Akeso: Bringing Post-Compromise Security
to Cloud Storage

Pankaj Niroula ~ Aashutosh Poudel

Collin MacDonald Stephen Herwig

/etc/lab

Extending Trust In
Computing Lab

Cloud Object Storage

-
0g®

Storage Objects

‘\‘/

Storage Bucket

Customer
(Company)

Cloud Object Storage

ws EBOA

Storage Objects

‘\‘/

Storage Bucket

Customer

N ab

Cloud Object Storage

-
0g®

Storage Objects

‘ Scalability
Storage Bucket . Availability
Pay-as-you-go

Customer
(Company)

External Adversary

_ o0
0g®

External Attacker N ‘ I

Storage Bucket

Storage Objects

Customer
(Company)

External Adversary

_ o0
0g®

External Attacker

Storage Objects

‘\‘/

Storage Bucket

Cloud exploit

Customer .
(Company)

External Adversary

Data leak Q)
o000 (950

External Attacker

Storage Objects

‘\‘/

Storage Bucket

Cloud exploit

Customer .
(Company)

Cloud Adversary

Cloud Insider

‘¢©\ w

Storage Objects

Storage Bucket

Customer
(Company)

Cloud Adversary

‘0©\

Storage Objects

Cloud Insider

Storage Bucket a
\ Law Enforcement
- 9000

Data Disclosure

Customer .
(Company)

Cloud-Side Encryption

C__
0g®
‘\‘/

Customer
(Company)

Cloud-Side Encryption

Customer
(Company)

Cloud-Side Encryption

Data Encryption Key
(DEK)

Customer .
(Company)

Cloud-Side Encryption

Data Encryption Key Key Encryption Key
(DEK) (KEK)

Customer

(Company) -

Cloud-Side Encryption

_—

Key Encryption Key
(KEK)

Customer
(Company)

Cloud-Side Encryption

_—

Key Encryption Key
(KEK)

Customer
(Company)

10

Customer-Managed Encryption Key
(CMEK)

Customer .
(Company)

11

Customer-Managed Encryption Key
(CMEK)

Key Management Service
(KMS)

Customer . .
N ab ab

12

Customer-Managed Encryption Key
(CMEK)

Key Management Service
(KMS)

Customer . ‘
N ab ab

13

Customer-Supplied Encryption Key

(CSEK)
Customer .

(Company) ."‘

14

Customer-Supplied Encryption Key

(CSEK)
Customer .

(Company) ."‘

15

Customer-Supplied Encryption Key

(CSEK)
Customer .

(Company) ."‘

15

Customer-Supplied Encryption Key

(CSEK)
Customer .

) | G

15

Purges key
dafter request

—="

e

Customer-Supplied Encryption Key

(CSEK)
Customer .

(Company) ."‘

16

...................

..........................
. " - L}
.............
...........
......
‘‘‘‘‘‘‘‘‘
......
....
. L]
....

. L]
. L) . L]
. L] . “
“““““
. L]
. .
.

.

. Customer-Supplied Customer-Managed ..
Encryption Key .-~ " Encryption Key ”
(CSEK) = (CMEK)

g

R

Customer

Key Management Service
(KMS)

Cloud sees KEK .. Cloud always generates DEK ; Cloud either sees/accesses KEK ;

DEK always exposed . KEK rotation does not change
during requests . existing objects "

*

.
- L] .*
- . .
L] . .
.
L] . .
. o
L] . .
.....
.....
......
........
. -
'''''''
......
.............
- L] -
.....................

Client-Side Encryption
D

N— g

Group encrypt:on key

Customer .
(Company) -

Client-Side Encryption
D

N— g

Group encrypt:on key

Customer .
(Company) -

Client-Side Encryption
D

N— g

- “ Group encrypt:on key

Q Customer .
(Company) m

Cloud credential

Client-Side Encryption
>

Q Customer .
(Company) m

Cloud credential

Client-Side Encryption

Client-Side Encryption

Q) Challenge |: Efficiently rotate group key

i) — =l

Customer ‘
(Company) -

22

Client-Side Encryption

Q) Challenge |: Efficiently rotate group key

i) — =l

Challenge 2: Efficiently re-encrypt data

‘ ’
‘ Data Egress Fees $$9%
Customer . . .
e et e

23

Client-Side Encryption

Q) Challenge |: Efficiently rotate group key

i) — =l

Challenge 2: Efficiently re-encrypt data

‘ ’
‘ Data Egress Fees $$9%
Customer . . .

