
Security Analysis of Processor Instruction Set Architecture
for Enforcing Control-Flow Integrity

Vedvyas Shanbhogue
 Intel Corporation
 Austin, TX, USA

 vedvyas.shanbhogue@intel.com

Deepak Gupta
 Intel Corporation

 Hillsboro, OR, USA
 deepak1.k.gupta@intel.com

Ravi Sahita
 Intel Corporation

 Hillsboro, OR, USA
 ravi.sahita@intel.com

ABSTRACT
Intel has developed Control-flow Enforcement Technology (CET)
[27] that provides CPU instruction set architecture (ISA)
capabilities to defend against Return-oriented Programming (ROP)
and call/jmp-oriented programming (COP/JOP) style control-flow
subversion attacks. This attack methodology uses code sequences
in authorized modules with at least one instruction in the sequence
being a control transfer instruction that depends on attacker-
controlled data either in the return stack or in a register/memory
for the target address. Attackers stitch these sequences together by
diverting the control flow instruction (e.g. RET, CALL, JMP) from
its original target address to a new target (via modification in the
data stack or in the register or memory used by these instructions).
This paper describes CET security objectives, threat model and
various architectural design choices to ensure that the design meets
the security objectives. We conclude the paper with performance
data and related work in this domain.

CCS CONCEPTS
• Security and privacy → Security in hardware → Hardware
security implementation; • Security and privacy →
Intrusion/anomaly detection and malware mitigation.

KEYWORDS
Control-flow integrity, control flow subversion attacks, shadow
stack, ROP, JOP, COP.

ACM Reference format:
Vedvyas Shanbhogue, Deepak Gupta and Ravi Sahita. 2019. Security
analysis of processor instruction set architecture for enforcing control-flow
integrity. In Proceedings of the 8th International workshop on Hardware
and Architectural Support for Security and Privacy (HASP’ 19), June 23,
2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3337167.3337175

1. INTRODUCTION
Introduction of security features like No-Execute [1] to prevent
data execution (DEP), supervisory mode execute prevention
(SMEP) [1], supervisory mode access prevention (SMAP) [1], etc.
have pushed the state of art of exploitation of software to code-
reuse attacks based exploitation techniques like Return-Oriented
Programming (ROP) [2], Jump-Oriented Programming (JOP) [3]
and Call-oriented programming (COP) [4]. Defending against
such exploits requires prevention of malicious attempts to invoke
control flows that are not part of the program’s control-flow graph.
Control- flow Integrity (CFI) [3, 16] proposed that a program
should only execute control flows that are programmed in by the
programmer. Specifically, CFI requires that an indirect branch
should only target instructions in the program that have been
designated as targets of indirect branches. Consequently, a forward
branch through an indirect call or jump should only transfer control
to valid targets for calls and jumps in the program and a return
instruction should only transfer control to the call site that initiated
the call to the procedure being returned from.
Intel Control-flow Enforcement Technology (CET) is a CPU
instruction set extension to implement CFI and defend against
ROP/JOP style control-flow subversion attacks. It adds the
following capabilities to the Intel instruction set architecture:

• Shadow Stack – return address protection to prevent Return

Oriented Programming
• Indirect branch tracking – free branch protection to enforce

security properties on Jump/Call Oriented Programming.

CET shadow stack is a second stack used exclusively during
control transfer operations to store a copy of the return address
pointer. The shadow stack is write protected using a new extension
to page permissions to prevent software-originated unintended
writes to the shadow stack. The CALL instruction pushes a copy of
the return address on the shadow stack in addition to the legacy
behavior of pushing the return address on the data stack. The RET
instruction is modified to pop the return address from both stacks
and if the two return addresses do not match, causes an exception
and thus prevents and reports attempts to modify the return address
maliciously (or in error).
CET Indirect branch tracking introduces a new instruction
ENDBRANCH that is used to mark valid code targets for indirect

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
HASP’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
978-1-4503-7226-8/19/06...$15.00
https://doi.org/10.1145/3337167.3337175

HASP’19, June, 2019, Phoenix, Arizona USA Vedvyas Shanbhogue et al.

call and jumps in the program. If an indirect call or jump targets an
instruction other than ENDBRANCH, the processor generates an
exception and thus prevents and reports attempts to redirect control
flow to unintended code targets in the program. The approach
taken here is a coarse-grained forward branch enforcement that can
be further restricted using software instrumentation and compiler
techniques.
CET introduces a new fault-type exception – control protection
(#CP) – to notify privileged software when control flow violations
are detected. The #CP exception also reports an error code to
notify the reason to the exception handler.

1.1. Adversary model and CET objectives
We enumerate the following threats (written as adversary
capabilities) to define the scope of mitigations we aim to provide
with CET:

• T1: Can find software vulnerabilities that allows the adversary

to read and write anywhere in software-accessible memory.
• T2: Can discover the complete layout of the address space

(e.g. where stacks, heaps, and images are mapped).
• T3: Can repeat memory reads and writes at will.
• T4: Can produce stimulus that make code take different paths

and observe the state of the program including the stack state
in these paths.

