Poster: MAzU: A Zero Trust Architecture for
Service Mesh Control Planes (#54)

Aashutosh Poudel
William & Mary
apoudel01 @wm.edu

Pankaj Niroula
William & Mary
pniroula@wm.edu

Abstract—Microservices are a dominant cloud computing
architecture because they enable applications to be built as
collections of loosely coupled services. To provide greater control
over the resultant distributed system, microservices often use an
overlay proxy network called a service mesh. A key advantage of
service meshes is their ability to implement zero trust networking
by encrypting microservice traffic with mutually authenticated
TLS. However, the service mesh control plane—particularly its
local certificate authority—becomes a critical point of trust. In
this poster, we introduce MAZU, a system designed to eliminate
trust in the service mesh control plane by replacing its certifi-
cate authority with an unprivileged principal. MAZU leverages
recent advances in registration-based encryption and integrates
seamlessly with Istio, a widely used service mesh. We present our
preliminary implementation and highlight future work.

Background. In cloud computing, a common software archi-
tecture is microservices: rather than deploy a large, monolithic
application, the software developers decompose the application
into a distributed system of small, loosely-coupled services,
that communicate via well-defined interfaces. The primary
benefits of microservices are twofold: elasticity (the cloud can
scale each component independently), and isolation (a failed
component does not, by itself, cause other components to fail).

The microservice architecture, being inherently distributed,
presents unique challenges compared to monolithic applica-
tions in terms of reliability, observability, and security. A
service mesh serves as middleware to address these challenges,
allowing each microservice to focus exclusively on its ap-
plication logic. In most service meshes, each microservice
runs in an application container and is paired with a proxy
container, known as a sidecar. The sidecar modifies the host’s
network routing so that all traffic to and from the application
container flows through it. This design enables the sidecar
to manage microservice traffic—providing features such as
authentication, authorization, and logging—without requiring
any modifications to the application itself.

Problem. A key feature of service meshes is zero trust
networking, where the sidecars tunnel communication between
microservices using mutually authenticated TLS (mTLS). To
support this, the service mesh control plane acts as a certificate
authority (CA), issuing certificates to the sidecar proxies. Ad-
ditionally, this control plane also provisions sidecars with au-
thorization rules that define which peer sidecars are allowed to
connect. Although zero trust networking stymies an attacker’s
ability to laterally move in the victim’s network, if an attacker

Collin MacDonald
William & Mary
cmacdonald01 @wm.edu

Lily Gloudemans
William & Mary
algloudemans @wm.edu

Stephen Herwig
William & Mary
smherwig@wm.edu

compromises the service mesh’s control plane, the attacker can
issue rogue certificates, impersonate applications, and redirect
traffic to malicious endpoints—effectively subverting the entire
system.

In this project, we ask the following research question:

Is it possible to reduce trust in the service mesh’s
control plane while maintaining microservice com-
patibility and performance?

Threat model. For concreteness, we define our threat model
in terms of the popular Istio service mesh, but note that Istio’s
architecture is representative of other meshes. Istio logically
comprises a control plane—which handles traffic rules, log-
ging, authorization, and certificate issuance—, and a data
plane—namely, the sidecar proxies. Within the Kubernetes
cluster, each node (a physical or virtual machine) runs an
Istio node agent, which serves as an interface between the
Istio control plane and the data plane.

We trust Kubernetes to manage the pods and nodes within
the cluster. We assume an attacker has remote code execution
on the cluster and can exploit the Istio control plane. In
particular, the attacker can issue rogue certificates, spawn
microservices to impersonate legitimate applications, and con-
figure routing rules that redirect traffic to these malicious
microservices. We trust the Istio node agent and sidecar,
but allow for bugs in these components that leak sensitive
data, such as network credentials. We do not explicitly trust
the microservice applications; however, we assume that their
containers are hardened to prevent a container escape.

Goals. Our primary security goal when designing our solu-

tion, MAzU,! is

S1 Untrusted Service Mesh Control Plane: An attacker that
breaches the service mesh’s control plane must not be
able to undermine the confidentiality or integrity of the
microservice application’s network communications.

Additionally, we have the following functional goals:

F1 Application transparency: MAZU should preserve the
core property of service meshes, which is that the ap-
plication itself remains unmodified.