24

Client-Side Encryption

Q) Challenge |: Efficiently rotate group key

i) — =l

Challenge 2: Efficiently re-encrypt data

‘ ’
‘ Data Egress Fees $$9%

Customer .
(Company) -

e

25

e

Requirements

20

Requirements

‘ The cloud shouldn’t have access to keys ”

20

Requirements

‘ The cloud shouldn’t have access to keys ”
. Data must be re-encrypted in the cloud
—

20

Requirements

‘ The cloud shouldn’t have access to keys ”
. Data must be re-encrypted in the cloud
: —_—

‘ Rotating a key must be cheap .,.,‘ S ...,‘

20

Enclave Strawman

D
&

Customer .
(Company)

27

Enclave Strawman

Authenticated and Attested
TLS

Customer .

(Company) -

Enclave Strawman

D
&

Authenticated and Attested
TLS

Customer

(Company) -

%

28

Enclave Strawman

Authenticated and Attested
TLS

Customer .

(Company) -

Enclave Strawman
D

N— e

Key rotation

E and re-encryption
o ®

30

Authenticated and Attested
TLS

Customer .
(Company)

Enclave Strawman
D

N— e

Key rotation

Authenticated and Attested

E and re-encryption
TLS

Customer . . .

(Company)

30

Enclave Strawman
D

N— e

Key rotation

Authenticated and Attested

E and re-encryption
TLS

Customer . . .

(Company)

31

Enclave Strawman

Up to 30%
/O overhead ~— —

Key rotation
and re-encryption

Authenticated and Attested
TLS

Customer
(Company)

31

Enclave Strawman

Up to 30%
/O overhead ~~— —

Key rotation

Scaling is expensive and re-encryption

Authenticated and Attested
TLS

Customer
(Company)

31

Enclave Strawman Microbenchmark

20 MB/s
10 MB/s
— 5 MB/s
)
Q.
-
Sl 1 MB/s
@
= 500 KB/s
|_

100 KB/s §

GCS CMEK (Upload) —e—
GCS CMEK (Download) - e - .
B TEE Proxy (Upload) —e— e
- TEE Proxy (Download) = = - 0,,’ fff
I ” ,,,,,,,, —_.-——.-" -Q- - -
I ’e-' fffffffff Nt
e "

1 2 4 8 16 32 o4 128 256

Concurrent Client Count

32

Enclave Strawman
D

N— S

Key rotation

E and re-encryption
Authenticated and Attested
W TLS

Customer
(Company) q a a
33

o

credential

Enclave Strawman

Key rotation
and re-encryption

Authenticated and Attested
W TLS

Customer

(Company) q

credential

34

Akeso

. Client-side encryption and
- efficient key rotation

y''s Enclave
P~ Minimal use of TEEs

Akeso - Greek goddess of

well-being and healing ‘ o~ ' Updatable Encryption

35

Akeso

. Client-side encryption and
- efficient key rotation

e Enclave
L Minimal use of TEEs

Akeso - Greek goddess of

well-being and healing ‘ - ' Updatable Encryption

36

ontinuous Group Key Agreement

On Ends-to-Ends Encryption

Asynchronous Group Messaging with Strong Security Guarantees

Katriel Cohn-Gordon Cas Cremers Luke Garratt
University of Oxford CISPA Helmholtz Center i.G. University of Oxford
me@Xkatriel.co.uk cremers@cispa.saarland luke.garratt@cs.ox.ac.uk

Jon Millican
Facebook
jmillican@fb.com

ABSTRACT

In the past few years secure messaging has become mainstream,
with over a billion active users of end-to-end encryption protocols
such as Signal. The Signal Protocol provides a strong property called
post-compromise security to its users. However, it turns out that
many of its implementations provide, without notification, a weaker
property for group messaging: an adversary who compromises a
single group member can read and inject messages indefinitely.

We show for the first time that post-compromise security can
be achieved in realistic, asynchronous group messaging systems.
We present a design called Asynchronous Ratcheting Trees (ART),
which uses tree-based Diffie-Hellman key exchange to allow a
group of users to derive a shared symmetric key even if no two
are ever online at the same time. ART scales to groups containing
thousands of members, while still providing provable security guar-
antees. It has seen significant interest from industry, and forms the
basis for two draft IETF RFCs and a chartered working group. Our
results show that strong security guarantees for group messaging
are practically achievable in a modern setting.

