
Mazu: A Zero Trust Architecture for Service Mesh Control Planes
Aashutosh Poudel

William & Mary
Virginia, USA

apoudel01@wm.edu

Pankaj Niroula
William & Mary
Virginia, USA

pniroula@wm.edu

Collin MacDonald
William & Mary
Virginia, USA

cmacdonald01@wm.edu

Lily Gloudemans
William & Mary
Virginia, USA

algloudemans@wm.edu

Stephen Herwig
William & Mary
Virginia, USA

smherwig@wm.edu

Abstract

Microservices are a dominant cloud computing architecture because
they enable applications to be built as collections of loosely coupled
services. To provide greater observability and control into the resul-
tant distributed system, microservices often use an overlay proxy
network called a service mesh. A key advantage of service meshes
is their ability to implement zero trust networking by encrypting
microservice traffic with mutually authenticated TLS. However,
the service mesh control plane—particularly its local certificate
authority—becomes a critical point of trust. If compromised, an
attacker can issue unauthorized certificates and redirect traffic to
impersonating services.

In this paper, we introduce our initial work inMazu, a system
designed to eliminate trust in the service mesh control plane by
replacing its certificate authority with an unprivileged principal.
Mazu leverages recent advances in registration-based encryption
and integrates seamlessly with Istio, a widely used service mesh.
Our preliminary evaluation, using Fortio macro-benchmarks and
Prometheus-assisted micro-benchmarks, shows that Mazu signifi-
cantly reduces the service mesh’s attack surface while adding just
0.17 ms to request latency compared to mTLS-enabled Istio.

CCS Concepts

• Security and privacy→ Key management; Security protocols;
Distributed systems security.

Keywords

CloudComputing,Microservice Security, ServiceMesh, Registration-
Based Encryption

ACM Reference Format:

Aashutosh Poudel, Pankaj Niroula, Collin MacDonald, Lily Gloudemans,
and Stephen Herwig. 2025. Mazu: A Zero Trust Architecture for Service
Mesh Control Planes. In The 18th European Workshop on Systems Security
(EuroSec’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3722041.3723100

This work is licensed under a Creative Commons Attribution 4.0 International License.
EuroSec’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1563-1/2025/03
https://doi.org/10.1145/3722041.3723100

Kubernetes Control Plane

Istio Control Plane

Istiod

Workload

Sidecar (Envoy)

Node Agent

Application Container

Certificate
Authority

Authn & Authz
 Policies

Application
Container A

Application
Container B

Figure 1: Architecture of the current Istio service mesh.

1 Introduction

In cloud computing, a common software architecture is microser-
vices: rather than deploy a large, monolithic application, the soft-
ware developers decompose the application into a distributed sys-
tem of small, loosely-coupled services, that communicate via well-
defined interfaces. The primary benefits ofmicroservices are twofold:
elasticity (the cloud can scale each component independently), and
isolation (a failed component does not, by itself, cause other com-
ponents to fail).

The microservice architecture, being inherently distributed, pre-
sents unique challenges compared to monolithic applications in
terms of reliability, observability, and security. A service mesh is mid-
dleware that addresses these challenges, allowing eachmicroservice
to focus exclusively on its application logic. In most service meshes,
each microservice runs in an application container (see Figure 1)
and is paired with a proxy container, known as a sidecar. The sidecar
modifies the host’s network routing so that all traffic to and from
the application container flows through it. This design enables the
sidecar to manage microservice traffic—providing features such as
authentication, authorization, and logging—without requiring any
modifications to the application itself.

Problem. A key feature of service meshes is zero trust networking,
where the sidecars tunnel communication between microservices
using mutually authenticated TLS (mTLS). To support this, the
service mesh control plane acts as a certificate authority (CA),
issuing certificates to the sidecar proxies. Additionally, this control
plane also provisions sidecars with authorization rules that define
which peer sidecars are allowed to connect. Although zero trust
networking stymies an attacker’s ability to laterally move in the

https://doi.org/10.1145/3722041.3723100
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722041.3723100

EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Poudel et al.

victim’s network, if an attacker compromises the service mesh’s
control plane, the attacker can issue rogue certificates, impersonate
applications, and redirect traffic to malicious endpoints—effectively
subverting the entire system.

In this paper, we ask the following research question:

Is it possible to deprivilege the service mesh’s local

CA while maintaining microservice compatibility

and performance?

