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ABSTRACT

In the past few years secure messaging has become mainstream,

with over a billion active users of end-to-end encryption protocols

such as Signal. The Signal Protocol provides a strong property called

post-compromise security to its users. However, it turns out that

many of its implementations provide, without notification, a weaker

property for group messaging: an adversary who compromises a

single group member can read and inject messages indefinitely.

We show for the first time that post-compromise security can

be achieved in realistic, asynchronous group messaging systems.

We present a design called Asynchronous Ratcheting Trees (ART),

which uses tree-based Diffie-Hellman key exchange to allow a

group of users to derive a shared symmetric key even if no two

are ever online at the same time. ART scales to groups containing

thousands of members, while still providing provable security guar-

antees. It has seen significant interest from industry, and forms the

basis for two draft IETF RFCs and a chartered working group. Our

results show that strong security guarantees for group messaging

are practically achievable in a modern setting.
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Figure 1: Attack scenarios of forward secrecy and PCS, with the

communications under attack marked in bold and time from left

to right. Forward secrecy protects against later compromise; PCS

protects against earlier compromise.

1 INTRODUCTION

The security of secure messaging systems has improved substan-

tially over recent years; WhatsApp now provides end-to-end en-

cryption for its billion active users, based onOpenWhisper Systems’

Signal Protocol [36, 53], and The Guardian publishes Signal contact

details for its investigative journalism teams [51].

The Signal Protocol and its variants offer a security property

called Post-Compromise Security (PCS) [14], sometimes referred to

as “future secrecy” or “self-healing”. For PCS, even if Alice’s device

is entirely compromised by an adversary, she will automatically

re-establish secure communications with others after a single unin-

tercepted exchange, even if she was not aware of the compromise.

Thus, PCS limits the scope of a compromise, forcing an adversary

to act as a permanent active man-in-the-middle if they wish to

exploit knowledge of a long-term key. This can serve as a powerful

impediment to mass-surveillance techniques. Thus far, PCS-style

properties have only been proven for point-to-point protocols [13],

and they are only achievable by stateful ones [14]. Figure 1 illus-

trates the difference between forward secrecy and PCS. Because it

raises the bar for mass-surveillance, we see PCS as an important

property for any modern secure messaging protocol.

Systems like WhatsApp and Signal are designed to be usable by

anyone, not just experts, and to provide much of the same function-

ality as existing insecure messaging applications. To that end, they

must work within a number of constraints, an important one of

which is asynchronicity: Alice must be able to send messages to Bob

even if Bob is currently offline. Typically, the encrypted message

is temporarily stored on a (possibly untrusted) server, to be deliv-

ered to Bob once he comes online again. Asynchronicity means

that standard techniques for forward secrecy, such as a DH key

exchange, do not apply directly. This has driven the development

of novel techniques to achieve forward secrecy without interaction,
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e.g., using sets of precomputed DH “prekeys” [35] that Bob uploads

to a server, or by using puncturable encryption [24].

Group and multi-device messaging is important for many users,

and various implementers have designed their own protocols to

support it. However, since group conversations must also be asyn-

chronous, it is not straightforward to adapt existing group key

exchange (GKE) protocols, which usually require a number of inter-

active rounds of communication, to this context. An alternative is

to use a two-party protocol between every pair of group members,

but as group sizes become larger, this leads to inefficient systems in

which the bandwidth and computational cost for sending a message

grows linearly with the group size. In many real-world scenarios,

this inefficiency is a problem, especially where bandwidth is re-

stricted or expensive e.g., 2G networks in the developing world.

In fact, modern messaging protocols which provide PCS for

two-party communications generally drop this guarantee for their

group messaging implementations without notifying the users. For

example, WhatsApp, Facebook Messenger and Google Allo have

mechanisms to achieve PCS for two-party communications, but for

conversations containing three or more devices they use a simpler

key-transport mechanism (“sender keys”) which does not achieve

PCS [19, 53]. Indeed, in these systems, an adversary who fully

compromises a single group member can indefinitely and passively

read future communications in that group (though certain events,

e.g. removing a device, may cause group changes and generation

of new keys). In practice this means that in these apps, if a third

party is added to a two-party communication, the security of the

communication is decreased without informing the users.

The question thus arises: is there a secure group messaging

solution that (i) allows participants to communicate asynchronously,
(ii) scales sublinearly in the group size, and (iii) admits strong security
guarantees such as PCS? In this paper we address this open question,
and show how to devise a protocol that achieves it. Our main

contributions are:

(1) We design a fully-asynchronous tree-based GKE protocol that

offers modern strong security properties, called Asynchronous

Ratcheting Trees (ART). ART derives a group key for a set of

agents without any pair needing to be online at the same time,

a requirement for modern messaging protocols. Notably, ART’s

properties include PCS: messages can be secret even after total

compromise of an agent.

ART has seen significant interest from industry and is the basis

of the IETF MLS working group and two draft RFCs [40].

(2) We give a game-based computational security model for our

protocol, building on multi-stage models to capture the key up-

dates. This allows us to encode strong properties such as PCS.

We give a game-hopping computational proof of the unauthenti-

cated core of our ART protocol, with an explicit reduction to the

PRF-ODH problem, and a mechanised symbolic verification of its

authentication property using the Tamarin prover. Our hybrid

argument follows e.g. [31].

(3) We present and evaluate a proof-of-concept Java implemen-

tation of ART’s core algorithms, increasing confidence in the

practicality and feasibility of our design.

Our design approach is of independent interest beyond our spe-

cific construction. In particular, by using simple and well-studied

constructions, our design should allow many insights from the ex-

isting literature in (synchronous) group protocols to be applied in

the asynchronous setting. We give examples, including dynamic

groups, in Section 8.We provide the proof-of-concept implementation
and evaluation data at [39].

2 BACKGROUND AND RELATEDWORK

There has been research into groupmessaging protocols for decades,

and we do not aim to survey the entire field of literature. We discuss

here several previous classes of approach. A key point which distin-

guishes our work from past research is our focus on asynchronicity

and PCS; ART can derive a group key with PCS even if no two

participants are ever online at the same time.

2.1 Other Group Messaging Protocols

OTR-style Goldberg et al. [22] define Multi-Party Off the Record

Messaging (mpOTR) as a generalisation of the classic OTR [6]

protocol, aiming for security and deniability in online messaging.

mpOTR has since given rise to a number of interactive protocols

such as (N + 1)sec [18]. The general design of this family is as

follows. First, parties conduct a number of interactive rounds of

communication in order to derive a group key. Second, parties

communicate online, perhaps performing additional cryptographic

operations. Finally, there may be a closing phase (for instance, to

assess transcript consistency between all participants).

All of these protocols are intrinsically synchronous: they require

all parties to come online at the same time for the initial key ex-

change. This is not a problem in their context of XMPP-style instant

messaging, but does not work for mobile and unreliable networks.

Assuming an authentic network [11, 50] discuss “asynchro-

nous” GKE in the setting of distributed systems, in the sense that

they do not rely on a centralised clock. They require several inter-

active rounds of communication, and do not provide PCS.

Physical approaches Some work uses physical constraints to

restrict malicious group members. For example, HoPoKey [38] has

its participants arrange themselves into a circle, with neighbours

interacting. This allows it to derive strong security properties. We,

however, will not assume physical co-location.

Sender Keys If participants have secure pairwise channels,

they can send encrypted “broadcast” keys to each group member

separately, and then broadcast their messages encrypted under

those keys. This is implemented in libsignal as the “Sender Keys”
variant of the Signal Protocol [53]. However, it sacrifices some of

the strong security properties achieved by the Double Ratchet: if an

adversary ever learns a sender key, it can subsequently eavesdrop

on all messages and impersonate the key’s owner in the group, even

though it cannot do so over the pairwise Signal channels (whose

keys are continuously updated). This variant does not have PCS.

Regularly broadcasting new sender keys over the secure pairwise

channels prevents this type of attack. However, since new sender

keys must be sent separately to each group member, this scales

linearly in the size of the group for a given key rotation frequency.

n-party DH Perhaps the most natural generalisation of DH

key updates to n parties would be a primitive that allows for the
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Figure 2: Example DH tree. We mark each node with its secret and public keys, separated by ; . Recall that the λj denote leaf keys, and ι(·)

denotes the mapping from group elements to integers. The path from λ5 to the root is marked in solid red, and the boxed nodes lie on its

copath. An agent who knows λ5 and the public keys on its copath can compute grk by repeated DH operations.

following: given all of дx0 , . . . ,дxn and a single xi (i ≤ n), derive a
value grk which is hard to compute without knowing one of the

xi . With n = 2 this can be achieved by traditional DH, and with

n = 3 Joux [25] gives a pairing-based construction. However, for

general n construction of such a primitive is a known open problem.

[4] essentially generalise the Joux protocol with a construction from

an (n − 1)-non-degenerate linear map on the integers, and [5, 34]

construct it from iO.

Tree-based group DH There is a very large body of literature

on tree-based group key agreement schemes. An early example

is the “audio teleconference system” of Steer et al. [49], and the

seminal academic work is perhaps Wallner et al. [52] or Wong et al.

[54]. Later examples include [7, 9, 12, 17, 26, 27, 28, 29, 30, 33, 42, 43,

55], among many others. These protocols assign private DH keys

to leaves of a binary
1
tree, defining (i) дxy as the secret key of a

node whose two children have secret keys x and y, and (ii) дд
xy

as its public or ‘blinded’ key. Recursively computing secret keys

through the tree, starting from the leaves, yields a value at the root

which we call the “tree key”, with the property that it can only be

computed with knowledge of at least one secret leaf key. We depict

a generic DH tree in Figure 2.

In order to compute the secret key дxy = (дy )x assigned to

a non-leaf node, an agent must know the secret key x of one of

its children and the public key дy of the other. Thus, to compute

the tree key requires an agent to know (i) one secret leaf key λj ,
and (ii) all public node keys pk

1
to pkn along its copath, where the

copath of a node is the list of sibling nodes along its path to the tree

root. The group key is computed by alternately exponentiating the

next public key with the current secret, and applying the mapping

from group elements to integers.

The online exchanges in these protocols are due to, at least in

part, the requirement for agents to know the public keys on their

copath. For example, in Figure 2, node 5 must know (but cannot

compute just from the дλj ) all boxed public keys. Other agents

may be chosen by the messaging system to compute and broadcast

public keys at intermediate nodes; for example, Kim et al. [30]

describe a system of subtree “sponsors” who broadcast select public

keys. However, none of these solutions provide PCS, because they

do not support updating keys.

1
Some constructions use ternary trees; the underlying concept is the same.

2.2 Deployed Implementations

Several widely-usedmobile apps deploy encrypted groupmessaging

protocols. We survey some of the most popular, giving asymptotic

efficiencies for three main designs in Table 1 on the next page. In

concurrent work, [44] examine the group messaging protocols used

by WhatsApp, Signal and Threema, finding a number of vulnerabil-

ities related to their group operations.