CCS CONCEPTS

« Security and privacy — Security protocols; Cryptography;
Formal methods and theory of security; Formal security models; Mo-
bile and wireless security;

KEYWORDS

end-to-end encryption; ART; group messaging; tree Diffie-Hellman;
security protocols; computational proof; verification

ACM Reference Format:

Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. 2018. On Ends-to-Ends Encryption: Asynchronous Group Mes-
saging with Strong Security Guarantees. In 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’18), October 15-19,
2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3243734.3243747

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3243747

Kevin Milner
University of Oxford
kamilner@kamilner.ca

communications
forward under attack

P — |
secrecy (FS)

compromise

communications
post-compromise under attack

security (PCS) compromise

Figure 1: Attack scenarios of forward secrecy and PCS, with the
communications under attack marked in bold and time from left
to right. Forward secrecy protects against later compromise; PCS
protects against earlier compromise.

1 INTRODUCTION

The security of secure messaging systems has improved substan-
tially over recent years; WhatsApp now provides end-to-end en-
cryption for its billion active users, based on Open Whisper Systems’
Signal Protocol [36, 53], and The Guardian publishes Signal contact
details for its investigative journalism teams [51].

The Signal Protocol and its variants offer a security property
called Post-Compromise Security (PCS) [14], sometimes referred to
as “future secrecy” or “self-healing”. For PCS, even if Alice’s device
is entirely compromised by an adversary, she will automatically
re-establish secure communications with others after a single unin-
tercepted exchange, even if she was not aware of the compromise.
Thus, PCS limits the scope of a compromise, forcing an adversary
to act as a permanent active man-in-the-middle if they wish to
exploit knowledge of a long-term key. This can serve as a powerful
impediment to mass-surveillance techniques. Thus far, PCS-style
properties have only been proven for point-to-point protocols [13],
and they are only achievable by stateful ones [14]. Figure 1 illus-
trates the difference between forward secrecy and PCS. Because it
raises the bar for mass-surveillance, we see PCS as an important
property for any modern secure messaging protocol.

Systems like WhatsApp and Signal are designed to be usable by
anyone, not just experts, and to provide much of the same function-
ality as existing insecure messaging applications. To that end, they
must work within a number of constraints, an important one of
which is asynchronicity: Alice must be able to send messages to Bob
even if Bob is currently offline. Typically, the encrypted message
is temporarily stored on a (possibly untrusted) server, to be deliv-
ered to Bob once he comes online again. Asynchronicity means
that standard techniques for forward secrecy, such as a DH key
exchange, do not apply directly. This has driven the development
of novel techniques to achieve forward secrecy without interaction,

Cohn-Gordon et al., CCS 2018

37

ontinuous Group Key Agreement

On Ends-to-Ends Encryption

Asynchronous Group Messaging with Strong Security Guarantees

Katriel Cohn-Gordon Cas Cremers Luke Garratt
University of Oxford CISPA Helmholtz Center i.G. University of Oxford
me@Xkatriel.co.uk cremers@cispa.saarland luke.garratt@cs.ox.ac.uk

Jon Millican
Facebook
jmillican@fb.com

ABSTRACT

In the past few years secure messaging has become mainstream,
with over a billion active users of end-to-end encryption protocols
such as Signal. The Signal Protocol provides a strong property called
post-compromise security to its users. However, it turns out that
many of its implementations provide, without notification, a weaker
property for group messaging: an adversary who compromises a
single group member can read and inject messages indefinitely.

We show for the first time that post-compromise security can
be achieved in realistic, asynchronous group messaging systems.
We present a design called Asynchronous Ratcheting Trees (ART),
which uses tree-based Diffie-Hellman key exchange to allow a
group of users to derive a shared symmetric key even if no two
are ever online at the same time. ART scales to groups containing
thousands of members, while still providing provable security guar-
antees. It has seen significant interest from industry, and forms the
basis for two draft IETF RFCs and a chartered working group. Our
results show that strong security guarantees for group messaging
are practically achievable in a modern setting.

CCS CONCEPTS

« Security and privacy — Security protocols; Cryptography;
Formal methods and theory of security; Formal security models; Mo-
bile and wireless security;

KEYWORDS

end-to-end encryption; ART; group messaging; tree Diffie-Hellman;
security protocols; computational proof; verification

ACM Reference Format:

Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. 2018. On Ends-to-Ends Encryption: Asynchronous Group Mes-
saging with Strong Security Guarantees. In 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’18), October 15-19,
2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3243734.3243747

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3243747

Kevin Milner
University of Oxford
kamilner@kamilner.ca

communications
forward under attack

P — |
secrecy (FS)

compromise

communications
post-compromise under attack

security (PCS) compromise

Figure 1: Attack scenarios of forward secrecy and PCS, with the
communications under attack marked in bold and time from left
to right. Forward secrecy protects against later compromise; PCS
protects against earlier compromise.

