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ABSTRACT

In the past few years secure messaging has become mainstream,
with over a billion active users of end-to-end encryption protocols
such as Signal. The Signal Protocol provides a strong property called
post-compromise security to its users. However, it turns out that
many of its implementations provide, without notification, a weaker
property for group messaging: an adversary who compromises a
single group member can read and inject messages indefinitely.

We show for the first time that post-compromise security can
be achieved in realistic, asynchronous group messaging systems.
We present a design called Asynchronous Ratcheting Trees (ART),
which uses tree-based Diffie-Hellman key exchange to allow a
group of users to derive a shared symmetric key even if no two
are ever online at the same time. ART scales to groups containing
thousands of members, while still providing provable security guar-
antees. It has seen significant interest from industry, and forms the
basis for two draft IETF RFCs and a chartered working group. Our
results show that strong security guarantees for group messaging
are practically achievable in a modern setting.
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Figure 1: Attack scenarios of forward secrecy and PCS, with the
communications under attack marked in bold and time from left
to right. Forward secrecy protects against later compromise; PCS
protects against earlier compromise.

1 INTRODUCTION

The security of secure messaging systems has improved substan-
tially over recent years; WhatsApp now provides end-to-end en-
cryption for its billion active users, based on Open Whisper Systems’
Signal Protocol [36, 53], and The Guardian publishes Signal contact
details for its investigative journalism teams [51].

The Signal Protocol and its variants offer a security property
called Post-Compromise Security (PCS) [14], sometimes referred to
as “future secrecy” or “self-healing”. For PCS, even if Alice’s device
is entirely compromised by an adversary, she will automatically
re-establish secure communications with others after a single unin-
tercepted exchange, even if she was not aware of the compromise.
Thus, PCS limits the scope of a compromise, forcing an adversary
to act as a permanent active man-in-the-middle if they wish to
exploit knowledge of a long-term key. This can serve as a powerful
impediment to mass-surveillance techniques. Thus far, PCS-style
properties have only been proven for point-to-point protocols [13],
and they are only achievable by stateful ones [14]. Figure 1 illus-
trates the difference between forward secrecy and PCS. Because it
raises the bar for mass-surveillance, we see PCS as an important
property for any modern secure messaging protocol.

Systems like WhatsApp and Signal are designed to be usable by
anyone, not just experts, and to provide much of the same function-
ality as existing insecure messaging applications. To that end, they
must work within a number of constraints, an important one of
which is asynchronicity: Alice must be able to send messages to Bob
even if Bob is currently offline. Typically, the encrypted message
is temporarily stored on a (possibly untrusted) server, to be deliv-
ered to Bob once he comes online again. Asynchronicity means
that standard techniques for forward secrecy, such as a DH key
exchange, do not apply directly. This has driven the development
of novel techniques to achieve forward secrecy without interaction,

Cohn-Gordon et al., CCS 2018
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Akeso

Client-side encryption and
efficient key rotation

Minimal use of TEEs

Akeso - Greek goddess of
well-being and healing

Updatable Encryption
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Ciphertext-Dependent Updatable Encryption