One of the earliest attempts to eliminate CAs—and the public key
infrastructure altogether—is Identity-Based Encryption (IBE) [30],
where a user’s public key is a meaningful identifier, such as their
email or IP address. Unfortunately, IBE replaces the CA with an
even more powerful key authority that generates all private keys,
and hence constitutes a key escrow. Related approaches, such as
self-certified keys [17, 28] and certificateless public-key cryptog-
raphy [1], remove the key-escrow problem while retaining IBE’s
ability to encrypt to an identity, but still place CA-like trust assump-
tions on an authority. Recently, some research systems [2, 11, 35]
run critical control plane components, such as the CA, in trusted
execution environments (TEEs), notably Intel SGX [26]. While TEEs
protect the CA from certain classes of attack, the CA remains un-
changed and thus highly privileged.

We present Mazu,1 our early-work extension to existing service
meshes that removes the need for a trusted CA.Mazu leverages re-
cent advances in Registration-Based Encryption (RBE) [19] to enable
microservices to generate their own keys locally while register-
ing a global binding between their public key and microservice
instance. RBE addresses IBE’s key escrow problem by replacing
the key authority with a less powerful entity called the key cura-
tor (KC). Unlike a key authority, the KC does not possess secret
keys; instead, it manages the system’s public parameters, includ-
ing cryptographic commitments that bind public keys to identities.
While RBE’s obvious use case is encrypted messaging, we instead
use it as a cryptographically verifiable registry to enhance service
authentication.

Although the KC functions as a “drop-in replacement" for a
CA in terms of architecture, its use in a service mesh introduces
several additional security challenges. First, in traditional service
meshes, services periodically rotate their TLS certificates to mit-
igate the impact of key compromise. However, achieving similar
post-compromise security guarantees with RBE is not straight-
forward given the binding commitment of an ID to a public key.
Second, RBE assumes that the KC somehow authenticates an ID’s
initial registration, and disallows unauthorized unregistering or
re-registering of that ID. In contrast,Mazu’s threat model allows
the KC to engage in Byzantine behaviors, including malicious re-
registration attacks.Mazu addresses these concerns by amending
RBE with protocol enhancements that make both the registration
process and interactions with the KC publicly auditable.

Contributions. We make the following contributions:
• We introduce Mazu, a service mesh that enhances zero trust
networking for microservices by eliminating the local CA,

1Mazu is a Chinese sea goddess and the deity of seafarers.

a critical weak point. Mazu leverages recent advances in
registration-based encryption to replace the CA with a less
privileged, untrusted entity.
• We implement an initial Mazu prototype using the widely
adopted Istio service mesh [6] and Envoy sidecar proxy [5], en-
suring compatibility with existing microservice architectures.
Our implementation requires no modifications to applications
or the Kubernetes cluster manager.
• We conduct a preliminary evaluation of Mazu using the For-
tio load tester and micro-benchmarks for profiling the node
agent. Our preliminary results show thatMazu adds a modest
increase of 0.17 ms in request latency compared to Istio with
mTLS enabled.

Outline. This paper is organized as follows. In §2 we specify our
threat model, goals, and assumptions. We provide an overview of
RBE in §3, and then present the design of Mazu in §4. In §5 we
describe our early-work implementation of Mazu using the Istio
service mesh in a Kubernetes cluster, and in §6 evaluate the per-
formance of Mazu against traditional service mesh configurations.
We then discuss future work to reduce the trust assumptions on
Kubernetes in §7, and highlight related work in §8. Finally, we
conclude in §9.

2 Goals & Assumptions

We assume a service mesh architecture that reflects popular imple-
mentations like Istio [6], Linkerd [8], and Consul [4]. Specifically,
the service mesh logically comprises a control plane—which handles
traffic rules, logging, authorization, and certificate issuance—, and
a data plane—namely, the sidecar proxies. We assume the sidecar
acts as a layer-7 (HTTP or gRPC) proxy. Within the Kubernetes
cluster [7], each node (a physical or virtual machine) runs a mesh
node agent, which serves as an interface between the service mesh’s
control plane and data plane.

2.1 Threat Model

We assume an attacker has remote code execution on the cluster
and can exploit the service mesh’s control plane. In particular,
the attacker can issue rogue certificates, spawn microservices to
impersonate legitimate applications, and configure routing rules
that redirect traffic to these malicious microservices.

We assume an attacker can temporarily compromise a node
agent or sidecar, and can thus leak sensitive data, such as keys
and credentials. The attacker may also compromise a microservice
itself, but cannot escape its container to fully take over or replace
its associated sidecar.

We consider availability attacks as out-of-scope, as an attacker
who breaches the service mesh’s control plane can trivially deny
service.

Kubernetes assumptions. We trust Kubernetes to manage and
provision the cluster and assume the attacker cannot compromise
Kubernetes’ control plane, including its API server. A key aspect
relevant toMazu is Kubernetes’ default role in issuing a signed JWT
admin token to each microservice during initialization. This token
contains the service’s internal URL, along with IDs for its cloud
service account, node, and pod. It is primarily used to bootstrap the

Mazu: A Zero Trust Architecture for Service Mesh Control Planes EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands

service by granting access to additional resources. For example, in
a traditional service mesh, the node agent presents this token to
the CA to obtain a certificate.

