
AccNimbus: Scalable Proofs of Data Possession for Cloud Storage
Collin MacDonald

William & Mary
Williamsburg, Virginia, USA
cmacdonald01@wm.edu

Pankaj Niroula∗
William & Mary

Williamsburg, Virginia, USA
pniroula@wm.edu

Aashutosh Poudel∗
William & Mary

Williamsburg, Virginia, USA
apoudel01@wm.edu

Stephen Herwig
William & Mary

Williamsburg, Virginia, USA
smherwig@wm.edu

Abstract

As organizations increasingly store large volumes of data in the
cloud, there is a growing need for efficient auditing mechanisms
that verify data integrity without requiring full data downloads.
This paper presents AccNimbus, a cloud-native provable data pos-
session (PDP) system based on recent advances in RSA-based cryp-
tographic accumulators. Like prior PDP schemes, AccNimbus uses
a challenge-response protocol to probabilistically audit a random
sample of stored data. However, unlike existing approaches that
rely on clients to perform audits, AccNimbus shifts this responsi-
bility to a trusted cloud service. To protect sensitive audit metadata
and ensure trustworthy execution, AccNimbus operates within an
AMD SEV-SNP trusted execution environment. Our evaluation on
Google Cloud Storage shows that AccNimbus introduces minimal
overhead and is a practical service, auditing a 1 GB storage bucket
(100,000 objects) in less than five minutes.

CCS Concepts

• Information systems→ Cloud based storage; • Security and

privacy→Denial-of-service attacks; •Theory of computation

→ Cryptographic protocols.

Keywords

Proof of Data Possession, Cryptographic Accumulators, Trusted
Hardware
ACM Reference Format:

Collin MacDonald, Pankaj Niroula, Aashutosh Poudel, and Stephen Herwig.
2025. AccNimbus: Scalable Proofs of Data Possession for Cloud Storage. In
Hardware and Architectural Support for Security and Privacy 2025 (HASP
2025), October 19, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3768725.3768733

1 Introduction

Organizations increasingly rely on cloud object storage services—
such as Amazon S3 [37], Google Cloud Storage [19], and Azure Blob
Storage [33]—to manage large volumes of data. These services have
∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
HASP 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2198-4/25/10
https://doi.org/10.1145/3768725.3768733

become the dominant form of cloud storage due to their scalability,
high availability, and pay-as-you-go pricing.

While existing cryptographic techniques ensure the privacy and
integrity of cloud-stored data, this paper addresses a complemen-
tary concern: enabling users to verify that cloud storage providers
have not deleted or tampered with their storage objects prior to
retrieval. Such auditing is increasingly important as organizations
outsource data storage for information that is accessed only spo-
radically (such as archival backups), or which must be retained for
regulatory compliance (such as financial records).

This capability, known as Provable Data Possession (PDP) [6],
allows a client to verify that an untrusted server still holds the orig-
inal data—without downloading it. PDP schemes use probabilistic
proofs: the client (verifier) maintains a small, constant amount of
(secret) metadata and randomly samples a number of objects (or
portions of objects) from the server (prover). The client then issues
a challenge, and the server responds with a proof of possession for
each object, which the client checks against its metadata.

Several prior works propose efficient PDP techniques. For exam-
ple, Filho and Barreto [18] and Ateniese et al. [6] use RSA-based
(homomorphic) hash functions to generate integrity tags for each
object. Erway et al. [15] instead employ RSA-based authenticated
dictionaries to verify object store integrity. Our approach contin-
ues these RSA-centric efforts, but differs in two key ways. First,
we use a much simpler cryptographic primitive—cryptographic
accumulators—that can be implemented succinctly using standard
library functions. Second, unlike prior work that treats auditing as a
client-side responsibility, we integrate it as a first-class, cloud-native
service.

We present AccNimbus, a cloud-native gateway for dynamic
cloud storage that offers PDP-as-a-service. To our knowledge, Acc-
Nimbus is the first PDP scheme based directly on cryptographic
accumulators,1 which compactly represent sets and support effi-
cientmembership proofs. To protect the accumulator’s trapdoor and
sensitive audit metadata from the untrusted cloud, AccNimbus runs
within a Trusted Execution Environment (TEE). Our proof-of-concept
uses AMD SEV-SNP [2, 26, 27], though the design is compatible
with other TEEs, such as Intel SGX [23, 31].

In designing AccNimbus, we leverage recent advances in batch-
ing and aggregating RSA-based cryptographic accumulators [10]
to further reduce the verifier’s bandwidth and computational costs.
We also address important edge cases, such as ensuring that object
1We note that the PDP scheme of Erway et al. [15] uses the related concept of authen-
ticated dictionaries.

https://orcid.org/0009-0000-8487-7384
https://orcid.org/0009-0005-3927-8709
https://orcid.org/0009-0007-7609-8955
https://orcid.org/0000-0003-2459-2867
https://doi.org/10.1145/3768725.3768733
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3768725.3768733

HASP 2025, October 19, 2025, Seoul, Republic of Korea Trovato et al.

sampling is performed faithfully and without adversarial interfer-
ence.

Contributions. We make the following contributions:
• We design a PDP scheme, AccNimbus, that combines trusted
hardware with cryptographic accumulators to achieve effi-
cient auditing of cloud storage buckets.
• We implement AccNimbus on the Google Cloud Platform,
including several optimizations to reduce bandwidth and ver-
ifier computation.
• We evaluate AccNimbus’s performance during auditing, up-
dating, and re-initialization, and quantify the impact of each
optimization. Our results show that AccNimbus audits a 1 GB
cloud bucket with 100,000 objects in less than five minutes.

Paper Organization. This paper is organized as follows. In §2,
we provide background on PDP, cryptographic accumulators, and
TEEs We state our threat model and goals in §3. In §4, we describe
the design and operations of the system, including the aggregation
optimizations. We sketch a security analysis of AccNimbus in §5,
and a performance evaluation on Google cloud in §6. We discuss
future work in §7, and conclude in §8.

2 Background

2.1 Proof of Data Possession

A Proof of Data Possession (PDP) [6, 15, 43, 44] is a cryptographic
protocol that enables a client to efficiently verify that a remote
storage service still holds its data, thereby providing an audit mech-
anism against unauthorized deletion or modification. While a naïve
solution might involve the client downloading the data and verify-
ing a digital signature, PDPs aim to perform this audit efficiently—
without requiring the client to retrieve the full storage, or the server
to access the entire data store. PDPs can be viewed as a kind of (non-
zero-knowledge) proof of knowledge, where the verifier knows the
content being proven, and the goal is to minimize computational
and communication overhead. We formalize these properties in
§3.2.