WhatsApp implements end-to-end encryption for group mes-

saging using the Sender Keys variant of Signal for all groups of

size 3+, using the existing support for Signal in pairwise channels.

Sender keys are rotated whenever a participant is removed from a

group but otherwise are never changed; an adversary who learns a

sender key can therefore impersonate or eavesdrop on its owner

until the group changes.

WhatsApp also supports multiple devices for a single user. To

do so, it defines the mobile phone as a master device and allows

secondary devices to connect by scanning a QR code. When Alice

sends a message from a secondary device, WhatsApp first sends

the message to her mobile phone, and then over the pairwise Signal

channel to the intended peer. While this method does allow for

multiple device functionality, it suffers from the downside that Alice

cannot use WhatsApp from any device if her phone is offline.

Facebook Messenger Secret Conversations similarly uses

the Sender Keys variant of Signal for all conversations involving

3+ devices [19]. As in the WhatsApp implementation, Sender Keys

are only rotated when a device is removed from a conversation.

Apple iMessage uses pairwise channels: one copy of each

message is encrypted and sent for each groupmember over pairwise

encrypted channels. We remark that this indicates that in a group

of size n, performing ∼ 2n asymmetric operations per message was

considered practical on a 2009 iPhone 3GS.

Signal The Signal mobile application uses pairwise Signal

channels for group messaging
2
, with additional devices on a Signal

account implemented as first class participants.

SafeSlinger [20] is a secure messaging app whose goal is us-

able, “privacy-preserving and secure group credential exchange”. It

aims for message secrecy under an adversary model that allows for

malicious participants. The two greatest differences between ART

and SafeSlinger are security goals and synchronicity. First, ART is ex-

plicitly designed to achieve PCS of message keys, while SafeSlinger

2
Based on source code inspection [41].
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Table 1: Asymptotic efficiencies and properties of some groupmessaging solutions as a function of the group size n. “Pairwise Signal” denotes

sending a group message repeatedly over individual Signal channels. In the setup phase, the values here refer to the total work done for all

users to reach a point where no further setup is required and “sender” refers to the creator of the group. In the sending phase, “other” refers

to a recipient of a message. We provide concrete measurements in Section 7.

number of

exponentiations

number of sym-

metric encryptions bandwidth PCS

sender per other sender per other sender per other

sender keys

setup O(n) O(n) O(n) O(n) O(n) O(n)
✗

ongoing 0 0 1 1 O(1) O(1)

pairwise

Signal

setup O(n) O(n) 0 0 O(n) O(n)
✓

ongoing O(n) O(1) n − 1 1 O(n) O(1)

our

solution

setup O(n) O(log(n)) 0 0 O(n) O(n)
✓

ongoing O(log(n)) O(log(n)) 1 1 O(log(n)) O(log(n))

instead aims for (non-forward) secrecy and just derives a single

group key. Of necessity [14], ART must therefore support stateful

and iterated key derivations. Using SafeSlinger’s unbalanced DH

key tree with ART’s key updates, while reducing the computational

load on the initiator, would take linear (versus logarithmic) time.

Second, SafeSlinger is a synchronous protocol with commitment,

verification and secret-sharing rounds, in which all group mem-

bers must be online concurrently. ART, on the other hand, is an

asynchronous protocol which supports messaging offline members.

3 OBJECTIVES

Security properties for AKE protocols are extremely well-studied.

We now describe our high-level threat model and security goals.

Secrecy and Authentication Our fundamental goal is confi-

dentiality and authenticity of keys: an active adversary should not

learn keys shared between Alice and Bob.

Post-Compromise Security (PCS) Traditional security mod-

els do not provide any guarantees after the long-term keys of a

participant are compromised: it is not considered an attack to learn

Bob’s identity key and then impersonate him to Alice. Cohn-Gordon

et al. [14] defined PCS to cover this scenario, showing that it is

achievable through the use of persistent protocol state.

We aim explicitly to achieve a form of PCS in our messaging

protocols: if the full state of a group member is compromised (long-

term and other derived keys) but the group conversation continues

without interference, the resulting group key should be secret.

Absent this goal, many simpler designs are possible. In particular,

the “sender keys” variant of Signal meets our other criteria; its

weakness is that learning a sender key enables the computation

of all future message keys. PCS is a major distinguishing feature

of modern two-party messaging protocols, and offers significant

protection from adversaries with large resources, forcing them to

actively interfere in all communications even after they manage to

temporarily compromise a device.

Poor randomness Security models such as extended Canetti-

Krawczyk and its generalisations [15, 32] allow revealing random

numbers generated by a party whose long-term keys are uncom-

promised. However, many widely-used protocols (such as TLS 1.3

or Signal) do not achieve this. Here we aim for some security in the

face of revealed randomness.

3.1 Security properties

Informally, we want our messaging protocol to provide implicit au-
thentication and message secrecy against various strong adversaries:

Security under a network adversary. The adversary has full control
of message delivery, able to intercept, read and modify any

messages sent over the network.

Forward secrecy. Once an agent has derived a session key, reveal-

ing long-term keys or any random values from subsequent

operations should not compromise its security.

PCS [14]. If a stage derives a key, but at least one previous stage
was uncompromised, the derived key should be secret. Equiv-

alently, after all of a party’s secrets are compromised, if an

intermediate stage completes with an uncorrupted key, then

all subsequent stages should be secure.

PCS is a goal which previous work does not aim for. As discussed

earlier, without PCS an adversary who compromises one participant

may be able to intercept group messages indefinitely, a property

which does not hold of two-party Signal communications.

3.2 Properties Out of Scope

Our goal in this work is to provide a provably-secure design for

an asynchronous group messaging system. In the interest of trans-

parency, therefore, we discuss here some important messaging-

related problems which we do not set out to solve, referring the

reader to other research or designs. By “out of scope” we do not

mean that these problems are unimportant or their solutions un-

necessary—rather, merely that we are not setting out to solve them

in this work. In many cases, a solution will indeed be necessary in

a large-scale practical deployment. As we will see later, our designs

build on well-studied DH tree based systems, thereby enabling the

reuse of existing solutions as components.

3.2.1 Sender-specific authentication. In a group, authentication

becomes more subtle: if Alice, Bob and Charlie share a symmetric

key and Alice receives a message encrypted under it which she did
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not send, she can conclude only that either Bob or Charlie sent it.

Depending on the context, this may not be a desirable property of

a group messaging system—in OTR it is considered a feature as a

form of deniability, while in Signal Protocol it is ruled out by sender

keys’ explicit signatures. We choose the simpler option and do not

include signature keys, discussing this topic further in Section 8.

Centralised, unencrypted group messaging systems usually pro-

vide individual authentication via the service provider’s accounts.

For example, Facebook Messenger group chats do not allow Bob

to impersonate Charlie, because Bob must log into his Facebook

account to send a message. We do not assume such a trusted third

party in our analyses. Of course, an encrypted messaging system

can also include authentication from a third party.

3.2.2 Malicious group members. In the two-party case, traditional

security properties generally assume that the peer to a session is

honest. With n parties, there is an intermediate condition: when

m < n members of the group are honest. For example, Abdalla

et al. [1] give a GKE protocol which enables subsets of the group to

derive their own key, aiming for security in a subset even if another

group member is malicious.

Although these properties are useful, we consider them orthogo-

nal to our core research question. Moreover, because we use stan-

dard constructions from the (synchronous) literature, we anticipate

that extending our design to handle group membership changes

should be relatively straightforward. We discuss dynamic groups

further in Section 8.

Trust in the Initiator. A particular example of a malicious insider

is the group creator, who may be able to choose malicious initial

values. For example, a malicious creator might be able to secretly

add an eavesdropper to a group without revealing their presence to

the other (honest) group members. (Note that they could of course

just publish the received messages, regardless of the protocol.) As

for any other group member, we consider this attack out of scope.

ART’s asynchronicity constraint means that Alice must be able

to send a message to a group she has just created, even if none of

the other participants have yet been online. ART’s design allows

for this, but at a cost: if Alice is corrupted during this initial phase,

the resulting stage keys are insecure until all group members have

performed an update. We capture this increased requirement in

our freshness predicates, and note that one can remove it if all

participants are online, by having each one in turn perform a key

update. Our approach here is related to that of the zero round-trip

(0RTT) mode of TLS 1.3, in which agents can achieve asynchronicity

at the cost of a weaker security property for early messages.

3.2.3 Executability. Implementations of group messaging systems

must deal with desynchronisation of state: if Bob attempts to update

his state without realising that Alice has already performed an

update which he does not know about, he may lose track of the

current group key. In particular, if Alice and Bob both send a key

update at the same time, only one can consistently be applied; this

does not violate any secrecy properties, but may break availability

if updating a key is necessary to send a message. We remark on

two main techniques to avoid trivial denials of service, though a

perfect solution is an open research question (studied e.g. by [12])

and we consider it out of scope for our work.

The first technique is to decouple state updates from message

sending: once Bob has derived a valid sending key, the protocol

may accept messages sent under that key for a short duration even

if Bob should have performed a state update. This allows Bob to

send messages immediately while in the background performing a

recovery process to return to the latest group state, at the cost of

weakened security guarantees due to the extended key lifetime.

A second solution is at the transport layer, either by enforcing

in-order message delivery or by refusing to accept out-of-order

key updates and instead delivering the latest group state. That is,

when the transport layer server receives a state update from Bob

which was generated based on an out-of-date state, it can refuse to

accept it and instead instruct Bob to process the latest updates and

retry. Since this enforcement can operate based only on message

metadata, a malicious transport server can then violate availability

but not message confidentiality or integrity. This solution works

fine for many group sizes, but in very large groups may cause a

server performance bottleneck.

3.2.4 Transcript agreement. In many scenarios it is valuable for

all group participants to agree on the ordered list of messages that

were sent and received in the group. Although this is a useful

property, it has many subtleties that are orthogonal to our key

research questions and we do not cover it here.

4 NOTATION

We write x B y to denote assigning y to the variable x . We write

x B$ S to denote sampling a random element from the distribution

S and assigning it to the variable x ; in particular, S may be the

output distribution of a randomised function f .
DH groups We work in a DH group G (with generator д)

admitting a mapping ι(·) : G → Z/|G |Z from group elements to inte-

gers, allowing us to interpret a group element дx itself as the secret

key corresponding to a new public key дι(д
x )
. As a convention, we

use lowercase values k to represent DH secret keys, and uppercase

values K = дk to represent their associated public keys; thus for

example the public setup key SUK is defined to be дsuk . We denote

by DHKeyGen a randomised algorithm returning a private key in

the DH group. To separate the ART initial key exchange from the

subsequent tree operations, we define a distinct key generation

algorithm KeyExchangeKeyGen that also returns a private DH key.