WhileMazu assumes Kubernetes properly manages (e.g., grants
and revokes) these tokens, we assume that an attacker may steal
them from a compromised node. We further make the assumption
that Kubernetes does not use the same token for multiple services,
and assigns services distinct IP addresses (both of which are true
in a conventional deployment where a pod hosts a single service).
In §7 we describe our future work to reduce trust in Kubernetes.

2.2 Goals

Our primary security goal when designingMazu is:

S1 Untrusted ServiceMesh Control Plane: An attacker that breaches
the service mesh’s control plane must not be able to under-
mine the confidentiality or integrity of the microservice
application’s network communications.

Additionally, we have the following functional goals:

F1 Application transparency: Mazu should preserve the core
property of service meshes, which is that the application
itself remains unmodified.

F2 Compatibility with existing service meshes: Mazu should ex-
tend current service mesh software (we use Istio).

F3 Low performance overheads:Mazu should impose little per-
formance overhead on the microservice applications, both
in terms of client latency and resource usage.

3 Registration-Based Encryption Overview

3.1 Overview

At a high-level,Mazu achieves its goals by replacing the CA with a
decentralized protocol based on the recently introduced concept of
Registration-Based Encryption (RBE) [16, 19]. RBE is an alternative
to IBE that replaces IBE’s key authority with a weaker principal
called the key curator (KC) that does not have knowledge of any
secret key (or any secret information). A user in an RBE system
locally generates their keys and then publicly registers their iden-
tity and corresponding public key with the KC. In response, the
KC updates the public parameters of the system and returns to the
user some supplementary, non-secret, information called the user’s
opening, which is necessary for the user to decrypt ciphertexts. As
new users register and the public parameters change, existing users
need to contact the KC to fetch their updated opening. Encryption
and decryption work analogously as in IBE: given the public pa-
rameters and Bob’s identity, Alice can non-interactively encrypt
a message for Bob. Bob, given his secret key and his opening, can
decrypt Alice’s message.

3.2 Parameters & Algorithms

Mazu uses the RBE implementation from Glaeser et al. [19], which
is the first (and to our knowledge, only) efficient implementation of
RBE. To make our presentation of Mazu self-contained, we list the
RBE parameters in Table 1, and briefly present the cryptosystem’s
high-level interface, prefacing each algorithm with the principal
that invokes it (or using the notation [𝐴 � 𝐵] in the case of a

Table 1: RBE Parameters. The gray cells are the public param-

eters pp. The KC maintains 𝐶 and 𝚲, as these change upon

each new registration.

Parameter Description

Public 𝑁 Max number of registered users
bg Bilinear group with generator 𝑔 of order 𝑝

and pairing 𝑒 : G × G→ G𝑇

crs Common reference string
𝐶 Aggregation of public keys (

∏
𝑖∈ [𝑁] pk𝑖)

𝚲 User openings ({Λ𝑖 : 𝑖 ∈ [𝑁] })

User𝑖 id𝑖 Registered identity
pk𝑖 Public key
sk𝑖 Private key
𝝃𝒊 Helping information
Λ𝑖 Opening

network request from 𝐴 to 𝐵). The RBE system consists of the
following algorithms:

Setup(𝑵, bg) → pp
We assume the Kubernetes admin runs the Setup to initialize the
system’s public parameters pp. The initialization of the common
reference string crs requires the admin to generate a secret number,
which it can then purge after computing the crs.

U𝒊 .KeyGen(pp) → (pk𝒊, sk𝒊, 𝝃𝒊)
A user U𝑖 that wants to register first executes the KeyGen algorithm
to generate their keypair (pk𝑖 , sk𝑖). The algorithm also uses the crs
to output the helping information 𝝃𝒊 , which is U𝑖 ’s contribution to
the openings of the other users.

[U𝒊 � KC].Reg(pp, id𝒊, pk𝒊, 𝝃𝒊)
To register an identity id𝑖 , user U𝑖 sends their public key and helping
information to the KC. The KC then updates the commitment of
public keys as𝐶′ ← 𝐶 · pk𝑖 , and likewise the openings of the other
users: ∀𝑗∈[𝑁 \𝑖]Λ 𝑗 ← Λ 𝑗 · 𝜉𝑖 [𝑗].

[U𝒊 � KC].Upd(pp, id𝒊) → (𝑪′,𝚲′
𝒊)

A user U𝑖 periodically makes an Upd request to the KC to fetch
their updated opening Λ′

𝑖
, as well as the updated aggregation of all

public keys: 𝐶′.