Relation to Proof of Retrievability. Proofs of Retrievability
(PoRs) [3–5, 11, 21, 25, 29, 38, 40, 42, 49, 50] are closely related
to, and often conflated with, PDPs. PDPs are probabilistic protocols
that verify whether storage remains largely intact by detecting
significant corruption. In contrast, PoRs offer stronger guarantees
of full storage retrievability by incorporating redundancy mech-
anisms, such as erasure coding or error-correcting codes. These
mechanisms ensure that even if the audit misses some corruption,
the client can still recover the complete storage (with high proba-
bility) from the verified portions. In this paper, we develop a PDP
protocol, and leave PoR guarantees for future work.

2.2 Cryptographic Accumulators

A cryptographic accumulator, introduced by Benaloh and deMare [9]
and later formalized by Barić and Pfitzmann [8], enables the aggre-
gation of a set of values into a compact, fixed-length digest called
the accumulator value, while supporting constant-size membership
proofs known as witnesses. A verifier can efficiently verify that
an element is part of the set using only the membership witness

and the accumulator value. Accumulators can be constructed using
the strong RSA assumption in groups of unknown order (e.g., RSA
groups) [8–10, 13] bilinear maps [34, 41], or Merkle hash trees [32].

There are several different types of accumulators, and in this
work we deal with dynamic accumulators in the accumulator man-
ager setting. A dynamic accumulator [7, 13, 47] allows updates to
the set of accumulated elements, but requires that the previously
issued witnesses be updated accordingly. The accumulator manager
setting means that a trusted manager knows the trapdoor (e.g., the
RSA modulus factorization) for the accumulator, which enables the
manager to efficiently delete elements from the accumulator.

High-level algorithms. A dynamic cryptographic accumulator
in the trusted manager settting consists of the following high-level
algorithms:

• Acc.Setup(1𝝀) → {𝑨0, pp, sk} Given the initial security pa-
rameters 1𝜆 , initialize the (empty) accumulator value 𝐴0, and
generate the public parameters pp (e.g., the public key) and
trapdoor sk. We assume pp is an implicit parameter to the
remaining algorithms.
• Acc.Add(𝑨𝒕 , 𝒙) → {𝑨𝒕+1,𝒘 (𝒕+1,𝒙) , 𝒖𝒕+1}: Add a value 𝑥 to
the accumulator. Returns the updated accumulator value𝐴𝑡+1,
the membership witness 𝑤 (𝑡+1,𝑥) for proving 𝑥 ∈ 𝐴𝑡+1, and
the update value 𝑢𝑡+1 for updating witnesses created before
𝑡 + 1.
• Acc.Del(At, x) → {𝑨𝒕+1, 𝒖𝒕+1}: Delete a value 𝑥 from the
accumulator. Returns the updated accumulator 𝐴𝑡+1 and the
update value 𝑢𝑡+1 for updating witnesses created before 𝑡 + 1.
The manager’s trapdoor sk is an implicit parameter.
• Acc.VerifyMemWit(𝑨𝒕 , 𝒙,𝒘 (𝒕,𝒙)) → {0, 1}: Verify a mem-
bership witness.
• Acc.UpdateMemWit(𝒘 (𝒕,𝒙) , 𝒖𝒕+1) → 𝒘 (𝒕+1,𝒙) : Update a
membership witness.

RSA instantiation. In this paper, we use the widely adopted RSA-
based cryptographic accumulator [8, 9, 13]. To guarantee unique,
collision-resistant encoding of sets, RSA accumulators require ele-
ments to be prime.We thus define a collision-resistant hash function
HashToPrime from {0, 1}∗ to the odd prime domain that closely
follows Boneh et al.’s [10] implementation. Algorithm 1 shows
the instantiation of an RSA accumulator. Note that the input 𝑥
to Acc.Add, Acc.Del, and Acc.VerifyMemWit is a prime number
from HashToPrime. Note also that a witness𝑤 for 𝑥 is simply the
accumulator value with the 𝑥 exponent removed.

2.3 Trusted Execution Environments

Trusted Execution Environments (TEEs) are hardware-based security
features that provide strong isolation for applications from the
rest of the system—including privileged software like the OS or
hypervisor—and some physical attacks. Their core capability is
memory isolation: application memory is encrypted and integrity-
protected in DRAM and decrypted only within the CPU package.
This isolated memory region (as well as the application proper) is
often referred to as an enclave.

TEEs assume that the CPU, microcode, and security processors
are trusted, while all other components—BIOS, hypervisor, drivers,

AccNimbus: Scalable Proofs of Data Possession for Cloud Storage HASP 2025, October 19, 2025, Seoul, Republic of Korea

Algorithm 1 RSA-Based Accumulator

function HashToPrime(data)
⊲ H is a collision-resistant hash function ⊳

𝑥 ← H(data)
if 𝑥 is even then

𝑥 ← 𝑥 + 1
while 𝑥 is not prime do

𝑥 ← H(𝑥)
if 𝑥 is even then

𝑥 ← 𝑥 + 1
return 𝑥

function Acc.Setup(1𝜆)
pk, sk← RSAKeyGen(1𝜆)
return {𝐴0, pk, sk}

function Acc.Add(𝐴𝑡 , 𝑥)
return {𝐴𝑥

𝑡 , 𝐴𝑡 , 𝑥}
function Acc.Del(𝐴𝑡 , 𝑥)

return {𝐴𝑥−1
𝑡 , 𝑥−1}

function Acc.VerifyMemWit(𝐴𝑡 , 𝑥 ,𝑤 (𝑡,𝑥))

return 𝐴𝑡
?
= 𝑤𝑥
(𝑡,𝑥)

function Acc.UpdateMemWit(𝑤 (𝑡,𝑥) , 𝑢𝑡+1)
return𝑤

𝑢𝑡+1
(𝑡,𝑥)

co-resident VMs, and hardware peripherals—are untrusted. Acc-
Nimbus relies on a TEE because it operates cloud-side as a service,
but does not trust the cloud provider (the principal that it is audit-
ing). AccNimbus handles sensitive data, including an RSA private
key and other audit-related cryptographic material, and a TEE
provides security guarantees that the untrusted provider cannot
observe or interfere with these values.