Improving Speed and Security in Updatable Encryption Schemes

Dan Boneh* Saba Eskandarian® Sam Kim?! Maurice Shih$

Abstract

Periodic key rotation is a common practice designed to limit the long-term power of cryptographic keys.
Key rotation refers to the process of re-encrypting encrypted content under a fresh key, and overwriting
Fetc h the old ciphertext with the new one. When encrypted data is stored in the cloud, key rotation can be
very costly: it may require downloading the entire encrypted content from the cloud, re-encrypting it on
the client’s machine, and uploading the new ciphertext back to the cloud.
_ An updatable encryption scheme is a symmetric-key encryption scheme designed to support efficient
key rotation in the cloud. The data owner sends a short update token to the cloud. This update token lets
the cloud rotate the ciphertext from the old key to the new key, without learning any information about
the plaintext. Recent work on updatable encryption has led to several security definitions and proposed
constructions. However, existing constructions are not yet efficient enough for practical adoption, and the
existing security definitions can be strengthened.
In this work we make three contributions. First, we introduce stronger security definitions for updatable
encryption (in the ciphertert-dependent setting) that capture desirable security properties not covered
in prior work. Second, we construct two new updatable encryption schemes. The first construction
relies only on symmetric cryptographic primitives, but only supports a bounded number of key rotations.
The second construction supports a (nearly) unbounded number of updates, and is built from the Ring
Learning with Errors (RLWE) assumption. Due to complexities of using RLWE;, this scheme achieves a
slightly weaker notion of integrity compared to the first. Finally, we implement both constructions and
compare their performance to prior work. Our RLWE-based construction is 200x faster than a prior
proposal for an updatable encryption scheme based on the hardness of elliptic curve DDH. Our first
construction, based entirely on symmetric primitives, has the highest encryption throughput, approaching

3 Se nd TO ke n to C I Oud the performance of AES, and the highest decryption throughput on ciphertexts that were re-encrypted
fewer than fifty times. For ciphertexts re-encrypted over fifty times, the RLWE construction dominates it
in decryption speed.

Ciphertext Header

Generate Update
2 1 Introduction
Token

Consider a ciphertext ct that is a symmetric encryption of some data using key k. Key rotation is the process
of decrypting ct using k, and re-encrypting the result using a fresh key k’ to obtain a new ciphertext ct’. One
then stores ct’ and discards ct. Periodic key rotation is recommended, and even required, in several security
standards and documents, including NIST publication 800-57 [Barl6], the Payment Card Industry Data
Security Standard (PCI DSS) [PCI18], and Google’s cloud security recommendations [Goo].

Key rotation ensures that secret keys are periodically revoked. In the event that a key is compromised,
regular key rotation limits the amount of data that is vulnerable to compromise. Limiting the amount of data

*Stanford University. Email: dabo@cs.stanford.edu.

tStanford University. Email: saba@cs.stanford.edu.

fStanford University and Simons Institute for the Theory of Computing. Email: skim13@cs.stanford.edu.
8Cisco Systems. Email: maushih@cisco.com

Key Rotation Cll-‘ — a—‘

Boneh et al, ASIACRYPT 2020

55



Nested AES Updatable Encryption




Nested AES Updatable Encryption




Nested AES Updatable Encryption




Nested AES Updatable Encryption

ART Group Key
(Key Encryption Key)

g

Ciphertext
Header

® ~

Data Encryption
Key

59



Nested AES Updatable Encryption

D

ART Group Key @

S
(Key Encryption Key)

Enclave
i

60




Nested AES Updatable Encryption

D

ART Group Key @

S
(Key Encryption Key)

Enclave
g — —
Key Update

o1




Nested AES Updatable Encryption

D

ART Group Key " s
(Key Encryption Key)

Key Update
Generate another DEK ==

Encrypt Header with new KEK el

~

62




Nested AES Updatable Encryption

D

ART Group Key
(Key Encryption Key)
Key Update

Generate another DEK ==

Encrypt Header with new KEK el

63




Nested AES Updatable Encryption

D

Untrusted ‘
ART Group Key

(Key Encryption Key)
d . ~® Enclave
Key Update Triggers cloud

Function with new DEK
Generate another DEK ==

Encrypt Header with new KEK el

o4




Nested AES Updatable Encryption

-
Untrusted Adds encryption
layer
ART Group Key

(Key Encryption Key)
°
Key Update
Generate another DEK ==

Encrypt Header with new KEK el

65




Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
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Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
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Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
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Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
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Latency to Read/Write an Object
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Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
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Latency to Read/Write an Object

Integrated Akeso into GCSFuse (Benchmark uses a single layer of encryption)
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Time to Re-Encrypt Bucket
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Time to Re-Encrypt Bucket

Changes DEK & KEK
Changes only KEK
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Time to Re-Encrypt Bucket
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Changes only KEK 5
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Monthly Costs (USD)

One key rotation per month

10 GB 63.96 65 .84 63.78
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Monthly Costs (USD)

One key rotation per month
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