U𝒊 .Enc(pp, id𝒋 ,msg) → ct
User U𝑖 encrypts a message msg ∈ G𝑇 to a user with ID id𝑗 using
the Enc algorithm, which also takes as input the public parameters
pp.

U𝒊 .Dec(pp, ski,𝚲𝒊, ct) → msg User U𝑖 decrypts a message en-
crypted to their ID id𝑖 using the Dec algorithm, which takes as
input the public parameters pp, the user’s private key sk𝑖 , the user’s
opening Λ𝑖 , and the ciphertext ct.

KC.MProve(pp, id𝒋 , pk𝒋) → 𝝅𝒋 Any user (though typically the
KC) produces a proof of membership 𝜋 that shows that id𝑗 is regis-
tered under public key pk𝑗 using theMProve algorithm.

U𝒊 .MVerify(pp, id𝒋 , pk𝒋 , 𝝅𝒋) → bool Any user U𝑖 can validate
a proof of membership 𝜋 𝑗 certifying that id𝑗 is bound to public key
pk𝑗 using theMVerify algorithm.

EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Poudel et al.

4 Design

We first present an initial, insecure version of Mazu, and then
gradually improve the design to counter distinct attacks. Figure 2
shows our final design.

4.1 An Initial Approach

ID registration. By default, Kubernetes provisions each microser-
vice instance with a Kubernetes-signed admin token containing the
instance’s internal URL, as well as the IDs for its cloud service
account, node, and pod. The pod’s node agent uses the token to
register the ID:

id𝑖 = 𝐻 (token𝑖),
for a co-resident service 𝑖 , where𝐻 is a cryptographic hash function.
The node agent then generates a self-signed TLS certificate for the
service that embeds the admin token.

TLS handshake. During the TLS handshake between two side-
cars, the client sidecar verifies that the server’s certificate includes
a signed admin token for the intended destination URL. Addition-
ally, the client sidecar derives the server’s ID id𝑠 as a hash of the
received token. To verify that the server registered id𝑠 , the client
encrypts a challenge nonce to id𝑠 , and passes the challenge as an ex-
tension to the initial ClientHello message of the TLS handshake.
If the server can decrypt and return the nonce in the subsequent
ServerHello TLS message, validation succeeds and the client con-
tinues with the connection. The server’s validation of the client
works in an analogous fashion. The remaining steps of the TLS
protocol are unchanged.

Issues. The initial approach verifies that an endpoint both pos-
sesses a valid token for a given service (URL) and knows the corre-
sponding private key. However, this method remains vulnerable if
an attacker compromises the endpoint’s token and its private key
sk𝑖 . (In practice, the system must treat the token as public since
any client can initiate a TLS handshake and retrieve it.)

Additionally, beyond the risk of RBE key leakage, this approach
is also susceptible to a re-registration attack, where an adversary
unregisters an endpoint’s ID and re-registers it with a keypair of
their choice. Indeed, unregistering id𝑖 simply implies removing the
public key from the global aggregation of public key commitments:

𝐶′ ← 𝐶 · pk−1𝑖

and likewise removing the relevant index of 𝝃𝒊 from each user’s
opening. Note that the KC need not expose a separate Unreg API:
if an attacker A wants to unregister id𝑖 and re-register it as their
own, they need only register with a “public key” of

pki
−1 · pkA

and similarly for 𝝃𝒊 .

4.2 Removing the Threat of Key Compromise

The key to mitigating the risk of an RBE key compromise is rec-
ognizing that Mazu only requires RBE’s registration properties,
not its encryption with respect to identity functionality, and thus
the choice of the private key is critical only during registration.

Kubernetes Control Plane

Mazu

Istiod

Workload

Sidecar (Envoy)

Node Agent

Application Container

Admin Signed token

Workload certificate

RBE Identity

RBE Secret & Public Keys

Authn & Authz
 Policies

Application
Container A

Application
Container B

Key Curator

Figure 2:Mazu architecture

Specifically, when registering id𝑖 , the node agent locally generates
a keypair, choosing as its private key:

sk𝑖 = 𝐻 (token ∥ IP),
where IP is the service’s IP address.

As before, during TLS certificate validation, the client extracts
the server’s token from its self-signed certificate, and computes the
server’s ID as:

id𝑠 = 𝐻 (token𝑠),
As before, the client encrypts a challenge nonce to ids, but now
retrieves the server’s opening Λs from the KC. The client then
derives the server’s expected “secret” key 𝑠𝑘𝑠 as:

𝑠𝑘𝑠 = 𝐻 (token𝑠 ∥ IP𝑠)
and locally checks:

Dec(pp, 𝑠𝑘𝑠 ,Λ𝑠 , Enc(pp, id𝑠 , nonce))
?
= nonce

If the client can decrypt the nonce, validation succeeds and the
client continues with the connection. The server’s validation of the
client proceeds in a likewise fashion, andMazu leaves the rest of
the TLS handshake unchanged.