Intel SGX [23, 31] was the first widely adopted, general-purpose
TEE. It supports enclaves at the granularity of a part of a process,
promoting small trusted computing bases (TCBs), but limiting com-
patibility with legacy applications. In contrast, newer TEEs such
as AMD SEV-SNP [2, 26, 27], Intel TDX [24], and Arm CCA [30]
support enclaves at the virtual machine level (confidential VMs),
enabling unmodified applications to run securely. Our proof-of-
concept implementation of AccNimbus uses an AMD SEV-SNP
confidential VM, though its design is compatible with other TEEs,
including Intel SGX.

3 Assumptions

3.1 Threat Model

We assume an attacker capable of tampering with a client’s cloud
object store. This includes modifying or deleting data, as well as
launching attacks on freshness, such as discarding object modifica-
tions, or overwriting new data with old versions. The attacker may
be a malicious cloud provider, an insider, or an external cloud-side
adversary. The attacker’s goal is to prevent the storage client from
detecting the tampering. We trust that the hardware and firmware
underlying AccNimbus is fully patched and free of vulnerabilities,

Accumulators WitnessesObject Chunks

Client

Trusted Cloud-Side Proxy
(Confidential VM)

Object Names
Accumulator

Nonces Challenge

Response

Cloud Object Storage

Equal?

Witness & Prime

Put Object

Figure 1: AccNimbus architecture. A client uploads content

via a trusted proxy, which hashes it with nonces, records the

keyed hashes in cryptographic accumulators, and stores the

object with accumulator membership witnesses. To detect

tampering, the proxy periodically challenges the untrusted

provider to return a keyed hash and verifies its membership.

such as side-channel attacks [12, 14, 16, 35, 36, 45, 46], and vulner-
abilities that could undermine security-sensitive operations such
as random number generation [1, 20, 22].

3.2 Goals

In designing AccNimbus, we aim to achieve the following func-
tional requirements, which follow directly from the core properties
of PDP schemes:
F1 The verifier’s state must be O(1), rather than scale with the

number of objects in the store.
F2 The server (cloud provider) should not process the entire store

during an audit.
F3 The server should not send an object’s content during an

audit.
F4 The additional storage overhead required for each object to

support proof-of-possession should be minimal. If we let 𝐹
represent the object 𝐹 along with its proof metadata, then the
expansion factor 𝐹/𝐹 must be small.

F5 There should be no restriction on the number of times the
verifier can challenge the server to prove data possession.

In short, the goals for a PDP scheme attempt to minimize the
storage state and bandwidth resource requirements for both the
server and verifier.

Non-goals. This paper does not aim to address data confiden-
tiality. Confidentiality is an orthogonal concern, and AccNimbus’s
design is agnostic to whether the objects contain plaintext or ci-
phertext. Data availability is also a non-goal: AccNimbus focuses
on detecting data corruption, not restoring lost data.

4 Design & Implementation

Figure 1 illustrates the high-level architecture of AccNimbus, which
involves three main parties: (1) a set of storage clients sharing a
cloud bucket, (2) a trusted proxy that mediates access to the bucket,
and (3) an untrusted cloud storage provider. The core of the system
is the trusted proxy, which runs in a trusted execution environment

HASP 2025, October 19, 2025, Seoul, Republic of Korea Trovato et al.

Algorithm 2 Proxy Initialization

function Proxy.Init
𝑨← [] ⊲ Array of accumulators
nonces← [] ⊲ nonce for each accumulator
pk← [] ⊲ RSA public key for each accumulator
sk← [] ⊲ RSA private key for each accumulator
⊲ Accumulator of all object (chunk) names ⊳

𝐴names, pknames, sknames ← Acc.Setup(1𝜆)
for all 𝑖 ∈ [12] do

𝐴𝑖 , pk𝑖 , sk𝑖 ← Acc.Setup(1𝜆)

nonces𝑖
$← {0, 1}256

and: (1) proxies client I/O requests to the cloud bucket, (2) man-
ages the cryptographic accumulators by storing them and updating
their state upon client I/O operations (add, delete, modify), and
(3) periodically audits the bucket’s integrity by verifying proofs of
possession from the cloud storage provider.

Notation.

• 𝒂 is a vector of elements and 𝑎𝑖 is the 𝑖th element
• Len(𝒂) is the number of elements in vector 𝒂
• 𝑎 ∥ 𝑏 denotes concatenation for strings and byte arrays
• [ℓ] is the set of integers {0, 1, . . . , ℓ − 1}
• 𝑥

$← 𝑆 denotes sampling a uniformly random element 𝑥 ∈ 𝑆
• 𝒙

$,𝑛← 𝑆 denotes sampling 𝑛 uniformly random elements from
𝑆 without replacement
• {0, 1}ℓ is the set of bit strings of length ℓ

• ⊥ represents an error, exception, or failure

4.1 Initialization

Algorithm 2 outlines the proxy’s initialization procedure. The proxy
creates a set of RSA-based accumulators 𝑨 and for each accumu-
lator 𝐴𝑖 , it generates a secret nonce nonce𝑖 . Additionally, as an
integrity check of the bucket’s object names, the proxy maintains a
separate accumulator 𝐴names that concisely represents the names
of all existing objects. The object accumulators 𝑨, their nonces
nonces, the object name accumulator 𝐴names, and the public and
private RSA keys for all of the accumulators constitute the state
the proxy must maintain. In our implementation, we generate 12
accumulators, allowing for one audit per month, and requiring the
proxy to reinitialize its accumulator set on a yearly basis.

4.2 I/O Operations

Algorithm 3 describes how the proxy handles client requests to
create and delete storage objects (for space considerations, we do
not show a request to modify an object, as AccNimbus effectively
handles it as a composition of the delete and create operations).

When a client requests the creation of a new object, the proxy
runs Proxy.CreateObject. This function splits the object’s content
into an array of chunks and adds each chunk to every accumulator
𝐴𝑖 , incorporating the chunk’s data, name, and the accumulator’s
nonce into the value it adds. The nonce is used for the audit chal-
lenge (see §4.3), while including the object name prevents swap

Algorithm 3 I/O Operations

function Proxy.CreateObject(objName, objData)
chunks← Chunk(objData)
names← [] ⊲ Chunk object names
attrs← [] ⊲ Attributes for each chunk object
⊲ Updates to apply to witnesses of existing objects ⊳

updates← [1, . . . , 1]
for all chunk𝑖 ∈ chunks do

name𝑖 ← objName ∥ “_” ∥ 𝑖
𝒖 ← [] ⊲ Updates from this chunk
𝒘 ← [] ⊲ Witnesses for this chunk
for all 𝐴 𝑗 ∈ 𝑨 do