We assume that the following PRF-ODH problem is hard: given

a tuple (дx ,дy , zb )where z0 B ι(дxy ) and z1 B ι(дz ) for uniformly

randomly chosen z, the advantage of any PPT distinguisher in

outputting b is negligible.

Signatures and MACs ART uses two explicit authenticators:

a signature to authenticate the initial group setup message, and

a MAC to authenticate subsequent updates. s = Sign(m, sk) de-
notes a signature of the messagem with the private key sk , and
SigVerify(m, s,pk) verifies the signature against a public key pk ,
returning a boolean representing whether the verification succeeds.

µ = MAC(m,k) is a MAC of the messagem with the symmetric key

k , and MACVerify(m, µ,k) verifies it and returns a boolean.

Trees We define binary trees as a combination of nodes (which

contain two nested children) and leaves (which contain no chil-

dren), along with associated data at each node and leaf: tree F
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(node(tree, tree), ·) | (leaf , ·). For a binary tree T , we use the nota-
tion |T | to refer to the total number of leaves in the tree. We label

each node of a tree with an index pair (x ,y), where x represents

the level of the node: the number of nodes (excluding the node

itself) in the path to the root at index (0, 0). The children of a node

at index (x ,y) are (x + 1, 2y) and (x + 1, 2y + 1). We write Tx,y for

the data at index (x ,y) in a tree T . All tree nodes but the root have
a parent node and a sibling (the other node directly contained in

the parent). We refer to the copath of an node in a tree as the set

comprising its sibling in the tree, the sibling of its parent node in

the tree, and so on until reaching the root. An example of a copath

is shown in Figure 2. Finally, we usually associate a secret key x
and corresponding public key дx to each node, which we denote

by labelling nodes with x ; дx .
Derived Keys ART contains various types of key:

Leaf keys λj are secret DH keys assigned to tree leaves.

Node keys nk are secret DH keys assigned to non-leaf nodes.

Tree keys tk are secret values derived at the tree root T0,0.

Stage keys sk are derived by combining the latest tk with the pre-

vious sk, using a hash chain.

Note that stage keys sk play the role of “root keys” in the two-party

Signal protocol. We avoid the term “root” to prevent confusion with

the root of the DH tree.

5 DESIGN

We now present ART’s core designs, in two parts.

First, we give a tree-based group DH protocol related to those

from Section 2.1, but unlike those protocols ours is the first fully
asynchronous design. In other words, it is possible for all group

members including the creator to conduct the key exchange pro-

tocol and derive the shared group key without waiting for any

other group member to respond to a message. This is necessary

in order to use a group AKE protocol in practical deployments,

where group members may be offline due to e.g., unreliable mobile

network connections.

Second, we define an efficient protocol for an ART groupmember

to update their personal keys and establish a new shared group

key, using the underlying tree structure in the group. This update

protocol enables Post-Compromise Security: if a group member’s

local state is compromised but they are later able to perform an

update without adversarial interference, then the group key derived

after their update will once again be secret and authentic. ART is

the first group AKE protocol to provide PCS.

Informal explanations of our algorithms follow in Sections 5.1

and 5.2, and formal definitions in pseudocode are presented in

Appendix A. Example trees are shown in Figure 3.

5.1 ART Construction

The main reason that we cannot directly deploy a tree DH protocol

is that the initiator may be the only online member when creating a

group. Indeed, in a four-person group, even if Alice has public keys

to use for the three other leaves, she cannot compute the public

key of the parent node of C and D (marked below as “?”).

shared group key

ι(дkAkB ) ; дι(д
k
A
k
B )

ι(kA) ; дι(kA) ι(kB) ; дι(kB)

?

ι(kC) ; дι(kC) ι(kD) ; дι(kD)

Our insight here is that the initiator should not directly use received

public keys at the leaf nodes, since then they cannot derive their

parents’ public keys. Instead, we propose a design in which they

derive secret keys for each leaf node with the properties that

(i) for each group member, both the initiator and that group

member can asynchronously derive the secret key assigned

to that leaf node but

(ii) no other actor (group member or adversary) can derive that

secret key.

The creator can use their knowledge of all the secret keys to com-

pute the intermediate public keys in the tree, subsequently deleting

the leaf secrets. (This leads to additional trust assumptions on the

initiator, but assumptions which are mitigated by the key update

protocol we define later.)

How can we derive these leaf secrets? Our core insight is that

they can be the session keys of any strong one-round AKE protocol,

which we denote KeyExchange. KeyExchange takes two private

keys ek and ik and two public keys EK and IK and returns a bit-

string, with the property that KeyExchange(ikI , IKR , ekI , EKR ) =

KeyExchange(ikR , IK I , ekR , EK I ).
3

To use such a protocol we leverage the existing idea of prekeys
and introduce the new idea of a setup key. Prekeys were first in-
troduced by Marlinspike [35] for asynchronicity in the TextSecure

messaging app. They are DH ephemeral public keys cached by an

untrusted intermediate server, and fetched on demand by messag-

ing clients. The prekeys are sent to clients through the public key

infrastructure at the same time as long-term identity keys, and act

as initial messages for a one-round AKE protocol.

To enable computing an initial tree for a group, we introduce the

idea of a one-time DH setup key, generated locally by the creator of

a group and used only during the creation of that session. This key

is used to perform an initial key exchange with the prekeys, and

allows the initiator to generate secret leaf keys for the other group

members while they are offline.

Asynchronous tree construction works as follows. Suppose the

initiator (“Alice”) wishes to create a group of size n containing her-

self and n − 1 peers. She begins by generating a DH key suk we

call the setup key. She then requests from the public-key infrastruc-

ture the public identity key IK and an ephemeral prekey EK for

each of her intended peers (“Bob”, “Charlie”, . . . ), numbering them

1 through n − 1. Using her secret identity key ika and the setup

key suk together with the received public keys for each peer, she

executes a one-round key exchange protocol to derive leaf keys

λ1, . . . , λn−1. Using these generated leaf keys together with a fresh

leaf key λ0, she builds a DH tree whose root becomes the initial

group key.

We do not force a particular instantiation of KeyExchange.

For example, it can be instantiated with an unauthenticated DH

3
If the AKE protocol has a different algorithm for the initiator and responder, we can

add an additonal ‘Role’ argument.
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Alice generates a new ART tree with

λB
1
= KeyExchange(ika, IKb, suk, EKb )

λC
1
= KeyExchange(ika, IKc , suk, EKc )

λD
1
= KeyExchange(ika, IKd , suk, EKd )

and broadcasts all the public keys. KeyExchange must be a strong one-

round AKE protocol but ART does not have specific requirements on

its structure.

дι(д
λA

1
λB

1 )ι(дλ
C
1
λD

1 )

ι(дλ
A
1
λB

1 ) ; дι(д
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1
λB
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1

; дλ
A
1 λB

1
; дλ

B
1
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C
1
λD

1 ) ; дι(д
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1
λD

1 )
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1

; дλ
C
1 λD

1
; дλ

D
1

(a) Alice creates an ART group with three other members.

Alice updates their key by choosing a new leaf key λA
2
, computing the

updated nodes

дλ
A
2
λB

1 =
(
дλ

B
1

)λA
2

дι(д
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2
λB

1 )ι(дλ
C
1
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(
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on the path from λA
2
to the tree root, and broadcasting the updated

public keys to the group.
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(b) Alice updates, choosing a fresh leaf key and broadcasting updated public keys. Updated nodes are shown in boxed red

Charlie updates their key in the same way: by choosing a new leaf key

λC
2
, computing the updated nodes on the path from λC

2
to the tree root,

and broadcasting the updated public keys to the group.
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(c) Charlie updates their key in the same way.

Figure 3: Example ART tree creation and updates. We write secret keys and the corresponding public keys at each node except the root,

separated by ∥. Leaf keys are denoted λui , where u is the corresponding identity and i a counter. ι(·) denotes a mapping from group elements

to integers. From any secret leaf key and the set of public keys on its copath, an agent can compute the tree key by repeated exponentiation.

exchange between Alice’s setup key and Bob’s prekey, resulting in

an unauthenticated tree structure. This is the design we analyse in

Section 6.2. A more practical instantiation (discussed in Section 6.3)

is with a strong AKE protocol which provides authentication, in

which case the group key can inherit the authentication properties.

To create a group, Alice broadcasts

(i) the public prekeys (EKi ) and identities (IKi ) she used,

(ii) the public setup key SUK ,
(iii) the tree T of public keys, and

(iv) a signature of (i),(ii),(iii) under her identity key.

Upon receiving such a message and verifying the signature, each

group member can reproduce the computation of the tree key. First,

they compute their leaf key λi = KeyExchange(iki , IKA, eki , SUK).
Second, they extract their copath of public keys from the tree. Fi-

nally, they iteratively exponentiate with the public keys on the

copath until they reach the final key, which by construction is the

shared secret at the root of the tree. (Recall that we call this shared

secret the “tree key” tk, and derive from it the stage key sk.)
We give a pseudocode definition of these algorithms in Figure 6

on page 14, Algorithms 1,2 and 3.

5.2 ART Updates

To achieve PCS, we must be able to update stage keys in a way that

depends both on state from previous stages and on newly exchanged

messages. (Cohn-Gordon et al. [14] prove necessity of this double

dependency.) Since PCS is an explicit goal of ART, it must therefore

support an efficient mechanism for any group member to update

their key.

If e.g., Alice changes her leaf key, other group members can

compute all the intermediate values in the resulting updated tree

using only (i) their view of the tree before the change, and (ii)

the list of updated public DH keys of nodes along the path from

Alice’s leaf node to the root of the tree. This update is efficient and

asynchronous, since Alice can compute (ii) in logarithmic time and

broadcast it to the group with her new leaf key.

Specifically, if at any point Alice wishes to change her leaf key

from λb to λ′b , she computes the new public keys at all nodes along

the path from her leaf to the tree root, and broadcasts to the group

her public leaf key together with these public keys. She authen-

ticates this message with a MAC under a key derived from the

previous stage key. A group member who receives such a message
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KDFπ .sk π .sk′ KDF π .sk′′

π .tk π .tk′

Figure 4: Derivation of stage keys π .sk. When a new tree key π .tk is
computed (as the root of a DH tree), it is combined with the current

stage key to derive a new stage key π .sk′, etc. This “chaining” of

keys is an important ingredient for achieving PCS. Note that the

ART KDF also includes π .IDs and π .T , per Algorithm 2 on page 14.

can update their stored copath (at the node on the intersection of

the two paths to the root). Computing the key induced by this new

path yields the updated group key, and can be done purely locally.