1 INTRODUCTION

The security of secure messaging systems has improved substan-
tially over recent years; WhatsApp now provides end-to-end en-
cryption for its billion active users, based on Open Whisper Systems’
Signal Protocol [36, 53], and The Guardian publishes Signal contact
details for its investigative journalism teams [51].

The Signal Protocol and its variants offer a security property
called Post-Compromise Security (PCS) [14], sometimes referred to
as “future secrecy” or “self-healing”. For PCS, even if Alice’s device
is entirely compromised by an adversary, she will automatically
re-establish secure communications with others after a single unin-
tercepted exchange, even if she was not aware of the compromise.
Thus, PCS limits the scope of a compromise, forcing an adversary
to act as a permanent active man-in-the-middle if they wish to
exploit knowledge of a long-term key. This can serve as a powerful
impediment to mass-surveillance techniques. Thus far, PCS-style
properties have only been proven for point-to-point protocols [13],
and they are only achievable by stateful ones [14]. Figure 1 illus-
trates the difference between forward secrecy and PCS. Because it
raises the bar for mass-surveillance, we see PCS as an important
property for any modern secure messaging protocol.

Systems like WhatsApp and Signal are designed to be usable by
anyone, not just experts, and to provide much of the same function-
ality as existing insecure messaging applications. To that end, they
must work within a number of constraints, an important one of
which is asynchronicity: Alice must be able to send messages to Bob
even if Bob is currently offline. Typically, the encrypted message
is temporarily stored on a (possibly untrusted) server, to be deliv-
ered to Bob once he comes online again. Asynchronicity means
that standard techniques for forward secrecy, such as a DH key
exchange, do not apply directly. This has driven the development
of novel techniques to achieve forward secrecy without interaction,

Cohn-Gordon et al., CCS 2018

Efficient
Key updates are O(log N), where N is the group size

37

Continuous Group Key Agreement

On Ends-to-Ends Encryption

Asynchronous Group Messaging with Strong Security Guarantees

Katriel Cohn-Gordon Cas Cremers Luke Garratt
University of Oxford CISPA Helmholtz Center i.G. University of Oxford

me@Xkatriel.co.uk cremers@cispa.saarland

Jon Millican
Facebook
jmillican@fb.com

ABSTRACT

In the past few years secure messaging has become mainstream,
with over a billion active users of end-to-end encryption protocols
such as Signal. The Signal Protocol provides a strong property called
post-compromise security to its users. However, it turns out that
many of its implementations provide, without notification, a weaker
property for group messaging: an adversary who compromises a
single group member can read and inject messages indefinitely.

We show for the first time that post-compromise security can
be achieved in realistic, asynchronous group messaging systems.
We present a design called Asynchronous Ratcheting Trees (ART),
which uses tree-based Diffie-Hellman key exchange to allow a
group of users to derive a shared symmetric key even if no two
are ever online at the same time. ART scales to groups containing
thousands of members, while still providing provable security guar-
antees. It has seen significant interest from industry, and forms the
basis for two draft IETF RFCs and a chartered working group. Our
results show that strong security guarantees for group messaging
are practically achievable in a modern setting.

CCS CONCEPTS

« Security and privacy — Security protocols; Cryptography;
Formal methods and theory of security; Formal security models; Mo-
bile and wireless security;

KEYWORDS

end-to-end encryption; ART; group messaging; tree Diffie-Hellman;
security protocols; computational proof; verification

ACM Reference Format:

Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. 2018. On Ends-to-Ends Encryption: Asynchronous Group Mes-
saging with Strong Security Guarantees. In 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’18), October 15-19,
2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3243734.3243747

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3243747

luke.garratt@cs.ox.ac.uk

Kevin Milner
University of Oxford
kamilner@kamilner.ca

communications
forward under attack

P — |
secrecy (FS)

compromise

communications
post-compromise under attack

security (PCS) compromise

Figure 1: Attack scenarios of forward secrecy and PCS, with the
communications under attack marked in bold and time from left
to right. Forward secrecy protects against later compromise; PCS
protects against earlier compromise.