Stolen Tokens. Suppose an attacker A leaks 𝐵’s token and tries
to impersonate 𝐵. For now, we assume A cannot acquire the same
IP as 𝐵, but thatA can compromise the service mesh control plane
to route services to itself. During the TLS handshake, the peer
service will derive an incorrect candidate secret key due to the
mismatch in the server’s IP, fail to decrypt the nonce, and thus
abort the connection.

IP reuse. Suppose now that Kubernetes tears down 𝐵, allowing
A to reuse 𝐵’s IP to launch a malicious service. If a peer service
connects to this malicious service, the peer will derive the exact
same RBE private key as for the retired 𝐵, and Mazu’s custom
TLS validation checks will pass. To counter this threat, we note
that Kubernetes automatically invalidates a service’s token when
tearing down that service. Thus, we amend the sidecar’s certificate
validation to also query Kubernetes for the validity of a token.

4.3 Mitigating Re-registration Attacks

While Mazu does not prevent re-registration attacks, it does make
such an attack detectable. For each registration, the KC updates
the user openings 𝚲; the node agents periodically poll the KC for
the updated openings for their resident services. We modify this

Mazu: A Zero Trust Architecture for Service Mesh Control Planes EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands

operation so that the KC returns to the node agent a history of
updates, where each history entry specifies an individual update as
the tuple:

(token𝑖 , id𝑖 , pk𝑖 , 𝜋𝑖)
In this way, ID re-registration is auditable: any node agent can
verify the proof of registration 𝜋𝑖 and further detect instances of
token reuse.

5 Implementation

We port Glaeser et al.’s [19, 29] Python-based implementation of
RBE (which depends on the petrelic [18] Python wrapper to the
RELIC cryptographic library [3]) to Go. Our implementation uses
Cloudflare’s Circl cryptographic library [14], and specifically its
implementation of the BLS12-381 elliptic curve. We additionally
implement the cryptosystem’s proof of registration algorithm, and
provide a Google Protocol Buffer’s serialization of parameters and
messages. In total, our Go implementation is 1050 LoC.

We introduce the following high-level changes to Istio:
• Control Plane: We replace Istiod’s CA functionalities with a
Key Curator.
• Data Plane: We modify Envoy’s certificate validation to use
RBE’s registration properties.

Istiod. Istiod acts as a CA, issuing certificates to enable secure
mTLS communication between services. The CA is implemented as
a gRPC service that receives certificate signing requests (CSRs) from
node agents, validates their credentials, and generates workload
certificates [10]. InMazu, we likewise add the KC as a gRPC service
within Istiod, providing methods to register a service’s RBE ID and
fetch updated public parameters from the system.

Node agent. Mazu treats each service as a user in the RBE scheme
and uses the node agent to generate an ID and keying material
(pk, sk, 𝝃) for each service on that node. Instead of contacting the
CA to sign the CSR, the node agent registers the RBE ID with the
KC. Once registration is complete, it creates a self-signed certificate
that embeds the token as a certificate extension. The node agent
then provisions the Envoy proxy with the certificate using Istio’s
standard xDS service discovery protocol, which uses a UNIX domain
socket connection between the agent and the proxy [32].

The node agent periodically polls the KC for updates to the sys-
tem’s public parameters and retrieves the history of all registered
services. Using this information, it precomputes the results of the
trial encryption-decryption (see §4.3) for all registered services
(non-interactively). This precomputation is an optimization, as it
obviates the need for the Envoy proxy to perform additional net-
work requests and cryptographic operations within the critical path
of the TLS handshake. The node agent periodically sends the Envoy
proxy updates to its opening, the RBE public parameters, and the
precomputed challenge-response results using the same local xDS
service.

Envoy proxy. The Envoy proxy acts as the data plane compo-
nent, managing traffic between all services within the service mesh.
We implement a custom certificate validation extension in Envoy.
Specifically, during the mTLS authentication, our extension extracts
the admin token from the peer 𝑝’s certificate and validates it us-
ing the Kubernetes TokenReview API. If the admin token is valid,

0 16 50 64 100 150 200 250 300
Connections

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

La
te

nc
y

in
 m

illi
se

co
nd

s

0.628

0.719

0.187
0.219

0.636

0.694

0.799

0.887

Istio with mTLS
mTLS without Istio
Istio without mTLS
Mazu

Figure 3: Latency versus connections at the 90th percentile

(p90), with a request rate of 1000 RPS over 120 seconds.

Envoy then retrieves the 𝑝’s IP address from the TLS connection
stream, and checks the validity of the (token𝑝 , IP𝑝) tuple against
the pre-computed challenge-response results it received from the
node agent.