We give a pseudocode definition of these algorithms in Figure 6,

Algorithms 4 and 5.

Stage key chaining In order to achieve PCS, stage keys can-

not be independent—instead, each stage key must depend on both

the recent message exchange and on previous stages. As long as

one of these two sources of secret data is unknown to the adver-

sary, the stage key will be as well. (Cohn-Gordon et al. [14] prove

an impossibility result that no stateless protocol can achieve PCS,

giving a generic attack.) The resulting stage keys form a hash chain

as depicted in Figure 4.

6 SECURITY ANALYSIS

We perform our security analysis in two parts.

First, we give a detailed computational security model for multi-

stage GKE protocols, and instantiate it with an unauthenticated
version of our construction in which the initial leaf keys are de-

rived directly from the setup key and prekeys. This allows us to

capture the core security properties of the key updates, including

PCS, without focusing on the properties of the authenticated key

exchange used for the initial construction. In the unauthenticated

model, we prove indistinguishability of group keys from random

values using game-hopping.

Second, we show that authentication can be provided by deriving

the initial leaf keys from a non-interactive key exchange, whose

security property also applies to the resulting tree key. We give

an example construction using the X3DH protocol [37] (extended

with the static-static DH key to provide more resilience against

bad randomness and the KCI attack described in [31]), and verify

its authentication property using the Tamarin prover, a “security

protocol verification tool that supports both falsification and un-

bounded verification in the symbolic model” [45]. Here, we model

the tree construction as a “black-box” function of the leaf keys.

Remark 1 (On the choice of model). We adopt this approach be-
cause we believe that ART’s complexity is beyond the scope of current
computational proof techniques. In particular, our freshness condition
is already fairly complex, and its interaction with a modern AKE
model with identity key corruptions leads to a state space explosion
in the proof’s cases.

We believe there is valuable future work to be done by increasing
our model accuracy, for example by developing a systematic approach
to covering the distinct cases above, or by adopting an ACCE-style
definition to explicitly capture signatures and MACs.

6.1 Computational Model

We build on the multi-stage definition of Fischlin and Günther

[21], in which sessions admit multiple stages with distinct keys

and the adversary can Test any stage. We extend their definition

to group messaging by allowing multiple peers for each session.

Our model defines a security experiment as a game played between

a challenger and a probabilistic, polynomial-time adversary. The

adversary makes queries through which it can interact with the

challenger, including the ability to relay ormodifymessages but also

to compromise certain secrets. The adversary eventually chooses

a so-called Test session and stage, receiving—uniformly at ran-

dom—either its true key or a random key from the same distribution.

It must then decide which it has received, winning the game if it is

correct. Thus, a protocol secure in this model enjoys the property

that an adversary cannot tell its true keys from random.

Similar key exchange security models generally use Activate and

Run queries for the adversary to interact with the protocol algo-

rithms. With these queries, however, there is no clear way for them

to instruct agents to choose one of multiple possible actions. In or-

der to clarify the distinction, we split the traditional Run algorithm

into PRecv (“protocol receive”, to receive and process a message

from A) and PSend (“protocol send”, to receive instructions from

and then send a message to A).

Apart from this split, we use a standard set of queries and give

their precise details in Table 2 on page 15. The queries comprise

Create, ASend and ARecv (which allow the adversary to inter-

act with honest participants); RevSessKey and RevRandom (which

model corruption of keys used in the protocol); and Test and Guess
(which are used in the security game). Since we work in an unau-

thenticated model, we do not need a RevLTK query.

Sessions and stages Agents may have multiple parallel con-

versations with various peers. We refer to a session as a local, long-

lived communication at a particular agent; for example, Alice may

have a session with peers Bob and Charlie. Sessions at an agentu are

uniquely zero-indexed in creation order; thus for example we can

refer uniquely to Alice’s fourth session by the pair (u, i) = (Alice, 3).

Sessions are updated in stages over time, as messages are ex-

changed and updates processed. Stages of a session are zero-indexed

in time order, so e.g., we denote the initial stage of session (Alice, 3)

by the session identifier or sid (Alice, 3, 0). Later stages of (Alice, 3)

are then denoted (Alice, 3, 1), (Alice, 3, 2), and so on.

Definition 2 (Session state). For agent u, session counter i and
stage counter t , the session state π comprises:

(i) π .u, the identity u of the current agent

(ii) π .ik, the identity key of the current agent

(iii) π .ek, the ephemeral prekeys of the current agent

(iv) π .λ, the leaf key of the current stage

(v) π .tk, the tree key of the current stage

(vi) π .sk, the stage key of current stage

(vii) π .T , the current tree (with ordered nodes) with public keys
stored at each node

(viii) π .idx, the position of the current agent in the group

(ix) π .IDs, an ordered list of agent identifiers and leaf keys for

the group, where the index of each entry is the index of the

corresponding leaf in the tree

(x) π .P̄ , the copath of the current agent
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Where considering multiple distinct session states, we refer to

π = π (u, i, t) as the state of the t th stage of agent u’s ith session.

Values in π roughly correspond to variables in a protocol imple-

mentation. However, for the security definitions we also keep track

of some additional “bookkeeping” state σ . Values in σ are only

used for the security game, and do not correspond to variables in a

protocol implementation.

Definition 3 (Bookkeeping state). For agent u, session counter i
and stage counter t , the bookkeeping state σ of (u, i, t) is an ordered

collection of the following variables.

(i) σ .i , the index of the current session among all sessions with

the same agent

(ii) σ .t , the index of the current stage in the session (initialised

to 0 and incremented after each new stage key is computed)

(iii) σ .status, the execution status for the current stage. Takes

the value active at the start of a stage, and later set to either
accept or reject when the stage key is computed

(iv) σ .HonestKeys, the set of ephemeral keys honestly generated

in the current stage

(v) σ .ℓ[i ′], the number of leaf keys received so far from node i ′

in π .T (when i ′ = π .idx, this is the number of leaf keys that

(u, i) has generated so far).

Definition 4 (sid). By sid(π ,σ ) we mean the triple (π .u,σ .i,σ .t).
Agents are unique, session counters monotonically increase and

session state does not changewithout the stage changing. Therefore,

such a tuple (u, i, t) uniquely identifies states π and σ if they exist.

Definition 5 (Multi-stage key exchange protocol). A multi-stage

key exchange protocol Π is defined by a keyspace K , a security

parameter λ (dictating the DH group size q) and the following

probabilistic algorithms:

(i) (x ,дx ) B$ KeyExchangeKeyGen(): generate DH keys

(ii) Activate(x , ρ, peers) → (π ,σ ): the challenger initialises the
protocol state of an agent u by accepting a long-term secret

key x , a role ρ and a list peers of peers, creating states π and

σ , assigning σ .i to the smallest integer not yet used by u,
and returning (π ,σ )

(iii) PRecv(π ,m) → π ′
: an agent receives a messagem, updating

their protocol state from π to π ′

(iv) PSend(π ,d) → π ′,m: an agent receives some instructions d
and sends a messagem, updating their protocol state from

π to π ′

We set a maximum group size γ , which is the largest group that an

agent is willing to create. This can be application-specific.

6.2 Analysis: Unauthenticated Protocol

We can now analyse our protocol in the model of Section 6.1. In this

analysis we do not consider the use of long-term keys, considering

them instead as used in the first stage. Our freshness criteria allow

the adversary to corrupt the random values or key from any stage,

but rule out trivial attacks created by such corruptions. We define

KeyExchange(π .ik, IDs0, ek, SUK) B SUKek .

That is, our initial leaf nodes are constructed unauthenticated from

initial ephemeral keys. In this setting we do not need the MACs

which are defined in the protocol algorithms, and we do not make

any assumptions here on their security properties.

We define PSend(π ,d) as follows. First, validate that d is one of

“create-group” or “update-key”, or else abort, setting the session

state to reject. Then, if d is “create-group”, execute the initiator’s

setup algorithm from Section 5.1; if d is “update-key”, execute the

initiator’s update algorithm from Section 5.2. These algorithms are

given formally as SetupGroup and UpdateKey in Section 6 on

page 14.

We define PRecv(π ,m) as follows. For a session with σ .t = 0,

validate thatm is of the expected format, and if so then extract from

it the relevant tree data and execute the responder’s setup algorithm

defined in Section 5.1. For a session with σ .t > 0, again validatem
but execute the responder’s update algorithm defined in Section 5.2.

These algorithms are given formally as ProcessSetupMessage and

ProcessUpdateMessage in Section 6 on page 14.

Definition 6 (Matching). We say that two stages with respective

sids (u, i, t) and (v, j, s) match if they have derived the same key

and both have σ .status = accept.

Definition 7 (Freshness of a copath). Let P̄ = P̄0, . . . , P̄ |P̄ |−1
be a

list of group elements representing a copath and let Λ = λ0 . . . λn−1

be a list of group elements representing leaf keys. We say that P̄

is the ith copath induced by Λ precisely if, in the DH tree induced

by Λ, each P̄j is the sibling of a node on the path from λi to the

tree root, and that P̄ is induced by Λ if for some i it is the ith copath

induced by Λ.
We say that a copath P̄ is fresh if both

(i) P̄ is the ith copath induced by some Λ, and

(ii) for each дλj ∈ Λ, both
(a) there exists a stage with sid(π ,σ ) = (u, i, t) such that

(λj , sid(π ,σ )) ∈ σ .HonestKeys, and
(b) no RevRandom(u, i, t) query was issued.

Intuitively, a copath is fresh if it is built from honestly-generated

and unrevealed leaf keys. In particular, the copath’s owner’s leaf

key must also be unrevealed, since it is included in Λ.

Definition 8 (Freshness of a stage). We say that a stage with sid

(u, i, t) deriving key sk is fresh if

(i) it has status accept,
(ii) the adversary has not issued a RevSessKey(u, i, t) query,
(iii) there does not exist a stage with sid (v, j, s) such that the ad-

versary has issued a query RevSessKey(v, j, s) whose return
value is sk, and

(iv) one of the following criteria holds:

(a) the current copath is fresh, or

(b) t > 0 and the stage with sid (u, i, t − 1) is fresh.

Intuitively, a stage is fresh if either all of the leaves in the current

tree are honestly generated and unrevealed or the previous stage
was fresh. The latter disjunct captures a form of PCS: if an adversary

allows a fresh stage to accept, subsequent stages will also be fresh.

Remark 9 (Freshness of the group creator’s first stage). Our fresh-
ness predicate encodes stronger trust assumptions on the initiator’s
first stage than it does on subsequent updates, as discussed in Sec-
tion 3.2.2. Indeed, by criterion 8(iv-b) the creator’s first stage is fresh
only if their first copath is fresh. This copath is induced by the initial
λj , which are added to σ .HonestKeys during the creator’s first stage.
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Thus, by criterion 7(ii-a), if the adversary issues a RevRandom query
against that stage then it will no longer be fresh. This is true until
all the λj from the initial stage have been replaced, at which point
criterion 7(ii) is fulfilled by the stages replacing them.