IMAZU is a Chinese sea goddess and the deity of seafarers.

F2 Compatibility with existing service meshes: MAZU should
extend current service mesh software (we use Istio).

F3 Low performance overheads: MAZU should impose little
performance overhead on the microservice applications,
both in terms of client latency and resource usage.

Registration-based encryption. At a high-level, MAZU
achieves its goals by replacing the CA with a decentral-
ized protocol based on the recently introduced concept of
Registration-Based Encryption (RBE) [1], [2]. RBE is an
alternative to identity-based encryption (IBE) that eliminates
IBE’s key-escrow problem. Recall that Shamir introduced
IBE [3] as a public-key cryptosystem that removes the need
for a complex public-key infrastructure. Instead, in an IBE
scheme, a user uses a meaningful identity, such as their email
address, as their public key. Alice can then encrypt a message
to Bob knowing just Bob’s identity, along with some additional
public parameters. In turn, Bob decrypts Alice’s message using
an identity-specific secret key that he obtains from the key
authority. Unfortunately, the key authority generates the secret
key for each user, effectively becoming a key escrow and a
target for undermining the entire system.

RBE replaces IBE’s key authority with a weaker principal
called the key curator (KC) that does not have knowledge
of any secret key (or any secret information). A user in an
RBE system locally generates their keys and then publicly
registers their identity and corresponding public key with the
KC. In response, the KC updates the public parameters of the
system and returns to the user some supplementary, non-secret,
information called the user’s opening, which is necessary for
the user to decrypt ciphertexts. As new users register and the
public parameters change, existing users need to contact the
KC to fetch their updated opening. Encryption and decryption
work analogously as in IBE.

Design & implementation. Our prototype implementation of
MAZzU extends the Istio service mesh. By default, Kubernetes
provisions each microservice instance with a Kubernetes-
signed admin token containing the instance’s internal URL,
as well as the IDs for its cloud service account, node, and
pod. In a normal Istio deployment, the node agent attests to
the CA with this token as part of the certificate issuance. In
contrast, MAZU uses the token to register a unique RBE ID
for the instance, with the ID being the hash of the token.
When registering this ID, the node agent locally generates the
corresponding keypair, choosing as its private key a hash of
the token and the service’s IP address. Whereas RBE’s original
purpose is to encrypt messages, we instead use RBE purely
for registration, and the non-secret choice of a private key
serves as a one-time signature of registration. The node agent
then generates a self-signed TLS certificate for the service that
embeds the admin token.

The sidecar operates as a layer-7 (HTTP or gRPC) proxy.
During the TLS handshake between two sidecars, the client
sidecar verifies that the server’s certificate includes a signed
admin token for the intended destination URL. Additionally,
the client sidecar derives the server’s ID as a hash of the

received token. To verify that the server registered this ID, the
client locally encrypts a challenge nonce to that ID, fetches
from the KC the ID’s public opening, and derives the expected
secret key using the token and the server’s IP. If the client can
decrypt the nonce, validation succeeds and the client continues
with the connection. The server’s validation of the client works
in an analogous fashion.

Security analysis. Suppose an attacker A leaks B’s token
and tries to impersonate B. For now, we assume .4 cannot
acquire the same IP as B, but that .4 can compromise Istio’s
control plane to route services to itself. During the TLS
handshake, the peer service will derive an incorrect candidate
secret key due to the mismatch in the server’s IP, fail to decrypt
the nonce, and thus abort the connection.

Suppose now that Kubernetes tears down B, allowing A to
reuse B’s IP to launch a malicious service. If a peer service
connects to this malicious service, the peer will derive the
exact same RBE private key as for the retired B, and MAZU’s
custom TLS validation checks will pass. To counter this threat,
we note that Kubernetes automatically invalidates a service’s
token when tearing down that service. Thus, we amend the
sidecar’s certificate validation to also query Kubernetes for
the validity of a token.

Finally, a quirk of RBE is that anyone can unregister an
ID. While MAZU does not prevent re-registration attacks, it
does make such an attack detectable. For each registration,
the (untrusted) KC updates each ID’s opening; a node agent
periodically polls the KC for the updated openings for its
resident services. We modify this operation so that the KC
returns to the node agent a history of updates, where each
update includes the token, the registered public key, and an
RBE proof that the corresponding ID was registered. In this
way, ID re-registration is auditable.