• T5: Can send data to a “computation server” to compute
payload needed for subsequent reads/writes.

• T6: Can perform control transfers to existing code to execute
(code re-use) in order to change state of processor registers.

Following assumptions were made about constraints on the
adversary:

• R1: Cannot add new code without verification and all existing

code is read-only and not modifiable (e.g. W ⊕ X policy).

While defining the technology, we enumerate following design
goals and constraints:

• D1: Must provide protection mechanism for new architectural

assets (i.e. new hardware register, memory) against code re-
use and memory safety errors.

• D2: Must be applicable to CPU-enforced privilege levels
(user/supervisor)

• D3: Must be applicable to CPU modes used by commodity
software, such as 32/64-bit, hypervisor, system management
mode, enclaves, etc.

• D4: Must ensure no loss of control-flow enforcement
protection occurs at transitions points between modes and
context switches.

• D5: Must have minimal overheads on performance, memory
usage and code size growth.

• D6: Avoid embedding programming language specific
constructs in the ISA

• D7: Provide only the necessary (minimal) capabilities for
software to be able to impose instruction alignment and return
address protection for language and usage-specific policies.

• D8: Preserve the stack and function call ABI
• D9: Must not place any restrictions on common software

constructs like tail calls, co-routines, etc.

In section 2, we describe the security model of the shadow stack
capability and the new instructions introduced to manage the
shadow stack. In section 3, we describe the security model of the
indirect branch tracking capability. In section 4, we discuss the
speculation-safe hardening properties of CET. In later sections, we
present the performance evaluation, security metrics, and discuss
related work, with conclusions.

2. CET SHADOW STACK
A shadow stack is a second stack used exclusively for control
transfer operations to store and to retrieve the return address
pointers. The shadow stack is distinct from the ordinary data stack,
and holds no data.

2.1. SSP register encoding and type safety
CET defines a shadow stack pointer (SSP) register that contains the
linear address of the top of the current shadow stack. Since SSP is
a new architectural register and must be protected (per design goal
D1) against an adversary that can use code re-use capability (per
threat T6) to change it. Thus opcode encoding does not allow SSP
register to be directly encoded as a source, destination or memory
operand in instructions other than shadow stack management
instructions. This reduces potential useful code re-use gadgets in
program memory and helps mitigate techniques like stack pivoting
used to subvert control flow.
CET enforces type safety by enforcing that values that are
generated as part of CET instructions or implicit ISA flows (e.g.
privilege transitions) are consumed only by complementary CET
instructions or complimentary ISA flows. Examples of such
enforcement are cited in section 2.3, 2.4, 2.7 and 2.8.

2.2. Shadow stack for each privilege and exception
delivery

One of the design goals of CET has been to provide support for
control flow enforcement at each privilege level of processor (D2,
D3 and D4). The x86 segmentation protection mechanism supports
four privilege levels, numbered from 0 to 3. The greater numbers
mean lesser privileges. Most operating systems running on x86
architecture only use two privilege levels where the operating
system kernel and its services execute at privilege level 0 and the
applications execute in user mode at privilege level 3. CET
considers programs executing at privilege level 0, 1 and 2 to be
equally privileged and supervisory programs and thus when CET is
enabled for supervisor mode it is active at privilege levels lower
than 3. In the x86 architecture, call gates facilitate controlled
transfer of program control between different privilege levels and
when a call gate is used to transfer control to a more privileged
level, the processor automatically switches to the data stack for the

Security analysis of processor instruction set architecture for
enforcing control-flow integrity HASP’19, June, 2019, Phoenix, Arizona USA

destination privilege level using the pointers to the privilege level
0, 1 and 2 stacks stored in the Task-State Segment (TSS) data
structure of the current running task.
Intel 64 bit architecture supports an interrupt stack table (IST) to
provide a method for specific interrupts (such as NMI, double-
fault, and machine check) to always execute with a known good
stack. The IST mechanism provides up to seven IST pointers that
can be selected using a 3-bit IST index from the interrupt-gate-
descriptor (IDT), which when not 0, is used to select the pointer to
the data stack to switch to when delivering those specific
interrupts.
CET extends this automatic stack switching to also switch the SSP
when CET is enabled in supervisor mode. The SSP for the
privilege level 0, 1 or 2 is obtained from one of following new
model specific registers (MSRs) depending on the target privilege
level:

• IA32_PL2_SSP, if transitioning to ring 2
• IA32_PL1_SSP, if transitioning to ring 1
• IA32_PL0_SSP, if transitioning to ring 0

The collection of these three MSRs is referred to as
IA32_PL0/1/2_MSR in following sections. When a stack switch
occurs through IST mechanism and CET is enabled at privilege
level of the interrupt handler, a new SSP is selected using the IST
index from a table of SSPs pointed to by the
IA32_INTERRUPT_SSP_TABLE_ADDR MSR defined by CET.
CET treats the OS kernel as being in the trust boundary of the user
mode programs. Thus CET does not attempt to restrict any control
transfers initiated by the OS to user mode programs. In x86
architecture the ring 0 is the most privileged ring and can invoke
privileged instructions. Rings 1 and 2 cannot invoke privileged
instructions however they have same memory access privileges as
ring 0. Since they have equal privilege for memory accesses the
CET architecture treats them as being in the “same privilege
class”. The architecture therefore enforces the control transfers
between these privileged rings through shadow stacks and indirect
branch tracking when CET is enabled for supervisor mode.