Capturing strong security properties. Our notion of stage fresh-

ness captures the strong security properties discussed in Section 3,

by allowing the adversary to Test stages under a number of com-

promise scenarios.

Authentication states that if the ephemeral keys used in a stage

are from an uncorrupted stage then only the agents who generated

them can derive the group key. Indeed, for a stage to be fresh either

it or one of its ancestors must have had a fresh copath; that is, one

that is built only from λj which were sent by other honest stages.

Forward secrecy is captured through clause (iv)a and the defini-

tion of the RevRandom query. Indeed, suppose Alice accepts a stage

t and then updates her key in stage t + 1. An adversary who queries

RevRandom(. . . , t + 1) does not receive the randomness from stage

t , which therefore remains fresh. Our model thus requires the key

of stage t to be indistinguishable from random to such an adversary.

PCS is captured through clause (iv)b. Indeed, suppose the adver-

sary has issued RevRandom queries against all of one of Alice’s

session’s stages from 0 to t except some stage 0 ≤ j < t . Absent
other queries, stage j is therefore considered fresh, and hence by

clause (iv)b stages j + 1, j + 2, . . . , t are fresh as well. Our model

thus requires their keys to be indistinguishable from random.

Definition 10 (Security experiment). At the start of the game, the

challenger generates the public/private key pairs of all nP parties

and sends all public info including the identities and public keys to

the adversary. The adversary then asks a series of queries before

eventually issuing a Test(u, i, t) query, for the t th stage of the ith

session of user u. We can equivalently think of the adversary as

querying oracle machines π iu for the ith session of user u.
Our notion of security is that the key of the Tested stage is

indistinguishable from random. Thus, after the Test(u, i, t) query,
the challenger flips a coin b B$ Uniform({0, 1}). With probability

1/2 (when b = 0) it reveals the actual stage key of useru’s ith session
at stage t to the adversary, and with probability 1/2 (when b = 1) it

reveals a uniformly randomly chosen key instead. The adversary is

allowed to continue asking queries. Eventually the adversary must

guess the bit b with a Guess(b ′) query before terminating. If the

Tested (u, i, t) satisfies fresh and the guess is correct (b = b ′), the
adversary wins the game. Otherwise, the adversary loses.

We say that a multi-stage key exchange protocol is secure if the
probability that any probabilistic polynomial-time adversary wins

the security experiment is bounded above by 1/2 + negl(λ ), where
negl(λ ) tends to zero faster than any polynomial in the security

parameter λ. We now give our theorem and sketch a proof.

Remark 11 (Partnering experiment). Our freshness condition is
separated into two parts, indistinguishability and partnering security,
following the style of Brzuska et al. [10]. In this setting, indistinguisha-
bility is proved under the restriction that RevSessKey queries cannot
output the Tested session key, and a separate game is used to show a
form of authentication: that the session key is only derived by sessions
which “should” derive it. In our context, because (i) we are working
in an unauthenticated model, and (ii) all of the values upon which

participants should agree are included as arguments to the session
key KDF, in this case the partnering experiment and its corresponding
security bound mostly consist of administrative bookkeeping. They
appear in Appendix C.

Theorem 12. Let nP, nS and nT denote bounds on the number of
parties, sessions and stages in the security experiment respectively.
Under the PRF-ODH assumption with KDFs modeled as random
oracles, the success probability of any PPT adversary against the
security experiment for our protocol is bounded above by

1

2

+

(nPnSnT
2

)
q

+ γ (nPnSnT
2)γ (ϵPRF-ODH + 1/q) + negl(λ )

where ϵPRF-ODH bounds the advantage of a PPT adversary against
the PRF-ODH game. (This bound depends only on ϵPRF-ODH and not
KeyExchange because it is unauthenticated.)

Proof sketch (full proof in Appendix C). Our proof uses the

standard game hopping technique. We start at our original secu-

rity game and consider (“hop to”) similar games, bounding the

success probability of the adversary in each hop, until we reach

a game that the adversary clearly cannot win with a probability

non-negligibly over 1/2. As all the games’ probabilities are related to

one another, we are able to bound the original success probability

of the adversary.

We make one modification to the protocol for technical reasons:

as specified, ART has agents authenticate group creation messages

with a signature under the identity key, and update messages with

a MAC on a key derived from the stage key. Because these keys

are also used in the key exchange protocol, we cannot achieve key

indistinguishability notions of security. In the computational proof,

we will therefore drop the explicit authenticators from the protocol

and enforce authentication through the freshness condition instead.

The overall structure of the proof is as follows. First, we perform

some administrative game hops to avoid DH key collisions. Then,

we guess the indices (u, i, t) of the sid of the Test session and stage.

If it is not fresh then the adversary loses. If it is fresh, we perform a

case distinction based on which clause of the freshness predicate it

satisfies: either the current copath or a previous stage was fresh.

In the latter case, indistinguishability holds by induction. In the

former case, by definition we know that all of the leaf keys used to

generate the current stage are honestly-generated and unrevealed.

The secret key at a node with child public keys дx and дy is defined

to be ι(дxy ), and thus by hardness of the PRF-ODH problem we

can indistinguishably replace it with ι() of a uniformly randomly

chosen group element. We perform this replacement in turn for

each non-leaf node in the tree, bounding the probability difference

at each game hop with the PRF-ODH advantage. After all non-

leaves have been replaced, the tree key (and hence the stage key) is

replaced with a random group element. The success probability of

the adversary against this final game is therefore no better than 1/2.

By summing probabilities throughout the various cases we derive

our overall probability bound. □

Tightness of the security reduction. As pointed out in [2], a limitation

of conventional game hopping proofs for AKE-like protocols is

that they do not provide tight reductions. The underlying reason

is that the reductions depend on guessing the specific party and
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session under attack. In the case of a protocol with potentially

huge amounts of sessions and users, this leads to an extremely

non-tight reduction. While [2] develops some new protocols with

tight reductions, their protocols are non-standard in their setup and

assumptions. In particular, there is currently no known technique

for constructing a tight reduction that is applicable to the ART

protocol. Nevertheless, even loose bounds are generally considered

useful to increase confidence in the security mechanisms [16, 23].

6.3 Analysis: Authenticated Protocol

Deriving the leaf keys λj from a one-round authenticated key ex-

change protocol allows for authentication of the initial group key,

in the sense that only an agent whose public key was used for setup

can derive the group key. We now give an example of such a con-

struction, and analyse its authentication property with Tamarin.

We use X3DH extended with the static-static DH key as our

one-round key exchange protocol: agents A and B with long term

keys дa and дb and ephemeral keys дx and дy derive a shared key

K = H (дay ,дbx ,дxy ,дab ). Including дab means that knowing y is

not sufficient to impersonate any party to B: an adversary must also

know b. To model the authentication property we abstract out the

tree construction and replace it with a symbolic “oracle”, assigning

to any set of public keys a fresh term representing the group key

they induce. Anyone may query this oracle if they know one of the

corresponding secret keys.

We use Tamarin for mechanised verification. Roughly, we model

a protocol role Alice who accepts initial key exchange messages

representing new group members, adding the derived keys to her

state. At any point she may stop accepting newmembers and derive

a group key via our abstract oracle.

We remark that although using a more advanced authenticated

key exchange protocol for the leaves is a relatively small change, the

resulting security property does not follow trivially. In an earlier

design, we considered a protocol without authentication of the

initial messages. We analysed this earlier design and Tamarin

found an attack in which Alice correctly fetches prekeys, computes

a group key and sends the resulting (abstract) copath to Bob, but

the adversary modifies this message to add a malicious leaf key.

Knowing a leaf key for Bob’s tree, it can then derive the resulting

key even though it is accepted by Bob. The Tamarin analysis made

it clear that for the group key to be authenticated, not just the λj
but also the copath of public keys needs to be authenticated, and

we improved our design accordingly.

We will release the Tamarin models shortly. The model verifies

that the initial group key an agent derives is secret, if none of the

agents they believe to be in the group have been compromised. The

verification is unbounded, allowing an arbitrary number of parties,

instances, and group members. The verification of this security

property proceeds automatically using several helper lemmas, and

takes ∼ 15m on a modern desktop.

7 ART IMPLEMENTATION

We implemented the ART protocol described in Section 5 in Java,

with source code available at the URL [39]. Our goal is to demon-

strate that ART is practical and efficient for groups of a realistic

size. Implementation details are in Appendix D.

We compare directly to DH ratcheting with pairwise connec-

tions, noting that hash ratcheting could be added to ART for a full

comparison against Signal’s Double Ratchet. We do not benchmark

against the sender key design, because it does not achieve PCS.

For our benchmarks, we construct a simple protocol in two

phases around both approaches. The first “setup” phase constructs

a group, such that at its conclusion any member can send a message.

The second “encryption” phase performs an asymmetric update

and then encrypts a random message to the entire group. The ART

instantiation of the encryption phase comprises an update message

and then a single encryption under the group key. The pairwise-

channel instantiation follows theDouble Ratchet algorithm, sending

an update over each channel if the messaging direction changes,

and encrypting the message with the latest message key for that

channel. We use 32-byte messages, since this is enough space to

store an AES-256 data encapsulation key.

We measure wall-clock time and network bandwidth consump-

tion in various scenarios, but our primary metric is the per-person
time/bandwidth cost to send a message. This is the main cost which

is directly and repeatedly visible to users: setup costs, while also

important, are only incurred once, while this cost is incurred each

time a user sends a message. All data are from a 2016 MacBook Pro

with a 3.3 GHz Intel Core i7 and 16 GB of RAM.

7.1 Evaluation

Our results demonstrate that ART is practical for reasonably-sized

groups, with setup and sending both taking a few milliseconds for

groups of size ten and on the order of one second for groups of size

1000. ART’s performance compares favourably to that of pairwise

DH ratcheting, as seen in Figure 5a. This is due to server-side fanout:

ART allows for broadcasting the same (logarithmic) quantity of

data to all peers, while pairwise channels require sending different

constant-sized data to everyone.

Depending on how the broadcast is implemented, this yields

slightly different benefits. In practice, for the messaging context,

broadcast is typically offloaded to server-side fanout. In this case,

the total number of bytes transmitted in a system using ART is

actually larger than for pairwise connections, and recipients must

perform a logarithmic instead of constant-size computation
4
. How-

ever, in the messaging context, the total amount of data sent is

often less important than the message sending latency, which is

directly proportional to the amount of data each agent needs to

send. Because ART allows for server-side fanout, distributing the

sending cost across all parties, it thus allows for significantly lower

sending latency than pairwise.