Preliminary evaluation. We evaluate MAZU using the Fortio
load testing tool. Our results show that MAZU introduces
minimal overhead, adding just 0.17 ms of latency for typical
workloads compared to Istio with mTLS. We also conduct a
Prometheus-aided micro-benchmark to measure the latency of
update queries as the number of registered services increases.
The results indicate that update latency grows approximately
linearly with the number of services.

Future work. As future work, we will evaluate the perfor-
mance of MAZU using additional popular benchmarks, such
as the DeathStarBench suite. We also plan to integrate a
lightweight consensus protocol that mitigates a Byzantine-
faulty KC that presents different registration histories to dif-
ferent microservices.

REFERENCES

[1]1 S. Garg, M. Hajiabadi, M. Mahmoody, and A. Rahimi, “Registration-
based encryption: Removing private-key generator from IBE,” in Theory
of Cryptography Conference (TCC), 2018.

[2] N. Glaeser, D. Kolonelos, G. Malavolta, and A. Rahimi, “Efficient
registration-based encryption,” in ACM Conference on Computer and
Communications Security (CCS), 2023.

[3] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
International Cryptology Conference (CRYPTO), 1984.

‘9659L9E'5L69LSE/SPLLOL/B1010P /5y
10P ‘€207 “AON '6.01-590L “4d ‘A111n23S SUONEDIUNWLIOD PUE J2INAUIOD L 89UBIBJUOD DYSDIS WOV ZZOZ AUl 4O
sBuipassolg , uondAiou3 peseg-uonensibay 1ua)

11
foy-a1eniq Buioway

10D '810Z '814-689 *dd ‘90
ndAiou3 peseg-uonensiGey,

S9JU313)9Y
09s 0zl 4an0 sdb 000l ‘06d 18 suooauU0d sA AousieT 7 8inbi4

suomauUo)
o0 sz o0z ost oot r90s ot 0

et

nzew —

SLw InoyIm ons|

onst oy STLW -
STLW UM ons| —e—

Spuosssiiu uf Aousiel

‘01IS| S71W 0} pasedwod SUOI}OBUUOD JUBIINDUOD
9 pue 9| yum Aouae| sw/|'0 Aluo sppe nzepy

suonenjeas Aleuiwiaid

J0)eingd
K8y 8y} Yyum paiaisiBal si g PEOIOM dY} 4l °q
JuswAo|dap apou
pazioyine BujwIFUOD pi[eA S| USX0} UJWPE Ji e
:U01}08UU0D 8y} s}dadde Jedapls AoAug ay}
‘dnas S7Lw Bulng :uonepljeA 21edl1RIe] STLW '
‘sJayoweled ojgnd paiepdn
104 sadNnb 0} spuodsal pue sysanbal uone.isibal
1uabe apou sydadoe J0jein Asy :03eind Ay ‘g
‘usoy ujwpe
pue @J ayi y1oqg Bujuieyuod sa3eslyiiad paubis-jos
21esausb pue J0yend Asy 8yl yum (uaxoy uipe
paubis-salaulagny| J0 Ysey) Sgj peopriom Jasibal
sjuabe apoN :83edltad pue A}puap| peopliom L

USaN 92IAISS OI3S| UO uoneuawaldwl| s,nzep :g ainbi4

aue|d |04u0D sajeusaqny|

8 PEOpOM V PeOpOM

wosyopon 1] <« >] wooveon

(fonu3) seospis < > (fonuz) reoopis
H m H
v A
sepi0d soeing hey & Awouiny 3¢
zyiny 3 ugny m sjeoye)
@ pons|

8ue|d [oxuoD ons|

ubisag nzepy

geq sunndwo)
u11snJ] Suipualxy

qetr/o19/

npa-wm@bimiayws
6imisH uaydelg

npa wm@suewsapno|bje
suewapno|9 A|i

S)IoM 3gY MOH :Z 21nBi4

qog Y
(swesed 91and ‘qog~ql) idkioue = Bsw

G) =)

Ly
(qog~Buiuedo ‘qog ys ‘Bsw) 1dhoep

84

"10}e4nd A8y 21ignd e Buisn 1snJy pazjjesiuadap JO Uolou
oY) aAs|yoe sdjay (3gy) uondAiouz paseg uoneslsiboy