6 Evaluation

Experimental setup. We perform our experiments using a local
minikube Kubernetes cluster on an on-premise server. We configure
the clusters with 4 CPUs and 16 GB of memory. Our server has a
4th generation AMD EPYC chip (7354P) with 64 logical cores and
786 GB of RAM. Mazu extends Istio version 1.24 and Envoy Proxy
version 1.32.

Macro-benchmark. WeevaluateMazu’s end-to-end performance
using a “Two pods benchmark test," which measures data path per-
formance through latency measurements across different proxy
configurations. The benchmark uses two Fortio pods (a Go-based
load testing tool) in a client-server setup, with the client sending
parameterized echo requests to the server. Key parameters include
client connections, mutual TLS status, payload size, request rate,
protocol type, sidecar configuration, and request distribution. We
compared four configurations: baseline (using mTLS and no Istio),
Istio with sidecars using mTLS, Istio with sidecars using plaintext
(no mTLS), andMazu.

Our tests use the HTTP/1.1 protocol with 1 KB payloads, a re-
quest rate 1000 requests per second (RPS), and concurrent client
connections ranging from 2 to 256. As shown in Figure 3, Mazu in-
troduces minimal latency overhead, adding 0.17 ms latency at both
16 and 64 concurrent connections compared to Istio with mTLS
enabled.

Micro-benchmark. We conduct micro-benchmark experiments
to evaluate the performance impact of retrieving key updates, from
both latency and size perspectives. We log the latencies and up-
date sizes that a node agent observes using Prometheus, and then
export this data for further analysis. As Figure 4 shows, as more

EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Poudel et al.

0 10 20 30 40 50
Number of Services

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(s
)

Figure 4: Key Update Latency Micro-benchmark Results. We

measure key update latencies across minikube clusters with

1 to 50 active services.

services register with the KC, the latency of an update request
grows at an approximately linear rate. We note that the response
sizes themselves grow at a sub-linear rate.

7 Limitations & Future Work

7.1 Byzantine Key Curator

A remaining threat in Mazu is a Byzantine KC that provides mi-
croservices with inconsistent registration views. For instance, a
malicious KC could divide the service instances into two sets, and
facilitate an attack where an adversary steals a token from one
registration set, and registers that token in the other. This is an
example of fork linearizability [15], which typically requires com-
munication between the two sets to detect and resolve the forked
views. Given that the service mesh control plane exerts control over
routing, achieving communication between the two sets may be
challenging.

As future work, we plan to explore solutions like TrInc [23],
which leverage basic trusted hardware (e.g., TPMs) to integrate
monotonic counters into network protocols. Applied to Mazu, this
approach would require the KC to attach an attested counter to
each update, making equivocation and network partitioning attacks
detectable.

7.2 Reducing Trust in Kubernetes

Mazu relies on Kubernetes in two key ways: (1) as a trusted issuer
of tokens when initializing a service, and (2) as an oracle during
the TLS handshake to verify whether a token is valid or invalid.
While the former likely requires the integration of a hardware root
of trust, the latter is within the purview of RBE, as we describe
next.

Token invalidation. As described in §4.3, during the TLS hand-
shake, the sidecar extracts the token from the peer’s certificate and
queries Kubernetes to check its validity. In this setup, the proxy
depends on Kubernetes to correctly revoke a service’s token when
the service terminates and to provide up-to-date, correct revocation
status.

To eliminate the need for Kubernetes to handle these trusted
operations, Mazu could be extended to use a separate RBE ID-
space with a logically separate key curator KC𝑟𝑒𝑣 for registering
token revocations. Specifically, when a node agent detects that a
service on its node has exited, it registers an ID with the value
𝐻 (token) with KC𝑟𝑒𝑣 . After this registration, the node agent can
safely discard the secret key, as Mazu relies on the registration
solely for revocation tracking, not for encrypting messages.

During certificate validation, the proxy must check whether the
peer’s token is registered with KC𝑟𝑒𝑣 , and abort the TLS hand-
shake if it is. Similar to the normal KC, the node agent can peri-
odically poll 𝐾𝐶𝑟𝑒𝑣 for a history of revocation updates, and verify
the membership proofs that accompany the updates. Alternatively,
the proxy could query KC𝑟𝑒𝑣 for a specific proof of membership or
non-membership at the time of a TLS handshake. Future research
should examine the trade-offs between TLS handshake latency and
overall bandwidth usage in these two approaches.