As seen in Figure 5b, the setup costs of ART and pairwise chan-

nels are comparable, with the former consistently slightly slower

than the latter but with the same asymptotic trend. However, we

do remark that pairwise channels spread a quadratic computational

effort evenly across all group members, while ART requires the

creator to perform a linear amount of work and the responders to

perform a logarithmic amount. Although this overhead is minimal

for the group sizes normally seen in messaging applications, for

4
To send a single ART message, every recipient receives and processes a copy of a

logarithmic quantity of data, while over pairwise channels they receive only one

constant-sized message.
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(b) Total wall-clock setup time to create a group.

Figure 5: Graphs showing metrics from our ART implementation,

compared against pairwise DH ratcheting and averaged over four

runs.We conjecture that the variance is due to the Java JIT compiler.

large-scale use cases the shared quadratic effort may be a significant

performance constraint.

8 EXTENSIONS

We here remark on various possible extensions to our ART design.

In general, because we use standard tree-DH techniques, much of

the existing literature is directly applicable. This means that we

can directly apply well-studied techniques which do not require

interactive communication rounds.

Sender-specific authentication. As early as 1999, Wallner et al.

[52] pointed out the issue of “sender-specific authentication”: in a

system which derives a shared group key known to all members,

there is no cryptographic proof of which group member sent a

particular message. Various works have discussed such proofs; the

most common design is to assign to each group member a signature

key with which they sign all their messages. We remark that it

is easy to extend our design with such a system; in particular,

by rotating and chaining signature keys, we conjecture that it is

possible to achieve this authentication post-compromise.

Dynamic groups. We refer the reader to e.g. [26] for a summary

of previous work on dynamic groups. In general, since we build on

tree-based ideas, our design can support join and leave operations

using standard techniques.

We remark in particular that these operations can be done asyn-
chronously using a design similar to the setup keys in Section 5.1.

Specifically, Alice can add Ted as a sibling to her own node in the

tree by performing an operation similar to the initial tree setup,

generating an ephemeral key and performing a key update which

replaces Alice’s leaf with an intermediate node whose children are

Alice and Ted. With the cooperation of other users in the tree, Alice

can add Ted anywhere, allowing her to keep the tree balanced.

Multiple Devices. One importantmotivation for supporting group

messaging is to enable users to communicate using more than one

of their own devices. By treating each device as a separate group

member, our design of course supports this use case. However, the

tree structure can be optimised for this particular scenario: all of

Alice’s devices can be stored in a single subtree, so that the “leaves”

of the group tree are themselves roots of device-specific trees. Using

“subtrees” in this way allows a user to publish the public key of

their subtree as an ephemeral prekey, enabling all their devices to

be added to new groups as a single unit. Moreover, users do not

need to reveal which device in a subtree triggers an update, thus

improving their privacy guarantees.

Chain keys. Signal introduced the concept of chain keys to sup-

port out-of-order message receipt and a fine-grained form of for-

ward secrecy. Instead of using a shared secret to encrypt messages

directly, Signal derives a new encryption key for each message from

a hash chain. The shared secret derived by our GKE can be directly

used in the same way, for the same benefits.

9 CONCLUSION

In this paper, we combined techniques from synchronous group

messaging with strong modern security guarantees from asynchro-

nous messaging. Our resulting Asynchronous Ratcheting Trees

(ART) design combines the bandwidth benefits of group messag-

ing with the strong security guarantees of modern point-to-point

protocols. Our design is the first to show that post-compromise

security is efficiently achievable for group messaging as well as

pairwise. This paves the way for modern messaging applications to

offer the same type of security for groups that they are currently

only offering for two-party communications.

ART has seen widespread interest from industry, and forms the

basis of two draft RFCs as well as the IETF’s MLS working group

which has adopted it as a starting point. We hope that it will lead

to designs for secure messaging systems which can improve the

guarantees provided to users everywhere.

Our construction is of independent interest, since it provides a

blueprint for generically applying insights from synchronous group

messaging in the asynchronous setting. We expect this to lead to

many more alternative designs in future works.

Acknowledgements. The authors would like to thank Richard

Barnes for pointing out an error in a previous version of the algo-

rithm, and MLS’s many contributors for helpful discussions and

insights.
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A PSEUDOCODE PROTOCOL DEFINITIONS

We include in Figure 6 precise pseudocode for the ART algorithms,

including both “real” state π corresponding to data which might be

kept in the memory of an implementation, and bookkeeping state

σ which is used in the definition of the security game.

B QUERIES IN THE COMPUTATIONAL

MODEL

We give formal definitions of the adversary queries used in our

computational model in Table 2.

C COMPUTATIONAL SECURITY PROOF

Remark 13 (Conditions on ι). The property we need of ι is similar
to the DDH assumption: given randomly sampled дx and дy , it should
be computationally hard to distinguish ι(дxy ) from ι(дzy ) where дz is
uniformly random. This is a PRF-ODH assumption without an oracle
[8]. This property is commonly satisfied. For example, if we assume
that ι() is a random oracle or even the identity function, then this
property holds under the DDH assumption.

Remark 14. Instead of encoding authentication as a restriction on
the sessions against which it is valid to issue a RevSessKey query,
we have separated it out into another security experiment: the indis-
tinguishability experiment simply prohibits any RevSessKey query
which would reveal the key of the Tested session, and the new experi-
ment shows that only sessions which “should” derive the same key as
the Tested session in fact do.

We call the new experiment the partnering experiment, and its
definition follows.

Definition 15 (Partnering experiment). We define the partnering

experiment as follows. At the start of the game, the challenger

initialises all parties as in the security experiment. The adversary

then asks a series ofCreate,ASend orARecv queries, and eventually
terminates. There is no additional model state and no other queries

are permitted.

When the game ends, the adversary wins if and only if for any

session (u, i, t)with (u, i, t).σ .status = accept, any of the following
hold.

(i) disagreement on group members: there exists another stage

(v, j, s) deriving the same key as (u, i, t) butwith (u, i, t).IDs ,
(v, j, s).IDs

(ii) incorrect peer: there exists a stage (v, j, s) deriving the same

key as (u, i, t) with v , u and v < (u, i, t).IDs
(iii) repeated session key: there exists another session (u, i ′, t ′),

i ′ , i , deriving the same key as (u, i, t)
(iv) too many copies of a peer: for any peer identity v appearing

n > 0 times in (u, i, t).IDs, v , u, there exist n + 1 stages

(v, ·, ·) deriving the same key as (u, i, t)

Theorem 16. In ART, when the KDF is modelled as a random
oracle, the probability that any PPT adversary wins the partnering
game is negligible in the security parameter.

Proof sketch. The result follows directly from the fact that

π .IDs is an argument to the KDF when deriving stage keys. If the

KDF is a random oracle its output values do not collide, and thus

equal output values imply equal input values, which is enough to

rule out the cases in the partnering security experiment.

Suppose there exists an adversary A which wins the partnering

security game. By definition, it wins if one of the four cases occurs

and we consider each one in turn.

First, suppose that it wins because there exist two stages (u, i, t)
and (v, j, s) deriving the same key butwith (u, i, t).IDs , (v, j, s).IDs.
The stage key is derived as π .sk B KDF(π .sk,π .tk,π .IDs,π .T ). In
particular, equality of stage keys implies equality of IDs (except

with negligible probability of collisions in the random oracle), so

this case is impossible.

Second, suppose that it wins because there exists a stage (v, j, s)
deriving the same key as (u, i, t) but with v < (u, i, t).IDs. As in
the first case, we know that (u, i, t).IDs = (v, j, s).IDs, and thus v <
(v, j, s).IDs. However, this contradicts the fact that agents always
believe they are in their own groups, so this case is impossible.

Third, suppose that there exist two sessions (u, i, t) and (u, i ′, t ′)
deriving the same key. Recall that each stage derives an ephemeral

key, and each stage’s own ephemeral key is included in its local

key derivation. For the derived keys to be equal, therefore, the

ephemeral keys generated by both agents would have to be equal as

well, which would require a DH collision. This happens only with

negligible probability (formally, we make a game hop to a game

which aborts if there is a DH collision, and bound the difference

between the games; this argument appears in the proof sketch

below), and hence this case is impossible unless i = i ′.
Fourth and finally, suppose that it wins because there exist n + 1

stages (v, ·, ·) deriving the same key as (u, i, t) while there are only
n copies of v in (u, i, t).IDs. Since there are only n copies of v in

(u, i, t).IDs, either
(i) one of the n + 1 must have v .idx not equal to an index of v

in (u, i, t).IDs, or
(ii) two of the stages (v, ·, ·) must “collide”, having the same

v .idx.
In the first case, the disagreement implies that (u, i, t).IDs , (v, j, s).IDs
and hence that the derived keys are distinct, which is a contradic-

tion. In the second case we again use uniqueness of ephemeral keys:

the two colliding stages must have derived distinct ephemeral keys,

at most one of which is the key appearing (u, i, t).IDs, and hence

the stages must derive distinct keys.

We have ruled out all cases, and thus are done. □

Theorem 12. Let nP, nS and nT denote bounds on the number of
parties, sessions and stages in the security experiment respectively.
Under the PRF-ODH assumption with KDFs modeled as random
oracles, the success probability of any PPT adversary against the
security experiment for our protocol is bounded above by

1

2

+

(nPnSnT
2

)
q

+ γ (nPnSnT
2)γ (ϵPRF-ODH + 1/q) + negl(λ )

where ϵPRF-ODH bounds the advantage of a PPT adversary against
the PRF-ODH game. (This bound depends only on ϵPRF-ODH and not
KeyExchange because it is unauthenticated.)

Proof. Security in this sense means that no efficient adversary

can break the key indistinguishability game against the protocol.