3gy :s)o0]q Buip|ing

‘waisAs 1sn4y olgnd
paziesnusdsp e yum wayy Buroedal Ag sy uo aouelal
INO W] UBD M "SIl SIY} 9dNpal 0] “WalsAs Ajinoas

3U3 Ul 1SNJ} BAISUSIXD PloY Sy d2Uls sabejueape
jueoyiubis siaxoene saalb y) e jo asiwoldwod ay |

suoneodde ajewniba| sjeuosiadw)

seojnes abnos umeds S80AI8S SNOIEW O} OlYes) 0aIIPaY

$A0% 1001 D fe0] soinu Bunos :enByuoo mww_ﬁmmhﬂo
% , %
|
Auoyiny » sjusuodwo)
jeoype) [] webvapon 1old ons|
syied yoeny ajdwexsy

paisni| aue|d |05uU0D sajeulagny
Aiepunoq Jaulejuod

adeosa jouueo :paysniun uoneol|ddy 801A18s0.101\

sBnq o} anp s|enuapald
>ea] Ued :paIsnIL {ESORISEHILGEBIORON

Jaxoene Aq payojdxe

. .
aq ued :paysnaun VO HeXIN ol

aue|d |onuo) ons|

ISPO 1834y L

npa'wM@ LOp|eUOpOBWO
pleuoQgoen uljjod

npawm@®e[noJiud
e[noJiN lexjued

¢ddouewloyiad pue Ayjiqned
-Wo9 99JAI8S0JojW Bujuieuiew ajiym aued [0J3U0D
S,Usaw 92IA1aS dy} Ul 1snJ} 8dnpal 01 a|qissod) S|

suonsanp yaieasay

UOI1BWJO4Ul PBZIIOYIneUn aledy|lj-xe pue
S99IAJ9S 91euUOSsIadW| 0} SIaXOBNE SMO|le (Japiaold
PNOJD Ul S}ealy) JOpISul 10 ‘81eM}OS S|gelaulnA
'painBipuodsiw woly Bunnsal) yo pasiwoldwod v
VO @yl Buipnjour ‘ainjoniiseljul

A111N23S JBAO [043U0D [N} DAY Swlojie|d

Usa 991A1aS pabeuew Buliayo siapirold pnojd

VO [B20]-ysaw

Ag panss| s81e21}11189 S UO Paseq S Ysa\ a2IAI18S
B U] UOJ1BDIUNWWOD 99]AI9S-0}-3IAISS BIND3S

swia|qoid

Usa|N 921A19S ON3S| Ul JuswaBeuew a1edly11ad pue Ayuap :| ainbl4
BUE|d [04UOD YSBI\ BOIAIBS

Awoyiny pons|
ajeoye)

sleoya) I
paubls [=| €

Axoid Jeoapig uaby ons|
A
~
€
Koy ajeAud @

 ejeoye) | = v ddmes

pod

uiBlio sy jo ssajpiebal ajnsoy Ajjennuaiod

se }sanbai A1aAs Bujeas) ‘uoiesIUNWWOD 99IAISS
-01-99|AJ3S || 10} UOIIBZIIOYINE PUB UO[Bd1UdYINE
salinbal jeyy |opow A1indaS :BurjiomiaN isni] 0197

SaAlasWaY} S82IAISS 8y} Bulkjipow ynoyum Aljiqeriss pue
AuIndas Bujpuey ‘s8d|AIaS0Id|W USBMIS] UOIIBIIUNWWOD
sabeuew jey) JaAe| a1n}oniiselju| :Ysa 2IAI9S

Uo[1E|0S|)Nk} pue
Buiieos onseje Bulgeus - sidy ybnoiyy 81ed1UNWWOD 1ey)
$921AI9S Juapuadapul ‘|lews olul J|ds a.e suonedldde
8J9UYM 8IN10811YD.Je BIBMIJOS UISPON :S8IIAISSOIDIN
punoiboeg

€691 QIYILYVHD

npa'wm@® Lojepnode KIVIN @ WVITIIM

[opnod ysoinysey

saue|d [043U0D YSIA 9IIAIDS 10} 2IN103UYDIY ISNI] 0197 :NZVIN P