𝑥 ←
HashToPrime(nonce𝑗 ∥ name𝑖 ∥ chunk𝑖)
𝐴 𝑗 ,𝑤 𝑗 , 𝑢 𝑗 ← Acc.Add(𝐴 𝑗 , 𝑥)
updates𝑗 ← updates𝑗 · 𝑢 𝑗

attrs𝑖 .witnesses← 𝒘
if 𝑖 = 0 then

attrs𝑖 .numChunks← Len(chunks)
⊲ Update the witnesses for the prior chunks ⊳

for all 𝑘 < 𝑖 do

for all𝑤 𝑗 ∈ attrs𝑘 .witnesses do
Acc.UpdateMemWit(𝑤 𝑗 , 𝑢 𝑗)

⊲ Update the witnesses of the existing objects in the store ⊳

Proxy.UpdateWitnesses(updates)
for all 𝑖 ∈ [Len(chunks)] do

Bucket.PutObject(name𝑖 , chunk𝑖 , attrs𝑖)
𝑥 ← HashToPrime(name𝑖)
𝐴names, _, _← Acc.Add(𝐴names, 𝑥)

function Proxy.DeleteObject(objName)
chunks← GetObjectChunks(objName)
⊲ Each element is a product of the values to remove for that
accumulator ⊳

batchX← [1, . . . , 1]
for all chunk𝑖 ∈ chunks do

for all 𝐴 𝑗 ∈ 𝑨 do

𝑤 𝑗 ← chunk𝑖 .attrs.witnesses𝑗
data← nonce𝑗 ∥ chunk𝑖 .Name ∥ chunk𝑖 .Data
𝑥 ← HashToPrime(data)
⊲ Ensure chunk integrity by verifying first witness ⊳

if 𝑗 = 0 ∧ ¬ Acc.VerifyMemWit(𝐴 𝑗 , 𝑥,𝑤 𝑗) then
return ⊥

batchX𝑗 ← batchX𝑗 · 𝑥
𝑥 ← HashToPrime(chunk𝑖 .Name)
𝐴names, _← Acc.Del(𝐴names, 𝑥)
Bucket.DeleteObject(chunk𝑖 .Name)

⊲ Updates to apply to witnesses of existing objects ⊳

updates← [1, . . . , 1]
for all 𝐴𝑖 ∈ 𝑨 do

𝐴𝑖 , updates𝑖 ← Acc.Del(𝐴𝑖 , batchX𝑖)
Proxy.UpdateWitnesses(updates)

attacks—ensuring the provider does not hash object 𝐴 when the au-
dit targets object 𝐵. The proxy puts each chunk object in the bucket,

AccNimbus: Scalable Proofs of Data Possession for Cloud Storage HASP 2025, October 19, 2025, Seoul, Republic of Korea

and sets as its attribute metadata the chunk’s witness for each ac-
cumulator. Additionally, the proxy must update the witnesses of
the prior existing objects in the bucket (Proxy.UpdateWitnesses)
to account for the new chunk objects being added. This entails the
proxy retrieving and updating the metadata for each existing object.
Finally, in order to have an integrity guarantee on the names of
all objects in the bucket (which is required for auditing), the proxy
adds each chunk object’s name to the proxy’s 𝐴names accumulator.

Deleting an object involves performing the inverse of the cre-
ation process. The proxy first retrieves all chunk objects associated
with the given object name and verifies each chunk’s integrity by
using the first witness𝑤0 from the chunk’s attribute metadata, and
calling Acc.VerifyMemWit to confirm the chunk’s membership in
𝐴0. It then deletes the chunk objects from the bucket and removes
their entries from the accumulator set 𝑨. The proxy also updates
the witnesses of the remaining objects to reflect these changes.
Finally, it deletes each chunk name from 𝐴names.

4.3 Audits

Every month, the proxy chooses a random sample of objects from
the bucket and audits their integrity and availability. Algorithm 4
shows the challenge-response audit protocol. The proxy first uses
the storage API to retrieve a listing of all objects in bucket. Since
the untrusted cloud provider services this API call, and could thus
remove objects from the listing, the proxy creates a fresh accumula-
tor 𝐴tmp with the same RSA key as 𝐴names, adds each object name
in the listing to 𝐴tmp, and checks that the accumulator’s resulting
value matches𝐴names. A mismatch indicates that the cloud provider
tampered with the listing. The proxy then chooses 𝑛 random ob-
ject names from the list (see later in this section for guidance on
choosing 𝑛), and sends these 𝑛 object names, along with one of the
nonces nonce𝑖 to the provider.

Upon receiving the audit request, the provider executes Svr.Response,
which retrieves each object in the sample, and hashes the concate-
nation of the nonce𝑖 , the object’s name, and the object’s data to
a prime 𝑥 . Additionally, the provider retrieves from the object’s
metadata attributes the witness𝑤 that corresponds to the accumu-
lator 𝐴𝑖 that uses noncei. The provider then returns the witness
and prime for each of the sampled objects back to the proxy.

Once the proxy receives the provider’s response, it simply in-
vokes Acc.VerifyMemWit to verify that each 𝑤𝑥 = 𝐴𝑖 . After the
proxy completes the audit, the proxy can no longer use noncei, and
by association no longer uses (and can thus delete) 𝐴𝑖 .

Sample size. The proxy needs to choose an audit sample size 𝑛
to detect provider misbehavior with high probability. Suppose a
bucket has 𝑁 file chunks, of which𝑚 are corrupted. The probability
of detecting 𝑖 corrupted chunks when performing an audit of 𝑛
chunks is a hypergeometric random variable 𝑋 :

𝑃{𝑋 = 𝑖} =
(𝑚𝑖)

(
𝑁−𝑚
𝑛−𝑖

)(
𝑁
𝑛

) 𝑖 = 0, 1 . . . , 𝑛

Table 1 shows the number of blocks the verifier needs to audit
to detect at least one corrupted block (with probability 95%, 99%,
and 99.9%) when the provider has corrupted 1% of the storage.

