 KiB 100 KiB
Downloaded file size

https://phoenix.cs.umd.edu/

ARTIFACT
EVALUATED

susenix

4 ’ ASSOCIATION

PASSED