Suppose for contradiction that A is such an adversary. By the

definition of the security experiment, it can only win if it issues a

Test(u, i, t) query against some stage t of a session i at agent u such
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Algorithm 1 Asynchronous group setup

1: procedure SetupGroup((IK i , EK i )
n−1

i=1
)

2: // set up a group with n − 1 identity and ephemeral keys of peers

3: π .λ = λ0

$

B DHKeyGen()

4: suk
$

B KeyExchangeKeyGen()

5: for i B 1 . . . n − 1 do // generate leaf keys for each agent
6: λi B ι

(
KeyExchange(π .ik, IK i , suk, EK i )

)
7: add (λi , sid(π , σ )) to σ .HonestKeys
8: Tsecret B CreateTree(λ0, λ1, . . . , λnpeers )
9: π .T B PublicKeys(Tsecret)
10: π .IDs B дπ .ik ∥IK1 ∥ . . . ∥IKnpeers

11: π .EKs B дπ .ek ∥EK1 ∥ . . . ∥EKnpeers
12: x B π .IDs, π .EKs, SUK, π .T
13: m B (x, Sign(x ; π .ik))
14: π .tk B (Tsecret)0,0
15: π .idx B 0

16: σ .ℓ[π .idx] B 1

17: σ .ℓ[x ] B 0 for 0 < x ≤ n
18: π .P̄ B Copath(T , 0)

19: π .sk = 0

20: DeriveStageKey()

21: returnm

Algorithm 2 Helper functions

1: function LeftSubtreeSize(x )
2: // height of the left subtree if there are x elements

3: return 2
⌈log

2
(x )⌉−1

4: function CreateTree(λ0, λ1, . . . , λn ) // tree with n leaves
5: if n = 0 then return (leaf, λ0)

6: h B LeftSubtreeSize(n)
7: (L, lk ) B CreateTree(λ0, . . . , λ(h−1)) // complete left subtree
8: (R, rk ) B CreateTree(λh, . . . , λn−1) // right subtree
9: k B ι

(
д(lk )(rk )

)
10: return (node((L, lk ), (R, rk )), k )

11: function PublicKeys(T B node(L, R), k )
12: if T = ∅ then return ∅

return node(PublicKeys(L), PublicKeys(R)), дk

13: function Copath(T , i ) // where i is the index of the leaf and |T | = #leaves
14: if i < LeftSubtreeSize( |T |) then // i is in the complete left subtree

15: return дT1,1 ∥Copath(T1,0, i )
16: else// i is in the possibly incomplete right subtree

17: return дT1,0 ∥ Copath(T1,1, i − 2
l
)

18: function PathNodeKeys(λ, P̄ ) // leaf key and the copath of public keys
19: nks |P̄ | B λ
20: for j B ( |P̄ | − 1) . . . 1 do

21: nksj B ι
(
(P̄j )

nksj+1

)
22: return (P̄0)

nks
1 ∥nks1 ∥ . . . ∥nks |P̄ |

23: function DeriveStageKey

24: π .sk B KDF(π .sk, π .tk, π .IDs, π .T )
25: return

Algorithm 3 Receiving a setup message as agent at index i

1: procedure ProcessSetupMessage(m)

2: (x, s) B m
3: assert SigVerify(x, s, (x .IDs)0)
4: (π .IDs, π .T ) B (x .IDs, x .T ) // store agent ids and copath in state
5: ek B ephemeral prekey corresponding to EK from π
6: π .λ B ι

(
KeyExchange(π .ik, (π .IDs)0, ek, x .SUK)

)
7: nks B PathNodeKeys(π .λ, π .P̄ )
8: π .tk B nks0 // store initial tree key
9: π .idx = i
10: σ .ℓ[0] B 1

11: σ .ℓ[x ] B 0 for 0 < x ≤ n
12: π .sk = 0

13: DeriveStageKey()

14: return

Algorithm 4 Agent updating their key

1: procedure UpdateKey

2: π .λ
$

B DHKeyGen()

3: σ .ℓ[π .idx] B σ .ℓ[π .idx] + 1

4: add (π .λ, sid(π , σ )) to σ .HonestKeys
5: nks B PathNodeKeys(λ, π .P̄ )
6: x B π .idx∥дnks1 ∥ . . . ∥дnks |P̄ |
7: π .tk B nks0

8: m B (x, MAC(x ;KDF(′mac ′, π .sk)))
9: σ .t B σ .t + 1

10: DeriveStageKey()

11: returnm

Algorithm 5 Processing another agent’s key update

1: procedure ProcessUpdateMessage(m)

2: (x, µ) B m
3: assertMACVerify(x, µ, KDF(′mac ′, π .sk))
4: j, nks B x
5: ν B IndexToUpdate(

⌈
log

2
n
⌉
, 0, π .idx, j )

6: π .P̄ν B Uν // index ν of the copath has been updated in this message
7: nks B PathNodeKeys(π .λ, π .P̄ )
8: π .tk B nks0

9: σ .ℓ[j] B σ .ℓ[j] + 1

10: σ .t B σ .t + 1

11: DeriveStageKey()

12: return

13: function IndexToUpdate(h, n, i, j )
14: if (i < 2

h−1) ∧ (j < 2
h−1) then // both are in the left subtree

15: return IndexToUpdate(h − 1, n + 1, i, j )
16: else if (i ≥ 2

h−1) ∧ (j ≥ 2
h−1) then // both in the right subtree

17: return IndexToUpdate(h − 1, n + 1, i − 2
h−1, j − 2

h−1
)

18: return n // otherwise return index where they differ

Figure 6: Pseudocode descriptions of the algorithms in our ART design. Informal explanations can be found in Section 5. Procedure denotes

subroutines which are used by the protocol algorithms PSend/PRecv and function denotes ones which are not. Procedures operate on and

mutate the agent’s current state π and σ , receive an optional input message from the adversary, and return an optional output message

to it. When sending a tuple, we implicitly uniquely encode it as a bitstring (to avoid type confusion errors), and when receiving one we

uniquely decode it. KeyExchange derives a shared key from secret/public identity/ephemeral keys, i.e. KeyExchange(ikA, IKB, ekA, EKb ) =
KeyExchange(IKA, ikB, EKA, ekB ).
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Table 2: Adversary queries defined in our model. We use u to denote the agent targeted by a query, i to denote the index of a session at an

agent, and t to denote the stage of a session—thus, for example, (Alice, 3, 4) identifies the fourth stage of Alice’s third session. We usem for

messages and b, b′ for bits.

Create(u,v1,v2, . . .vn−1) Given a set of intended peers v1, . . . ,vn−1 (n ≤ γ ), the challenger executes Activate to prepare a new state π ,
prepares a new bookkeeping state σ with σ .i set to the number of times Create(u, . . . ) has already been called,

and initialises a new role oracle with states π and σ for agent u.
ASend(u, i,m) Given a messagem and a session (u, i) with state π , execute π ′ B PRecv(π ,m) and set the session state to π ′

. u
must be a valid agent identifier and Create(u, . . . ) must have been called at least i − 1 times. This query models

sending a message to a session.

ARecv(u, i,d) Given a session (u, i) with state π , execute π ′,m B PSend(π ,d), update the session state to π ′
and return the

messagem. This query models a role oracle performing of the protocol’s actions.

RevSessKey(u, i, t) Given (u, i, t), return π .sk where π is the stage with sid(π ) = (u, i, t) if it exists. This query models keys being

leaked to the adversary and is used to capture authentication properties.

RevRandom(u, i, t) Given (u, i, t), reveal the random coins by u in stage t of session (u, i). This query models the corruption of an

agent, either in their initial key generation (at t = 0) or afterwards (t > 0).

Test(u, i, t) Given (u, i, t), let k0 denote the key computed by user u at stage t of session (u, i), and let k1 denote a uniformly

randomly sampled key from the challenger. The challenger flips a coin b
$

B Uniform({0, 1}) and returns kb .
Guess(b ′) The adversary immediately terminates its execution after this query.

that (u, i, t) is fresh, and subsequently issues a correct Guess(b)
query with non-negligible advantage above 1/2.

By the definition of freshness, (u, i, t) is fresh (Definition 8) pre-

cisely when

(i) it has status accept,
(ii) the adversary has not issued a RevSessKey(u, i, t) query,
(iii) there does not exist (v, j, s) such that the adversary has issued

a query RevSessKey(v, j, s) whose return value is sk, and
(iv) one of the following criteria holds:

(a) t > 0 and session (u, i, t − 1) is fresh, or

(b) the current copath is fresh.

The proof is a case distinction based on adversarial behaviour.

We will also construct a sequence of related games as per the game

hopping proof technique [46]. Let Game 0 denote the game from

the original security experiment. Let Advi denote the maximum

over all adversaries A of the advantage of A in game i . Our goal is
to bound Adv

0
, the advantage of any adversary against the security

experiment.

Recall that due to technical limitations of key indistinguisha-

bility models we are unable to faithfully model the explicit MACs

which ART uses in group creation and key updatemessages. Instead,

for the remainder of the proof we omit them from the protocol,

and specify authentication “by fiat” through our freshness pred-

icate—that is, we rule out attacks in which the authentication of

these messages is violated.

At any point in a run of the game, by construction such a tuple

(u, i, t) uniquely identifies a corresponding pair of states π and σ if

they exist (Definition 4). To simplify our notation, therefore, where

is it more convenient we refer to session and bookkeeping states

directly by their identifiers, so for example by (u, i, t).π .x we mean

π .x of (u, i, t) and by (u, i, t).σ .y we mean σ .y of (u, i, t).
Game 0. This is the original AKE security game. We see that the

success probability of the adversary is bounded above by

1/2 + Adv
0

Game 1. This is the same as Game 0, except the challenger aborts

and the adversary loses if there is ever a collision of honestly gener-

ated DH keys in the game. There are a total number of nP parties in

the game. There are a maximum of nSnT ephemeral DH keys gener-

ated per party. There are therefore a total maximum of nPnSnT DH

keys, each pair of which must not collide. All keys are generated

in the same DH group of order q so each of the

(nPnSnT
2

)
pairs has

probability 1/q of colliding. Therefore, we have the following bound:

Adv
0
≤

(nPnSnT
2

)
q

+ Adv
1

Game 2. This is the same as Game 1, except the challenger be-

gins by guessing (uniformly at random, independently of other

random samples) a user u ′, session i ′ and stage t ′. If the adversary
issues a Test(u, i, t) query with (u, i, t) , (u ′, i ′, t ′), the challenger
immediately aborts the game and the adversary loses.

Additionally, the challenger guesses a corresponding key counter

value ℓ′ and aborts if ℓ′ , (u, i, t).σ .ℓ[(u, i, t).π .idx]. In other words,
the challenger also attempts to guess the number of sent DH keys

from the Test. There are at most nT possible sent keys.

Since the challenger’s guess is independent of the adversary’s

choice of Test session, we derive the bound

Adv
1
≤ nPnSnT

2 Adv
2

Game 3. In this game, the challenger guesses in advance the peer

sessions associated with each leaf key in (u, i, t).π .T (if they exist),

and aborts if both of the following two conditions are met: (i) they

are not unique and (ii) the non-unique sessions have contributed

their own leaf key.

Precisely, the challenger does the following: for each leaf l in
(u, i, t).π .T , it guesses a triple of indices (v ′

l , j
′
l , s

′
l ) ∈ [nnP ] × [nS] ×

[nT] and aborts if there exists a session (v, j, s) with (v, j, s).π .idx =
l and (v, j, s).π .T = (u, i, t).π .T and (v, j, s).σ .ℓ[(v, j, s).π .idx] > 0

but (v ′
l , j

′
l , s

′
l ) , (v, j, s). In other words, for each leaf l in the tree of

the Test session, the challenger tries to guess in advance the agent,

agent’s session, and stage of the session, that have the same DH

tree in session memory contents that the Test session (u, i, t) has,
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and believe that their leaf key is at leaf l , where the peers are no
longer using a setup key from u, and aborts if any are not unique.