Algorithm 4 Audit Operations

function Proxy.Challenge(𝑛, 𝑖)
chunkNames← Bucket.List
⊲ Create a fresh accumulator with the same secret key as
𝐴names ⊳

𝐴tmp ← Acc.NewWithSecretKey(𝑠𝑘names)
⊲ Verify the bucket listing ⊳

for all name ∈ chunkNames do
𝑥 ← HashToPrime(name)
𝐴tmp, _, _← Acc.Add(𝐴tmp, 𝑥)

if 𝐴tmp ≠ 𝐴names then

return ⊥
sample

$,𝑛← chunkNames
⊲ Send the cloud provider the randomly sampled object names
and one of the nonces ⊳

Send(sample, nonce𝑖)
⊲ Receive from the cloud provider the witness and hash (prime
exponent) for each object in the sample ⊳

𝒘, 𝒙 ←Recv
⊲ Verify the witnesses ⊳

for all 𝑗 ∈ [Len(sample)] do
if ¬ Acc.VerifyMemWit(𝐴𝑖 , 𝑥 𝑗 ,𝑤 𝑗) then

return ⊥
function Svr.Response(names, nonce𝑖)

𝒘 ← []
𝒙 ← []
for all 𝑗 ∈ [Len(names)] do

data, attrs← Bucket.GetObject(names𝑗)
𝑥 𝑗 ← HashToPrime(nonce𝑖 , names𝑗 , data)
𝑤 𝑗 ← attrs.witnesses𝑖

⊲ Return to the proxy the witnesses and hashes (prime expo-
nents) for the requested objects ⊳

Send(𝒘, 𝒙)

Table 1: Number of File Chunks to Audit when Bucket has

1% Corruption

Chunks in Bucket 95% 99% 99.9%

100 95 99 100
1,000 258 368 497

10,000 294 448 665
100,000 298 458 685

1,000,000 299 459 688

4.4 Re-initialization

When the proxy has one nonce remaining, it must use it to verify
the entire store and reinitialize a new set of accumulators with
fresh nonces. This operation is expensive but infrequent. The re-
initialization process begins similarly to Proxy.Challenge: the proxy
lists all objects in the bucket and verifies the list against 𝐴names.
It then creates 12 new accumulators, each initialized with a new
random nonce. For each object, the proxy retrieves its chunks,
computes their hashes, and verifies their last unused witness against
𝐴11. It then re-hashes each chunk, adds the corresponding exponent

HASP 2025, October 19, 2025, Seoul, Republic of Korea Trovato et al.

Algorithm 5 Shamir Trick [39]

function ShamirTrick(𝑤1,𝑤2, 𝑥,𝑦)
if 𝑤𝑥

1 ≠ 𝑤
𝑦

2 then

return ⊥
⊲ Given co-primes 𝑥 and 𝑦, Bezout computes the Bezout coef-
ficients 𝑎 and 𝑏 that satisfy 𝑎𝑥 + 𝑏𝑦 = 1. ⊳

𝑎, 𝑏 ← Bezout(𝑥,𝑦)
return𝑤𝑏

1𝑤
𝑎
2

to each accumulator, updates the chunk’s metadata with the new
witnesses, and writes the chunk’s metadata back to the bucket.

4.5 Optimizations

Proof of exponentiation. To reduce the computational costs
on the proxy during an audit, we use Wesolowski’s (non-zero-
knowledge) proof of exponentiation (PoE) in group G [48], as gen-
eralized by Boneh et al. [10] to support all exponents (not just
powers of two). In this scheme, both the prover (cloud provider)
and verifier (proxy) have (𝑤, 𝑥,𝐴), and the prover seeks to con-
vince the verifier that 𝐴 = 𝑤𝑥 . The advantage is that the verifier
can check the claim with significantly less work than computing
𝑤𝑥 directly. This is particularly useful when 𝑥 ∈ Z is much larger
than |G|.

The protocol works as follows:

Protocol 1. Proof of Exponentiation (PoE) [48]

1. Verifier sends a random odd prime ℓ to the prover.
2. Prover computes the quotient𝑞 = ⌊𝑥/ℓ⌋ ∈ Z and residue

𝑟 ∈ [ℓ] such that 𝑥 = 𝑞ℓ +𝑟 . Prover sends𝑄 ← 𝑤𝑞 ∈ G
to the verifier.

3. Verifier computes 𝑟 ← (𝑥 mod ℓ) ∈ [ℓ] and accepts if
𝑄ℓ𝑤𝑟 = 𝐴.

The protocol can be adapted easily to a non-interactive PoE
(NIPoE) through the Fiat-Shamir heuristic [17].

Witness aggregation. Boneh et al. [10] also introduce a tech-
nique for aggregating RSA accumulator witnesses—compressing
𝑛 individual membership witnesses into a single, constant-sized
aggregate witness. The technique is a straightforward adaptation of
the Shamir Trick [39] (see Algorithm 5), which computes an 𝑥𝑦-th
root of a group element 𝑔 from an 𝑥-th root of 𝑔 and a 𝑦-root of 𝑔
(note that a witness is simply a root of the accumulator). Applying
the trick iteratively, in a fold or reduce-like fashion, allows the
aggregation of an arbitrary number of witnesses.

Combining techniques. The untrusted cloud provider (prover)
can apply both NIPoE and witness aggregation to reduce an audit’s
required bandwidth as well as the computational costs of the verifier.
The audit proceeds exactly as in Algorithm 4, but the server instead
aggregates the witnesses𝒘 into a single witness 𝑤̂ , and computes
a NIPoE 𝜋 that 𝑤̂

∏
𝒙 = 𝐴. The server then sends {𝑤̂, 𝒙, 𝜋} to the

proxy. Instead of invoking Acc.VerifyMemWit, the verifier verifies
the proof 𝜋 as per step (3) of Protocol 1.

4.6 Implementation

We implement AccNimbus using Go v1.24. With the exception of
two Google Cloud libraries, AccNimbus uses only the Go stan-
dard library. We developed the trusted proxy and the untrusted
provider’s prover as standard Go web servers, configured with mu-
tual TLS for an extra layer of security. We use Go’s lightweight
threads (goroutines) to parallelize much of the code, including up-
loading file chunks and metadata (trusted proxy), processing audit
requests (provider), and handling audit verifications (trusted proxy).
Additionally, when creating new witnesses or updating existing
witnesses, we leverage goroutines to compute witnesses in parallel
across all 12 accumulators.

Hashing to prime. OurHashToPrime implementation uses SHA-
256 as the hash function H (see Algorithm 1). This choice reflects
tradeoffs among prime size (affecting how quickly a prime is found),
the bit-width of the prime’s inverse (impacting the performance of
Acc.Del and Acc.Update), and the likelihood of hash collisions.

5 Security Analysis

In this section, we present a security proof sketch for AccNimbus
showing that an attacker who tampers with data cannot still pass
the audit, except with negligible (or explicitly bounded) probability.

Adversary’s goal. We consider a PPT adversary A controlling
the untrusted cloud provider. The goal of A is to tamper with
(modify or delete) at least one stored chunk and yet pass the audit.