1 INTRODUCTION

The security of secure messaging systems has improved substan-
tially over recent years; WhatsApp now provides end-to-end en-
cryption for its billion active users, based on Open Whisper Systems’
Signal Protocol [36, 53], and The Guardian publishes Signal contact
details for its investigative journalism teams [51].

The Signal Protocol and its variants offer a security property
called Post-Compromise Security (PCS) [14], sometimes referred to
as “future secrecy” or “self-healing”. For PCS, even if Alice’s device
is entirely compromised by an adversary, she will automatically
re-establish secure communications with others after a single unin-
tercepted exchange, even if she was not aware of the compromise.
Thus, PCS limits the scope of a compromise, forcing an adversary
to act as a permanent active man-in-the-middle if they wish to
exploit knowledge of a long-term key. This can serve as a powerful
impediment to mass-surveillance techniques. Thus far, PCS-style
properties have only been proven for point-to-point protocols [13],
and they are only achievable by stateful ones [14]. Figure 1 illus-
trates the difference between forward secrecy and PCS. Because it
raises the bar for mass-surveillance, we see PCS as an important
property for any modern secure messaging protocol.

Systems like WhatsApp and Signal are designed to be usable by
anyone, not just experts, and to provide much of the same function-
ality as existing insecure messaging applications. To that end, they
must work within a number of constraints, an important one of
which is asynchronicity: Alice must be able to send messages to Bob
even if Bob is currently offline. Typically, the encrypted message
is temporarily stored on a (possibly untrusted) server, to be deliv-
ered to Bob once he comes online again. Asynchronicity means
that standard techniques for forward secrecy, such as a DH key
exchange, do not apply directly. This has driven the development
of novel techniques to achieve forward secrecy without interaction,

Cohn-Gordon et al., CCS 2018

‘ Efficient

Key updates are O(log N), where N is the group size

2>
(Vg
~
=
O
>
)
O
-
O
-
(Vg

Achieves key agreement even if some members are offline

37

Continuous Group Key Agreement

On Ends-to-Ends Encryption

Asynchronous Group Messaging with Strong Security Guarantees

Katriel Cohn-Gordon Cas Cremers Luke Garratt
University of Oxford CISPA Helmholtz Center i.G. University of Oxford

me@Xkatriel.co.uk cremers@cispa.saarland

Jon Millican
Facebook
jmillican@fb.com

ABSTRACT

In the past few years secure messaging has become mainstream,
with over a billion active users of end-to-end encryption protocols
such as Signal. The Signal Protocol provides a strong property called
post-compromise security to its users. However, it turns out that
many of its implementations provide, without notification, a weaker
property for group messaging: an adversary who compromises a
single group member can read and inject messages indefinitely.

We show for the first time that post-compromise security can
be achieved in realistic, asynchronous group messaging systems.
We present a design called Asynchronous Ratcheting Trees (ART),
which uses tree-based Diffie-Hellman key exchange to allow a
group of users to derive a shared symmetric key even if no two
are ever online at the same time. ART scales to groups containing
thousands of members, while still providing provable security guar-
antees. It has seen significant interest from industry, and forms the
basis for two draft IETF RFCs and a chartered working group. Our
results show that strong security guarantees for group messaging
are practically achievable in a modern setting.

CCS CONCEPTS

« Security and privacy — Security protocols; Cryptography;
Formal methods and theory of security; Formal security models; Mo-
bile and wireless security;

KEYWORDS

end-to-end encryption; ART; group messaging; tree Diffie-Hellman;
security protocols; computational proof; verification

ACM Reference Format:

Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. 2018. On Ends-to-Ends Encryption: Asynchronous Group Mes-
saging with Strong Security Guarantees. In 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’18), October 15-19,
2018, Toronto, ON, Canada. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3243734.3243747

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3243747

luke.garratt@cs.ox.ac.uk

Kevin Milner
University of Oxford
kamilner@kamilner.ca

communications
forward under attack

(Fs)

secrecy .
compromise

communications
post-compromise under attack

security (PCS) compromise

Figure 1: Attack scenarios of forward secrecy and PCS, with the
communications under attack marked in bold and time from left
to right. Forward secrecy protects against later compromise; PCS
protects against earlier compromise.

1 INTRODUCTION

The security of secure messaging systems has improved substan-
tially over recent years; WhatsApp now provides end-to-end en-
cryption for its billion active users, based on Open Whisper Systems’
Signal Protocol [36, 53], and The Guardian publishes Signal contact
details for its investigative journalism teams [51].