8 Related Works

PKI alternatives. Attempting to remove the complexities of the
PKI and the need for certificates altogether, Shamir [30] proposed
an identity-based encryption system in which a user’s public key
could be an arbitrary string, such as their e-mail address. Later,
Boneh & Franklin [9] developed the first practical construction of
IBE using bilinear groups. A fundamental challenge in IBE is that a
trusted key authority creates all private keys, effectively acting as a
key escrow. To mitigate this, Boneh and Franklin [9] originally sug-
gested a key threshold scheme to distribute key generation across
multiple authorities. Kate and Goldberg [21] later implemented
and evaluated this approach, though the design necessarily adds
communication and infrastructure costs over standard IBE.

Alternative approaches, such as self-certified public keys [17, 28]
and certificateless public-key cryptography [1], occupy a middle
ground between traditional PKI and IBE, but still place trust as-
sumptions on a key authority regarding forgery.Mazu similarly oc-
cupies an intermediate design space, but unlike these prior systems,
counters authority misbehavior by requiring the KC to generate
publicly-verifiable, cryptographic proofs of membership. Addition-
ally, Mazu is fundamentally an authentication system, rather than
an encryption system.

Serverless with trusted execution environments. Several re-
search efforts [2, 11, 34, 35] aim to protect microservice applications
from untrusted cloud providers or cloud-based attackers by run-
ning services within trusted execution environments, particularly
Intel SGX enclaves [26]. In addition to hosting serverless workloads
in enclaves, these systems offer protected control-plane services
such as key distribution enclaves, software TPMs, and resource
accounting. Later research [22, 24, 37] focuses on optimizing these
initial designs for better performance, or develops mutual attes-
tation schemes that do not rely on a trusted (enclaved) authority,
though with some constraints on the application design [12, 36].
Mazu is orthogonal to these efforts, and their composition repre-
sents an interesting design in which TEEs provide confidentiality
and integrity guarantees for the services, and an untrusted control
plane facilitates mutual attestation.

Mazu: A Zero Trust Architecture for Service Mesh Control Planes EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands

Hardening microservices. Finally, many efforts focus on hard-
ening serverless runtimes. Sun et al. [31], for example, enhance the
Linux kernel with security namespaces, enabling containers to define
and enforce security policies independently. Google’s gVisor [33]
application kernel provides a userspace alternative to mediate appli-
cation interactions, reducing the risk of container escapes. In turn,
BASTION [27] improves network security by limiting container
visibility through per-container network stacks with fine-grained
security policies. Other research [13, 20, 25] focuses on enforcing
information flow control between services. Mazu also provides
defense-in-depth for microservices, but specifically protects the
control plane rather than the data plane.

9 Conclusion

Service meshes are essential for providing zero trust networking to
microservices, but the service mesh’s local CA represents a security
weak point. In this paper, we presented our initial work onMazu, a
service mesh extension that replaces the CA with a secure, unprivi-
leged public key registry using registration-based encryption. Our
preliminary implementation and evaluation showMazu’s potential,
and future work will address even stronger threats.

Acknowledgments

We thank the anonymous reviewers for their helpful feedback. This
work was supported in part by NSF grant CNS-2348130.

References

[1] Sattam S. Al-Riyami and Kenneth G. Paterson. 2003. Certificateless Public Key
Cryptography.

[2] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.
2019. S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel
SGX. In ACM Workshop on Cloud Computing Security (CCSW).

[3] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. [n. d.].
RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/
relic.

[4] Consul Authors. 2025. Consul by HashiCorp. https://www.consul.io/
[5] Envoy Proxy Authors. 2025. Envoy proxy - Home. https://www.envoyproxy.io/
[6] Istio Authors. 2025. The Istio service mesh. https://istio.io/latest/about/service-

mesh/
[7] Kubernetes Authors. 2025. Production-Grade Container Orchestration. https:

//kubernetes.io/
[8] Linkerd Authors. 2025. The world’s most advanced service mesh. https://linkerd.

io/
[9] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the

Weil Pairing. In International Cryptology Conference (CRYPTO).
[10] Craig Box (Google). 2020. Introducing istiod: simplifying the control plane.

https://istio.io/latest/blog/2020/istiod/
[11] Stefan Brenner and Rüdiger Kapitza. 2019. Trust more, serverless. In ACM

International Systems and Storage Conference (SYSTOR).
[12] Guoxing Chen and Yinqian Zhang. 2022. MAGE: Mutual Attestation for a Group

of Enclaves without Trusted Third Parties. In USENIX Security Symposium.
[13] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,

and Adam Bates. 2020. Valve: Securing Function Workflows on Serverless Com-
puting Platforms. In The Web Conference (WWW).

[14] Armando Faz-Hernandez and Kris Kwiatkowski. 2019. Introducing CIRCL: An
Advanced Cryptographic Library. Cloudflare. Available at https://github.com/
cloudflare/circl. v1.6.0 Accessed Jan, 2025.

[15] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Fel-
ten. 2010. SPORC: Group Collaboration using Untrusted Cloud Resources. In
Symposium on Operating Systems Design and Implementation (OSDI).