Assumptions. We have the following assumptions.:
• HashToPrime is collision-resistant hash function that maps
byte strings to the odd primes.
• The RSA accumulator has security under the strong-RSA as-
sumption, which implies tha forging a valid membership wit-
ness for an element not accumulated is infeasible without the
trapdoor.
• The TEE protects the proxy’s secrets (trapdoor, nonces) from
the provider.
• Sampling is uniform over the set of chunk names; the proxy de-
tects tampering with the listing via the 𝐴name equality check.

We use negl(𝜆) to denote an unspecified negligible function in
the security parameter 𝜆. Intuitively, a negligible function vanishes
faster than the reciprocal of any polynomial in 𝜆.

Proof Sketch.

Theorem 1 (Soundness of AccNimbus). Let 𝑁 be the number
of stored chunks, and𝑚 ≥ 1 the number of tampered chunks. Under
the collision resistance of HashToPrime and the strong-RSA security
assumption of RSA accumulators, the probability that an adversary
convinces the proxy to accept an audit after tampering is at most

Pr[accept] ≤
(
𝑁−𝑚
𝑛

)(
𝑁
𝑛

) + negl(𝜆),
where 𝑛 is the audit sample size and 𝜆 the security parameter.

Proof. During an audit, the proxy first validates the provider’s
bucket listing against 𝐴name. Any omission or equivocation would
yield either a hash collision or a forged accumulator witness, both

AccNimbus: Scalable Proofs of Data Possession for Cloud Storage HASP 2025, October 19, 2025, Seoul, Republic of Korea

negligible under our assumptions. The proxy then selects 𝑛 ob-
ject chunks uniformly at random and reveals a fresh nonce. For
each chunk, the provider must return a valid witness for 𝑥 =

HashToPrime(nonce ∥ name ∥ data). If the data was tampered
with, the adversary has four options:

(1) Guess the nonce (negligible, since nonces are 256 bits).
(2) Find a hash collision so that tampered data maps to the same

prime (negligible).
(3) Forge a membership witness for a prime never accumulated

(negligible under Strong RSA).
(4) Manipulate the name set to hide tampered objects (detected

by the 𝐴name check).
Thus, conditioned on a tampered chunk being sampled, the adver-

sary succeeds only with negligible probability. The only remaining
way to evade detection is if all 𝑛 are unmodified. This occurs with
probability

(
𝑁−𝑚
𝑛

)
/
(
𝑁
𝑛

)
, the standard hypergeometric bound (see

Table 1). Therefore, by selecting 𝑛 large enough, AccNimbus detects
tampering with probability 1 − 𝜖 , where 𝜖 is negligible plus the
sampling error. □

6 Evaluation

6.1 System Benchmarks

We evaluate AccNimbus’s performance in terms of its overhead
for auditing, updating witnesses, and re-initializing accumulators.
We run these experiments on Google Cloud Platform, using an
nd2-standard-2 confidential VM with AMD SEV-SNP [2] to host the
trusted proxy and, for our proof of concept implementation, the
untrusted prover. The VM has 2 vCPUs and 8 GB of RAM. The VM
runs in the same region and zone as the storage buckets.

Auditing. Figure 2 shows the average time required to perform
an audit operation for different bucket sizes. An audit operation
measures the time spent by the proxy to perform a full audit of the
object storage, as outlined in Section 4.3.

We compare three different implementations of the audit op-
eration performed by the proxy for a bucket with 1,000 chunks.
The Audit variant does not use any optimizations and reflects the
baseline performance. The Audit Batch Optimized variant achieves
the lowest latency by creating batches of aggregated witnesses and
is 5× faster than the baseline. The Audit Optimized variant, while
reducing data transfer by 90% compared to other variants (Sec-
tion 4.5), performs the worst in terms of latency, incurring a 2.1×
overhead compared to the baseline. The average time is measured
as a 10% weighted mean of the durations from 10 runs.

Updating witnesses. In this evaluation, we measure the average
time spent by the proxy to add a new file to object storage2. When
a file is uploaded, the proxy must update the state for each of its
accumulators, for each chunk in the uploaded file. In addition to
updating its own state, the proxy applies the updates for the new
object(s) to the witnesses of all existing objects.

Because of this, the update time for a new file is dependent on the
number of existing objects in the storage bucket (Figure 3). The over-
head of the member witness update method (Acc.UpdateMemWit
in Table 2) and its dependency on existing objects account for the
2A single file uploaded by a client can result in many objects being created in the
storage bucket, as uploaded files are chunked for more efficient auditing.

 1

 10

 100

 1000

100 1K 10K 100K

1MB 10MB 100MB 1GB

Audit
Audit Optimized
Audit Batch Optimized

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Chunks in Object Storage

Total Bucket Size

Figure 2: Audit time vs. number of chunks

 1

 10

 100

 1000

100 500 1K 10K

1MB 5MB 10MB 100MB

Update time

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Chunks in Object Storage

Total Bucket Size

Figure 3: Update time vs. number of chunks

 0

 20

 40

 60

 80

 100

 120

 10 25 50 75 100 125

100KB 250KB 500KB 750KB 1000KB 1250KB

Re-initialization time

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Chunks in Object Storage

Total Bucket Size

Figure 4: Re-initialization time vs. number of chunks

higher latencies observed during witness updates. The average time
is measured as a 10% weighted mean of the durations from 10 runs.

Re-initializing accumulators. Figure 4 shows the time required
to re-initialize accumulators as a function of the number of chunks
stored in the system. Re-initialization involves computing fresh
accumulators and nonces for all stored data, which scales with the
amount of data in the system. The measurements are averaged over
10 runs with 12 accumulators and show that re-initialization time
grows approximately linearly with the number of chunks, taking
around 79.2 seconds for 100 chunks (1000 KB of data) and 115.5
seconds for 125 chunks (1250 KB of data). Error bars represent
one standard deviation across the 10 runs. These results represent
a naive re-initialization approach without optimizations such as
parallelization or batch processing of accumulator operations.

HASP 2025, October 19, 2025, Seoul, Republic of Korea Trovato et al.