The Signal Protocol and its variants offer a security property
called Post-Compromise Security (PCS) [14], sometimes referred to
as “future secrecy” or “self-healing”. For PCS, even if Alice’s device
is entirely compromised by an adversary, she will automatically
re-establish secure communications with others after a single unin-
tercepted exchange, even if she was not aware of the compromise.
Thus, PCS limits the scope of a compromise, forcing an adversary
to act as a permanent active man-in-the-middle if they wish to
exploit knowledge of a long-term key. This can serve as a powerful
impediment to mass-surveillance techniques. Thus far, PCS-style
properties have only been proven for point-to-point protocols [13],
and they are only achievable by stateful ones [14]. Figure 1 illus-
trates the difference between forward secrecy and PCS. Because it
raises the bar for mass-surveillance, we see PCS as an important
property for any modern secure messaging protocol.

Systems like WhatsApp and Signal are designed to be usable by
anyone, not just experts, and to provide much of the same function-
ality as existing insecure messaging applications. To that end, they
must work within a number of constraints, an important one of
which is asynchronicity: Alice must be able to send messages to Bob
even if Bob is currently offline. Typically, the encrypted message
is temporarily stored on a (possibly untrusted) server, to be deliv-
ered to Bob once he comes online again. Asynchronicity means
that standard techniques for forward secrecy, such as a DH key
exchange, do not apply directly. This has driven the development
of novel techniques to achieve forward secrecy without interaction,

Cohn-Gordon et al., CCS 2018

’ Efficient

Key updates are O(log N), where N is the group size

Asynchronous

Achieves key agreement even if some members are offline

Post-Compromise Secure

Regains security of group key upon one key rotation
without adversarial interference

37

Asynchronous Ratcheting Tree (ART)

33

Asynchronous Ratcheting Tree (ART)

39

Asynchronous Ratcheting Tree (ART)

40

Asynchronous Ratcheting Tree (ART)

41

Asynchronous Ratcheting Tree (ART)

JA\(A
g(gol)(é’“)

42

Asynchronous Ratcheting Tree (ART)

Group key l Root key
il —— KDF — (820&1)(5”12&3)

~ AN

/10/11 /10/11 ,12 ,13 . /12,13
4 Y
-0 @ - , - 3

43

Asynchronous Ratcheting Tree (ART)

Group key l Root key
il —— KDF — (820&1)(5”12&3)

/ AN

/1 A /1 A
/10/11 041 /12/13 . 243

Knows prlvate key / \

/13 8
-3

8

44

Asynchronous Ratcheting Tree (ART)

Group key l Root key
il —— KDF — (820&1)(8’12&3)

~ AN

/10/11 ﬂoﬂl g/12/13
Knows public keys on copath

Knows prlvate key

45

Group key

Key Update

Nelol Y

40

Key Update

Group key l Root key
il —— KDF — (810’11)(8’12’13)