[16] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. 2018. Registration-Based Encryption: Removing Private-Key Generator
from IBE. In Theory of Cryptography Conference (TCC).

[17] Marc Girault. 1991. Self-Certified Public Keys. In International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT).

[18] Laurent Girod and Wouter Lueks. 2022. petrilic is a Python wrapper around
RELIC. https://github.com/spring-epfl/petrelic.

[19] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi.
2023. Efficient Registration-Based Encryption. In ACM Conference on Computer
and Communications Security (CCS).

[20] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, and Michael Swift. 2023.
Guarding Serverless Applications with Kalium. In USENIX Security Symposium.

[21] Aniket Kate and Ian Goldberg. 2010. Distributed Private-Key Generators for
Identity-Based Cryptography. In Security and Cryptography for Networks.

[22] Seong-Joong Kim, Myoungsung You, Byung Joon Kim, and Seungwon Shin. 2023.
Cryonics: Trustworthy Function-as-a-Service using Snapshot-based Enclaves. In
ACM Symposium on Cloud Computing (SOCC).

[23] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. 2009.
TrInc: Small Trusted Hardware for Large Distributed Systems. In Symposium on
Networked Systems Design and Implementation (NSDI).

[24] Mingyu Li, Yubin Xia, and Haibo Chen. 2021. Confidential Serverless Made Effi-
cient with Plug-In Enclaves. In International Symposium on Computer Architecture
(ISCA).

[25] Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and Jim Hao Chen. 2021. Automatic
Policy Generation for Inter-Service Access Control of Microservices. In USENIX
Security Symposium.

[26] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instruc-
tions and Software Model for Isolated Execution. In Workshop on Hardware and
Architectural Support for Security and Privacy (HASP).

[27] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran,
and Seungwon Shin. 2020. BASTION: A Security Enforcement Network Stack
for Container Networks. In USENIX Annual Technical Conference (ATC).

[28] Holger Petersen and Patrick Horster. 1997. Self-certified Keys—Concepts and
Applications. In Conference on Communications and Multimedia Security (CMS).

[29] Ahmadreza Rahimi and Noemi Glaeser. [n. d.]. efficientRBE. https://github.com/
ahmadrezarahimi/efficientRBE.

[30] Adi Shamir. 1984. Identity-based Cryptosystems and Signature Schemes. In
International Cryptology Conference (CRYPTO).

[31] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. 2018. Security Namespace: Making Linux Security Frameworks
Available to Containers. In USENIX Security Symposium.

[32] Lei Tang (Google). 2020. Remove cross-pod unix domain sockets. https://istio.
io/v1.12/blog/2020/istio-agent/

[33] The gVisor Authors. [n. d.]. gVisor. https://gvisor.dev.
[34] Dave (Jing) Tian, Joseph I. Choi, Grant Hernandez, Patrick Traynor, and Kevin

R. B. Butler. 2019. A Practical Intel SGX Setting for Linux Containers in the Cloud.
In ACM Conference on Data and Application Security and Privacy (CODASPY).

[35] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and Christof
Fetzer. 2019. Clemmys: Towards Secure Remote Execution in FaaS. In ACM
International Systems and Storage Conference (SYSTOR).

[36] Furkan Turan and Ingrid Verbauwhede. 2019. Propagating Trusted Execution
throughMutual Attestation. InWorkshop on System Software for Trusted Execution
(SysTEX).

[37] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang, and
Zhiqiang Lin. 2023. Reusable Enclaves for Confidential Serverless Computing. In
USENIX Security Symposium.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.consul.io/
https://www.envoyproxy.io/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/
https://kubernetes.io/
https://kubernetes.io/
https://linkerd.io/
https://linkerd.io/
https://istio.io/latest/blog/2020/istiod/
https://github.com/cloudflare/circl
https://github.com/cloudflare/circl
https://github.com/spring-epfl/petrelic
https://github.com/ahmadrezarahimi/efficientRBE
https://github.com/ahmadrezarahimi/efficientRBE
https://istio.io/v1.12/blog/2020/istio-agent/
https://istio.io/v1.12/blog/2020/istio-agent/
https://gvisor.dev

	Abstract
	1 Introduction
	2 Goals & Assumptions
	2.1 Threat Model
	2.2 Goals

	3 Registration-Based Encryption Overview
	3.1 Overview
	3.2 Parameters & Algorithms

	4 Design
	4.1 An Initial Approach
	4.2 Removing the Threat of Key Compromise
	4.3 Mitigating Re-registration Attacks

	5 Implementation
	6 Evaluation
	7 Limitations & Future Work
	7.1 Byzantine Key Curator
	7.2 Reducing Trust in Kubernetes

	8 Related Works
	9 Conclusion
	References