Note that it might be the case that no such (vl , jl , sl ) exist, but this
game ensures that if they do exist, they are uniquely defined and

known in advance by the challenger.

Recall that γ denotes the maximum group size. From (u, i, t).π .T
we can derive an ordered list of the peers associated with each leaf

at stage t . Therefore, there are no more than γ − 1 such leafs, so we

will assume the worst case of making γ − 1 guesses.

Uniqueness of the guessed tuples follows from the fact that in

Game 1 we ensured in advance that honestly generated DH values

are unique: the challenger guesses sessions that could possibly have

the same view of the internal tree structure as the Test session. This

means (without loss of generality) that Bob is at leaf 1, Charlie at

leaf 2, etc. For uniqueness of the guessed sessions with the same

view of the internal tree structure as the Test not to hold, this

must mean at least two sessions with the same internal view at a

particular leaf. To have the same view, they must have the same

session actor identity. Also, we only abort if (vl , jl , sl ).σ .t > 0. This

means that for uniqueness not to hold, the same actor must have

generated the same DH value at the leaf l . But this cannot happen
by Game 1.

Additionally, for each leaf l , the challenger guesses a correspond-
ing key counter value lc and aborts if (u, i, t).σ .ℓ[l] , lc . In other

words, the challenger also attempts to guess the number of received

DH keys from each node l in the Test. There are at most nT possible
guesses for each leaf.

The guesses aremade uniformly randomly before the game starts.

This therefore provides the following bound:

Adv
2
≤ (nPnSnT

2)γ−1 Adv
3

Case distinction. At this point in the proof, we do a case distinc-

tion based on adversary behaviour. Consider the event E defined

to be true when the current copath of u at (u, i, t).π .T is fresh. We

now perform a case distinction on E, considering first the case (i)
where E is true, and then the case (ii) where E is false. Our game

hopping sequence splits: we either proceed from case (i) game 4, 5,

6..., or case (ii) game 4, 5, 6...

Case (i).We assume that E holds. By definition of copath freshness,

it therefore holds that the copath is the ith copath induced by some

Λ, where each λj ∈ Λ was output by an honest stage against which

no RevRandom query was issued. Without loss of generality, we

define λ1 to be the leaf key of u in (u, i, t).π .T .
Case (i), Game 4.

Recall that the parent of the first two leaf nodes, λ1 and λ2, is

defined as дλ1λ2
. The key derived from this is defined as ι(дλ1λ2 ).

We define a new game in which, in the local stage key computation

of the actor of the Test session and stage and any match (which is

unique by the previous game), ι(дλ1λ2 ) is replaced with ι(дz ) for
uniformly randomly chosen DH group exponent z, and all subse-

quent computations upwards along the path of the tree use ι(дz )

instead of ι(дλ1λ2 ).

This is a game hop based on indistinguishability [46]. In general,

we consider a hybrid game and a distinguisher D that interpolates

between the two games. The distinguisher D that distinguishes

between distributions P1 and P2, when given an element drawn

from distribution P1 as input, outputs 1 with probability Adv
3
+ 1/2,

and when given element drawn from distribution P2, outputs 1 with

probability Adv
4(i).1+

1/2. The indistinguishability assumption then

implies that the difference in negligible.

We prove that game 4 is indistinguishable from game 3 under

the PRF-ODH assumption. Precisely, we aim to show that if a dis-

tinguisher D could efficiently distinguish between the games, then

it could be used to break the PRF-ODH assumption. This implies

that Adv
4
≤ Adv

3
+maxD ϵD , where ϵD is the probability that a

PPT distinguisher D correctly distinguishes between Games 3 and

4(i).1.

It remains to bound ϵD , whichwe dowith a reduction toPRF-ODH.
Specifically, suppose D is such a distinguisher. We construct an

adversary A(D) against the PRF-ODH game as follows: Given

PRF-ODH challenge дx ,дy , ι(дz ) and the challenge of determining

whether or not z = xy, A(D) simulates the hybrid game as the

challenger in a fully honest way except it inserts дx = дx1 ,дy = дx2

and ι(дz ) = ι(дx1x2 ).

Our constructed PRF-ODH adversary is given ι(дz ), which by

construction is the node key at the parent of Alice’s and Bob’s leaf

nodes. It can therefore replace this node key with ι(дz ) and, using
this secret, compute all public DH intermediate keys up the tree

that depend on ι(дz ), including the tree key at the top of the tree.

This game is a hybrid game between Game 3 and Game 4, with

equal probability of either. The simulator answers all queries in

the honest way, except in the send/create queries where it needs to

insert these DH values. In particular, since this is case (i), the leaf

keys are honestly sent and from game 3 the challenger knows which

agent’s session and stage’s they are generated at in advance, as well

as which generated DH this will be. In other words, the challenger

knows (v, j, s) and the associated counter for how many DH keys

have been generated (v, j, t).σ .ℓ[(v, j, t).π .idx]. So if it correctly

guesses agent v , session j and stage s without aborting as in Game

3, then instead of honestly answering a ASend(v, j, t) query when

the ℓth DH key is due to be sent in the session (v, j, s) to the Test
(or Create query if its the initial DH key) by running the protocol

to generate an ephemeral key, the challenger instead inserts the

PRF-ODH challenge value. This value is unique as there is only one

sent per query so the challenger knows where to insert it. Precisely,

the challenger does not follow the protocol to honestly generate a

DH key, and instead uses the one provided in the PRF-ODH game.

Because of the earlier game hops the simulator knows where

to inject the replaced values in the simulation, and because of

the freshness predicate they are honest. Similarly, because of the

freshness predicate it never has to answer a RevRandom query

against either of these two values, and it can honestly simulate any

other reveal queries. Therefore the simulation is sound.

In Game 1 we ensured no DH keys collide, and with probability

1/q the PRF-ODH challenger may provide challenge valuesдx = дy ,
in which case the simulator must abort. Fortunately this happens

with negligible probability. Thus, we have the bound:

Adv
3
≤ Adv

4
+ ϵPRF-ODH + 1/q

We will now iteratively repeat this game hop for all other fresh

DH values in the tree (u, i, t).π .T . Because we are in case (i) and

know from the previous game hops were to insert the PRF-ODH
challenge DH values, we will therefore conclude that each node key

in turn is indistinguishable from random. Repeating this process,
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the eventual conclusion will be that the secret at the root of the

tree is also indistinguishable from random.

Case (i), Game 4+k where 1 ≤ k ≤ γ .We repeat the replacement

performed in the previous game, but for the next pair of sibling

nodes. Again, detecting this replacement would require violating

PRF-ODH. At this point, the tree key is no longer a function of

the leaf keys—instead, it depends on the keys at the nodes whose

children are leaves, each of which has been replaced by a random

value, unknown to the adversary. We iteratively replace DH keys

using the PRF-ODH assumption, starting along the base of the tree

and then working our way up until eventually all DH keys in the

tree, including the final group key, are independent of each other.

It is trivially impossible for the adversary to do any better than

guessing in the final game. Given a group size of n, we never need
to do more than n ≤ γ such game hops due to our tree structure.

Thus

AdvnP ≤ γ (ϵPRF-ODH + 1/q) + 0

Case (ii), Game 4. We now proceed with case (ii), restarting our

game hopping sequence from Game 3. Assume now that E does not

hold, and thus the copath in the session state of the Tested stage is

not fresh. Since the Tested stage must be fresh, the first disjunct of

the final clause of the freshness predicate must hold: that t > 0 and

the stage with sid (u, i, t − 1) is fresh.

We proceed by induction on the stage number of the Test session.
Our inductive hypothesis at step k is that no adversary can win with

non-negligible advantage if the tested session has stage number

less than or equal to k . The base case k = 0 holds by the above

argument: case (ii) cannot apply since the freshness predicate in

case k = 0 requires E to occur.

Assume now that the inductive hypothesis is true for stage t ≤
k−1; we show that it is also true for t = k . As before, if the adversary
queries Test(u, i, t), then this means stage t must be fresh. Let RO
be the event that the adversary queried the random oracle and

received the key of the Test stage as a reply.
If RO does not hold, then since since the adversary is not allowed

to reveal the key because of the freshness predicate, the only option

is for a key replication attack. We can perform a single game hop

in which we replace the stage key with a random value. Since the

random oracle response is by construction a random value, this

replacement is indistinguishable and the resulting advantage for

the adversary is zero.

Thus, we conclude that RO must hold. Since random oracle

produce collisions with only negligible probability, it must be the

case that the adversary queried the KDF on the same input that

u did on the stage key computation in the stage with sid (u, i,k).
In particular, it must have queried the random oracle on the stage

key as that is one of the inputs. This adversary therefore has a

distinguishing advantage against the previous stage, (noting that

this is case (ii) so it is fresh by definition). This contradicts our

induction hypothesis.

Specifically, given such an adversary A we can construct an

adversary A ′
which wins with non-negligible probability against

stage k − 1. A ′
simply simulates A without changing any values

and recording all random oracle queries; the simulation is thus

trivially faithful. When A issues a Test(u, i,k) query, A ′
issues a

Test(u, i,k − 1) query and compares the resulting key to all of A’s

random oracle queries. If it appears in a random oracle query, A ′

outputs b = 0; otherwise, it outputs b = 1. By construction, the

stage with sid (u, i,k − 1) is fresh and its stage key is an argument

to the random oracle, so the advantage of A ′
is non-negligible.

This contradicts our inductive hypothesis that no adversary can

win against a stage less than k with non-negligible probability; the

result thus holds in case (ii) by induction. □

D FURTHER MEASUREMENT DETAILS

Our prototype implementation is available from [39]. Our algorithm

is implemented in the file ART.java, with the other files primarily

providing the required container and utility classes.

For our Diffie-Hellman group operations we use a Java imple-

mentation [47] of Curve25519 [3]. Encryption and decryption of

messages uses Java’s native AES-GCM support, at 128 bits to allow

running the example without the Java runtime patch necessary for

256 bit keys. We use HKDF with SHA256 for all key derivations.

We use the X3DH key exchange algorithm for our initial au-

thenticated key exchanges in both algorithms, extended to include

the static-static DH key. Encryption keys for messages (“message

keys”) are taken straight from the stage keys of each implementa-

tion, instead of using the “chain keys“ approach used in the Double

Ratchet algorithm. We made this choice because ART does not

include hash ratcheting in its raw form, although we note that this

could be added to construct an ART-Double Ratchet.

We pass messages between sessions as byte arrays in memory, to

allow us to measure relative network costs without actually trans-

mitting them over a network device. We use the Apache Thrift [48]

library and toolchain to serialise messages, to mimic as closely as

possible an actual wire format used for RPC.
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