~ AN

/10/11 W“l /12/13 , ﬂzﬂs

8

o @

/13 g

@b, a -2 -3

47

Tree Setup

Initiator

QRN

S

Tree Setup

Enclave
Akesod /Q\ Gr/c\)/]up Setup
essage
Pub/Sub

s & &

49

QRN

Tree Setup

Enclave
Akesod /Q\ Group Setup
Message
®

m

e & 8

50

QRN

Akeso

Client-side encryption and
efficient key rotation

Minimal use of TEEs

Akeso - Greek goddess of
well-being and healing

Updatable Encryption

51

Updatable Encryption

o0

Updatable Encryption

Update Token

Key Rotation Cll-‘ — uu‘

53

Ciphertext-Dependent Updatable Encryption

Fetch

Key Rotation Cl"‘ — ‘l"‘

54

Ciphertext-Dependent Updatable Encryption

Improving Speed and Security in Updatable Encryption Schemes

Dan Boneh* Saba Eskandarian® Sam Kim?! Maurice Shih$

Abstract

Periodic key rotation is a common practice designed to limit the long-term power of cryptographic keys.
Key rotation refers to the process of re-encrypting encrypted content under a fresh key, and overwriting
Fetc h the old ciphertext with the new one. When encrypted data is stored in the cloud, key rotation can be
very costly: it may require downloading the entire encrypted content from the cloud, re-encrypting it on
the client’s machine, and uploading the new ciphertext back to the cloud.
_ An updatable encryption scheme is a symmetric-key encryption scheme designed to support efficient
key rotation in the cloud. The data owner sends a short update token to the cloud. This update token lets
the cloud rotate the ciphertext from the old key to the new key, without learning any information about
the plaintext. Recent work on updatable encryption has led to several security definitions and proposed
constructions. However, existing constructions are not yet efficient enough for practical adoption, and the
existing security definitions can be strengthened.
In this work we make three contributions. First, we introduce stronger security definitions for updatable
encryption (in the ciphertert-dependent setting) that capture desirable security properties not covered
in prior work. Second, we construct two new updatable encryption schemes. The first construction
relies only on symmetric cryptographic primitives, but only supports a bounded number of key rotations.
The second construction supports a (nearly) unbounded number of updates, and is built from the Ring
Learning with Errors (RLWE) assumption. Due to complexities of using RLWE;, this scheme achieves a
slightly weaker notion of integrity compared to the first. Finally, we implement both constructions and
compare their performance to prior work. Our RLWE-based construction is 200x faster than a prior
proposal for an updatable encryption scheme based on the hardness of elliptic curve DDH. Our first
construction, based entirely on symmetric primitives, has the highest encryption throughput, approaching

3 Se nd TO ke n to C I Oud the performance of AES, and the highest decryption throughput on ciphertexts that were re-encrypted
fewer than fifty times. For ciphertexts re-encrypted over fifty times, the RLWE construction dominates it
in decryption speed.

Ciphertext Header

Generate Update
2 1 Introduction
Token

Consider a ciphertext ct that is a symmetric encryption of some data using key k. Key rotation is the process
of decrypting ct using k, and re-encrypting the result using a fresh key k’ to obtain a new ciphertext ct’. One
then stores ct’ and discards ct. Periodic key rotation is recommended, and even required, in several security
standards and documents, including NIST publication 800-57 [Barl6], the Payment Card Industry Data
Security Standard (PCI DSS) [PCI18], and Google’s cloud security recommendations [Goo].

Key rotation ensures that secret keys are periodically revoked. In the event that a key is compromised,
regular key rotation limits the amount of data that is vulnerable to compromise. Limiting the amount of data

*Stanford University. Email: dabo@cs.stanford.edu.

tStanford University. Email: saba@cs.stanford.edu.

fStanford University and Simons Institute for the Theory of Computing. Email: skim13@cs.stanford.edu.
8Cisco Systems. Email: maushih@cisco.com

Key Rotation Cll-‘ — a—‘

Boneh et al, ASIACRYPT 2020

55

Nested AES Updatable Encryption

Nested AES Updatable Encryption

Nested AES Updatable Encryption

Nested AES Updatable Encryption

ART Group Key
(Key Encryption Key)

g

Ciphertext
Header

® ~

Data Encryption
Key

59

Nested AES Updatable Encryption

D

ART Group Key @

S
(Key Encryption Key)

Enclave
i

60

Nested AES Updatable Encryption

D

ART Group Key @

S
(Key Encryption Key)

Enclave
g — —
Key Update

o1

Nested AES Updatable Encryption

D

ART Group Key " s
(Key Encryption Key)

Key Update
Generate another DEK ==

Encrypt Header with new KEK el

~

62

Nested AES Updatable Encryption

D

ART Group Key
(Key Encryption Key)
Key Update

Generate another DEK ==

Encrypt Header with new KEK el

63

Nested AES Updatable Encryption

D

Untrusted ‘
ART Group Key

(Key Encryption Key)
d . ~® Enclave
Key Update Triggers cloud

Function with new DEK
Generate another DEK ==

Encrypt Header with new KEK el

o4

Nested AES Updatable Encryption

-
Untrusted Adds encryption
layer
ART Group Key

(Key Encryption Key)
°
Key Update
Generate another DEK ==

Encrypt Header with new KEK el

65

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)

Sequential Read

T

s 3.50

<300
= 250 F
R | D O d
O

S AB0F
o 1 I B
S 050 F
-

2 O | | | | |

s 10K 100K 1M

Real-World S0 Object Size
Object Size Percentiles
06

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
N Sequential Read s CMEK
LLI
s 3.50
2.300F
o 220
= 20
L A, , .
r Igg I OO oni% qoate oni?e qooe onite o0 [
& 050 F I fffffffffffffffffffffffffffffff I eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee I eeeeeeeeeeeeeeeeeeeeeeeeeeeeee
-
..CI_)- O I I I
« 10K 100K 1™