Table 2: Time (microseconds) for Accumulator Operations

and Overhead Relative to SHA-256

Operation Confidential VM

HashToPrime 2,516 (3,302×)
Acc.Add 2,574 (3,377×)
Acc.Del 13,103 (17,196×)

Acc.VerifyMemWit 952 (1,249×)
Acc.UpdateMemWit 6,054 (7,945×)

NIPoE 1,799 (2,360×)
VerifyNIPoE 1,932 (2,536×)

1,000

10,000

100,000

1s

10s

0 4 8 16 32 64 128

Acc.VerifyMemWit
AggregateWitnesses
NIPoE
VerifyNIPoE

T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Number of Witnesses Aggregated

Figure 5: Scaling of witness verification, aggregation, and

NIPoE generation and verification as the number of aggre-

gated witnesses increases. The plots for Acc.VerifyMemWit
and NIPoE are nearly identical.

6.2 Microbenchmarks

Cryptographic operations. Table 2 shows the microbenchmark
performance overhead of each cryptographic operation, using Go’s
benchmarking tool. We conduct the benchmarks on the confidential
VM (a Google Cloud nd2-standard-2). For comparison, the numbers
in parentheses are the overheads relative to computing a SHA-256
hash of 1 K worth of data on each machine. Note that, in our imple-
mentation, Acc.Add and Acc.Del directly take the object contents
and internally callHashToPrime, rather thanmerely taking as input
the prime hash as in Algorithm 1. Each object is 1 K in size.

Figure 5 shows how the witness aggregation and PoE optimiza-
tions scale with the number of aggregated witnesses, again us-
ing Go’s benchmarking tool. We observe that Acc.VerifyMemWit,
AggregateWitnesses, and NIPoE are O(𝑛) operations, though the
AggregateWitnesses operation has a larger constant multiplier. In
contrast, VerifyNIPoE is O(1). Critically, when compared to Ta-
ble 2, VerifyNIPoE is more performant than individual witness ver-
ifications with Accc.VerifyMemWit after merely aggregating 2–3
witnesses.

Bandwidth usage. Figure 6 compares the amount of data received
by the trusted proxy from the provider during a standard audit, an
audit with witness aggregation and PoE optimizations, and an audit
with batched witness aggregation and PoE optimizations. By using
witnesses and PoE optimizations, the amount of data received by
the trusted proxy can be reduced by upwards of 90%. When batched,
the amount of data used is more than the non-batched version with

10 KB

100 KB

1 MB

100 1,000 10,000 100,000

1MB 10MB 100MB 1GB

Standard
Aggregate
Batch Aggregate

A
u

d
it
 D

a
ta

 (
B

y
te

s
)

Number of Chunks in Object Store

Total Bucket Size

Figure 6: Data required to verify audit vs. number of chunks

full witnesses and PoE optimizations, but still considerably less
than the standard audit.3

7 Future Work

We believe that there are many ways that future research can build
upon the work presented in this paper. We discuss several below:

Expanded Evaluation. The sensitivity of several configuration
options, such as chunk and aggregation size, could be varied to
better evaluate AccNimbus and reveal potential areas for optimiza-
tions.

Alternative Designs. Alternative accumulator designs could be
explored to further optimize auditing, and different ways of over-
coming the 12-accumulator limit could be investigated. Different
hash functions, such as eXtendable-Output Functions (XOFs), which
support arbitrary output lengths, as well as recent work [28] that
constructs RSA-based accumulators without requiring prime ele-
ments, albeit with added complexity, could be explored too.

Additional Features. As discussed in §3.2, AccNimbus focuses
on Proof of Data Possession not Proof of Retrievability. We believe
AccNimbus could be expanded to support Proof of Retrievability,
which provides stronger guarantees to the clients of AccNimbus
that their data is recoverable.

8 Conclusion

In this paper, we present AccNimbus, a provable data possession
scheme that combines recent advances in cryptographic accumu-
lators with trusted hardware to deliver an efficient, cloud-native
service. Our evaluations on Google Cloud Storage show that Acc-
Nimbus supports low-overhead, fast audits. To promote further
research into provable data possession, our code is publicly avail-
able at https://github.com/etclab/accnimbus.

Acknowledgments

We thank the anonymous reviewers for their helpful comments.
The authors were supported by NSF grant CNS-2348130.

3In early experiments, the non-batched witnesses and PoE optimizations take twice
as long compared to a standard audit. In contrast, the batched witnesses and PoE
optimizations take half as long compared to a standard audit.

https://github.com/etclab/accnimbus

AccNimbus: Scalable Proofs of Data Possession for Cloud Storage HASP 2025, October 19, 2025, Seoul, Republic of Korea

References

[1] Advanced Micro Devices, Inc. 2025. AMD SEV Confidential Computing Vulnera-
bility. https://www.amd.com/en/resources/product-security/bulletin/amd-sb-
3019.html

[2] AMD. 2020. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection
and More. Technical Report. AMD.

[3] Gaspard Anthoine, Jean-Guillaume Dumas, Mélanie de Jonghe, Aude Maignan,
Clément Pernet, Michael Hanling, and Daniel S. Roche. 2021. Dynamic Proofs of
Retrievability with Low Server Storage. In USENIX Security Symposium.

[4] Frederik Armknecht, Jens-Matthias Bohli, David Froelicher, and Ghassan Karame.
2017. Sharing Proofs of Retrievability across Tenants. In ACM Asia Conference
on Computer and Communications Security (ASIA CCS).

[5] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, Zongren Liu, and
Christian A. Reuter. 2014. Outsourced Proofs of Retrievability. In ACM Conference
on Computer and Communications Security (CCS).

[6] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. 2007. Provable Data Possession at Untrusted
Stores. In ACM Conference on Computer and Communications Security (CCS).

[7] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. 2009. Dynamic Universal
Accumulators for DDH Groups and Their Application to Attribute-Based Anony-
mous Credential Systems. In The Cryptographers’ Track at the RSA Conference on
Topics in Cryptology (CT-RSA).

[8] Niko Bari and Birgit Pfitzmann. 1997. Collision-Free Accumulators and Fail-Stop
Signature Schemes Without Trees. In International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT).

[9] Josh Benaloh and Michael de Mare. 1993. One-way Accumulators: A Decentral-
ized Alternative to Digital Signatures. In International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT).

[10] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for Accu-
mulators with Applications to IOPs and Stateless Blockchains. In International
Cryptology Conference (CRYPTO).

[11] Kevin D. Bowers, Ari Juels, and Alina Oprea. 2009. Proofs of Retrievability:
Theory and Implementation. In ACM Workshop on Cloud Computing Security
(CCSW).

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX Workshop on Offensive Technologies (WOOT).

[13] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and Ap-
plication to Efficient Revocation of Anonymous Credentials. In International
Cryptology Conference (CRYPTO).

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves via Specula-
tive Execution. In IEEE European Symposium on Security and Privacy (EuroS&P).