Real-World S0 Object Size
Object Size Percentiles
67

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
N Sequential Read s CMEK
m mmmm CMEK-HSM
= 3.50
@ 300F
o 220
= 20
© R
o Igg I ORT oM et g2 g o1 O |
& 050+ M I eeeeeeeeeeeeeeeeeeeeeeeeeeeee I eeeeeeeeeeeeeeeeeeeeeeeeeeee
-
..CI_)- O I I I
« 10K 100K 1™

Real-World S0 Object Size
Object Size Percentiles
68

5
s 3.50
g 3.00
= 250
= 2.00
qv]
3 1.50
C 1.00
o> 0.50
-
@ 0
Q0]
1

Real-World S0 Object Size
Object Size Percentiles
69

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)

Sequential Read e CMEK mmmmm CSEK
s CMEK-HSM

10K 110]0] ¢ 1M

Latency to Read/Write an Object

0.50

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
N Sequential Read e CMEK mmmmm CSEK
m s CMEK-HSM mmm Akeso-keywrap
s 3.50
= 3.00
3 290
= 2.00
©
< 1-90
@ 1.00
>
O
-
b
©
—

10K 110]0] ¢ 10M 100M

Ob ect Slze
Real-World 5Ot J o5t 99¢h
Object Size Percentiles

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
\ Sequential Read s CMEK mmmmm CSEK m Akeso-strawman
m s CMEK-HSM mmmmm Akeso-keywrap
s 3.50
2 3.00
3 290
= 2.00
©
< 1-90
@ 1.00
& 0.50
-
b
©
—

10K 110]0] ¢ 10M 100M

Ob ect Slze
Real-World 5Ot J o5t 99¢h
Object Size Percentiles

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
\ Sequential Read s CMEK mmmmm CSEK m Akeso-strawman
m s CMEK-HSM mmm Akeso-keywrap s Akeso
s 3.50
2 3.00
P 2.50
= 2.00
C
o 1.50
o 1.00
S 0.50
-
@
W
_1

110]6] ¢ 10M 100M

Ob ect Slze
Real-World 5Ot J o5t 99¢h
Object Size Percentiles

5
s 3.50
g 3.00
= 250
= 2.00
Q0]
3 1.50
C 1.00
o> 0.50
-
D
©
-1

Real-World 5(th
Object Size Percentiles

Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
Sequential Read s CMEK mmmm CSEK e Akeso-strawman
— , _ s CMEK-HSM mmmm Akeso-keywrap . Akeso
seee Sequential Write

10K 110]6] ¢ 1M

Time to Re-Encrypt Bucket

lative to CMEK
(-
~l
(@)

—h
-
-

O
8]
O

Re
=
N
@)

-

Time to Re-Encrypt Bucket

16M 128M 512M e 10G
Bucket Size (Each object is 2 M)

4

Time to Re-Encrypt Bucket

mmmm CMEK
1.25
% 14 30605 1092-2°
S« 100Fr 9w ®w ®
M
Q=
gO o5 9 8 5 5 By
2
W o
o=z050+ ¢ 9 " 9 "
- O
[e)
o022+ o 9 % "4 9w
iE
O I I I I I
16M 128M 512M 1G 10G

Bucket Size (Each object is 2 M)

lge)

Time to Re-Encrypt Bucket

Changes DEK & KEK
Changes only KEK

[— CMEK J fr— CSEK) mmmm Akeso-strawman
M

e CMEK-HS Emmmm Akeso-keywrap
1.25

—h
-
=

—
~
&

O
)
O

Relative to CMEK

O
N
O

Time to Re-Encrypt Bucket

16M 128M 512M 1G 10G
Bucket Size (Each object is 2 M)

/0

Time to Re-Encrypt Bucket

Chang—es DEK & KEK ..
Changes only KEK 5

Akeso outperforms
. approaches that have the
. same or even weaker security

N/)
s Akeso-strawman

Time to Re-Encrypt Bucket

Relative to CMEK

s CMEK-HS

[— CMEK J ‘mmmsm CSEK
M

1.25

mmmmm Akeso-keywrap || mmmmm Akeso

J

—h
-
=

—
~
&

O
)
O

O
N
O

16M

128M

’r’

512M

e 10G
Bucket Size (Each object is 2 M)

Monthly Costs (USD)

One key rotation per month

10 GB 63.96 65 .84 63.78

/83

Monthly Costs (USD)

One key rotation per month

79

https://github.com/etclab/akeso-artifact

Continuous Group

Key Areement Updatable Encryption PCS Cloud Storage

/etc/lab

Extending Trust In

Computing Lab