[15] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia.
2009. Dynamic Provable Data Possession. In ACM Conference on Computer and
Communications Security (CCS).

[16] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A New Side-Channel Attack on Directional Branch Predic-
tor. In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[17] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In International Cryptology Conference
(CRYPTO).

[18] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto. 2006.
Demonstrating Data Possession and Uncheatable Data Transfer. In International
Conference on Security and Cryptography for Networks (SCN).

[19] Google. 2023. Google Cloud Storage. https://cloud.google.com/storage.
[20] Google, LLC. 2025. GCP-2025-007. https://cloud.google.com/confidential-

computing/confidential-vm/docs/security-bulletins#gcp-2025-007
[21] Chaowen Guan, Kui Ren, Fangguo Zhang, Florian Kerschbaum, and Jia Yu. 2015.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification. In
European Symposium on Research in Computer Security (ESORICS).

[22] Iain Thomson. 2025. How to make any AMD Zen CPU always generate 4 from
RDRAND. https://www.theregister.com/2025/02/04/google_amd_microcode/

[23] Intel 2014. Intel Software Guard Extensions Programming Reference. Intel.
[24] Intel. 2021. Intel Trust Domain Extensions White Paper. Technical Report. Intel.
[25] Ari Juels and Burton S. Kaliski. 2007. PORs: Proofs of Retrievability for Large

Files. In ACM Conference on Computer and Communications Security (CCS).
[26] David Kaplan. 2017. Protecting VM Register State with SEV-ES. Technical Report.

AMD.
[27] David Kaplan, Jeremy Powell, and Tom Woller. 2021. AMD Memory Encryption.

Technical Report. AMD.
[28] Victor Youdom Kemmoe and Anna Lysyanskaya. 2024. RSA-Based Dynamic

Accumulator without Hashing into Primes. In ACM Conference on Computer and
Communications Security (CCS).

[29] Tung Le, Pengzhi Huang, Attila A. Yavuz, Elaine Shi, and Thang Hoang. 2023. Effi-
cient Dynamic Proof of Retrievability for Cold Storage. InNetwork and Distributed

System Security Symposium (NDSS).
[30] Arm Limited. 2021. Arm Confidential Computer Architecture. Technical Report.

Arm Limited.
[31] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham

Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instruc-
tions and Software Model for Isolated Execution. In Workshop on Hardware and
Architectural Support for Security and Privacy (HASP).

[32] Ralph Merkle. 1979. Secrecy, Authentication, and Public Key Systems. Ph. D.
Dissertation. http://www.ralphmerkle.com/papers/Thesis1979.pdf.

[33] Microsoft. 2023. Azure Blob Storage. https://azure.microsoft.com/en-us/products/
storage/blobs.

[34] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA).

[35] Benedict Schlüter, Supraja Sridhara, Andrin Bertschi, and Shweta Shinde. 2024.
WeSee: Using Malicious #VC Interrupts to Break AMD SEV-SNP. In IEEE Sympo-
sium on Security and Privacy.

[36] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi, and Shweta
Shinde. 2024. HECKLER: Breaking Confidential VMs with Malicious Interrupts.
In USENIX Security Symposium.

[37] Amazon Web Services. 2023. Amazon S3. https://aws.amazon.com/s3/.
[38] Hovav Shacham and Brent Waters. 2013. Compact Proofs of Retrievability.

Journal of Cryptology 26, 3 (July 2013).
[39] Adi Shamir. 1983. On the Generation of Cryptographically Strong Pseudorandom

Sequences. ACM Transactions on Computer Systems 1, 1 (Feb. 1983).
[40] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical Dy-

namic Proofs of Retrievability. In ACM Conference on Computer and Communica-
tions Security (CCS).

[41] Shravan Srinivasan, Ioanna Karantaidou, Foteini Baldimtsi, and Charalampos
Papamanthou. 2022. Batching, Aggregation, and Zero-Knowledge Proofs in
Bilinear Accumulators. In ACM Conference on Computer and Communications
Security (CCS).

[42] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. 2012. Iris: A Scalable
Cloud File System with Efficient Integrity Checks. In Annual Computer Security
Applications Conference (ACSAC).

[43] Yuzhe Tang, Ting Wang, Ling Liu, Xin Hu, and Jiyong Jang. 2014. Lightweight
Authentication of Freshness in Outsourced Key-Value Stores. In Annual Computer
Security Applications Conference (ACSAC).

[44] Stephen R. Tate, Roopa Vishwanathan, and Lance Everhart. 2013. Multi-User
Dynamic Proofs of Data Possession Using Trusted Hardware. In ACM Conference
on Data and Application Security and Privacy (CODASPY).

[45] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[46] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.
SGAxe: How SGX Fails in Practice. https://sgaxeattack.com/.

[47] Giuseppe Vitto and Alex Biryukov. 2022. Dynamic Universal Accumulator with
Batch Update over Bilinear Groups. In The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology (CT-RSA).

[48] Benjamin Wesolowski. 2020. Efficient Verifiable Delay Functions. Journal of
Cryptology 33, 4 (Oct. 2020).

[49] Jiawei Yuan and Shucheng Yu. 2013. Proofs of Retrievability with Public Verifia-
bility and Constant Communication Cost in Cloud. In International Workshop on
Security in Cloud Computing (CloudComputing).

[50] Qingji Zheng and Shouhuai Xu. 2011. Fair and Dynamic Proofs of Retrievability.
In ACM Conference on Data and Application Security and Privacy (CODASPY).

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-3019.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-3019.html
https://cloud.google.com/storage
https://cloud.google.com/confidential-computing/confidential-vm/docs/security-bulletins#gcp-2025-007
https://cloud.google.com/confidential-computing/confidential-vm/docs/security-bulletins#gcp-2025-007
https://www.theregister.com/2025/02/04/google_amd_microcode/
http://www.ralphmerkle.com/papers/Thesis1979.pdf
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://aws.amazon.com/s3/
https://sgaxeattack.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Proof of Data Possession
	2.2 Cryptographic Accumulators
	2.3 Trusted Execution Environments

	3 Assumptions
	3.1 Threat Model
	3.2 Goals

	4 Design & Implementation
	4.1 Initialization
	4.2 I/O Operations
	4.3 Audits
	4.4 Re-initialization
	4.5 Optimizations
	4.6 Implementation

	5 Security Analysis
	6 Evaluation
	6.1 System Benchmarks
	6.2 Microbenchmarks

	7 Future Work
	8 Conclusion
	Acknowledgments
	References