2.3. CALL operation
In the Intel 64 and IA-32 architecture (x86 architecture), the near
CALL instruction allows control transfers to local procedures
within the current code segment. The far call allows control
transfer to procedures in a different code segment and can be used
to access operating system procedures. A far call also allows
transitioning to a 32-bit code segment to allow legacy (32 bit)
binary to co-exist with 64-bit binary in 64-bit mode. The near
CALL instruction pushes the Return Instruction Pointer on the data
stack. When CET is enabled, the near CALL additionally pushes
the Return Instruction Pointer on the shadow stack. The far CALL
instruction, or an interrupt or exception flow, pushes the Code
Segment (CS) selector and the Return Instruction Pointer on the
data stack of the called procedure. When CET is enabled, the far
CALL additionally pushes the CS, the Linear Instruction Pointer
(LIP is computed by the CPU as the base of the Code Segment
descriptor plus the logical address value of the Return Instruction
Pointer) and the SSP at the time of initiating the far transfer on the

shadow stack of the called procedure. The pushes on the shadow
stack are always performed as 8 byte pushes. Pushing the previous
SSP on the shadow stack prevents a far CALL from being paired
with a near return as the addresses on the shadow stack are non-
executable (enforcing type safety). For these far transfers, the
choice to store the Linear Instruction Pointer on the shadow stack
instead of the logical address Return Instruction Pointer was made
to ensure detection of conditions where the base address of the
Code Segment descriptor may have been changed between a far
CALL and the matching far RET. When the far transfer to higher
privilege level originates in user mode i.e. privilege level 3, the
processor switches both - the data and shadow stack to that of the
new privilege level. The user mode shadow stack pointer is saved
to into a new MSR called IA32_PL3_SSP. The processor does not
push any return addresses on the new supervisor shadow stack.
This follows the trust model where the user level programs have
the supervisor in their trust boundary, so the OS can change the
address to subsequently return to or the SSP of the user space
program. If the far transfer is to 32-bit mode the processor causes a
general protection fault if the SSP is not in the lower 4 GB of the
linear address space. By faulting and not implicitly truncating the
SSP to 32 bits the CET architecture avoids any unintended or
malicious aliasing to another shadow stack. A far transfer in the
x86 architecture may or may not involve a privilege change. When
there is a privilege change it is associated with a stack switch and
the processor requires the new stack to be 8 byte aligned. When
there is no privilege change, the processor prior to pushing the
return address information on the shadow stack aligns it to the next
8 byte boundary and zeroes out any alignment hole created to
avoid unknown data from appearing on the shadow stack. The
section 2.7 discusses stack switching on privilege changes.
Alignment of shadow stack to 8 byte boundaries and saving the
return address information in 8 byte elements avoids type
confusion when transitioning between 64-bit and 32-bit modes.

2.4. RET/IRET operation
The RET instruction allows near and far returns to match the near
and far versions of the CALL instruction. The IRET instruction
returns program control from an interrupt or exception handler to
the interrupted procedure. When CET is enabled, the near RET
instruction pops the return address from both the shadow stack and
the data stack. If the return address values popped from the two
stacks are not equal then the processor causes a control protection
exception (#CP) with error code “NEAR-RET”. When CET is
enabled, the far RET and IRET (except when transition to user
space) pops the return-SSP, LIP and the CS from the shadow stack.
If the CS and LIP do not match the return address as determined by
popping the CS and Return Instruction Pointer from the data stack,
the processor causes a #CP exception with error code “FAR-
RET/IRET”. The error code provided with the resulting #CP
exception helps identify the type of call frame that caused the fault.
If the return was successful then the SSP is set to the return-SSP. If
a RET or IRET instruction is used to return to user space i.e. to
privilege level 3, the processor establishes the SSP for the user
mode using contents of the IA32_PL3_SSP MSR. No return
address verification is done. The OS is allowed to switch shadow

HASP’19, June, 2019, Phoenix, Arizona USA Vedvyas Shanbhogue et al.

stacks and return to any address in user mode. This follows the
trust model where the user level programs have the OS in their
trust boundary.

2.5. Write protecting the shadow stack
Adversary model for CET assumes that attacker has capabilities to
perform read and writes at will innumerable number of times (T1
and T3) using some memory safety bug. CET further assumes that
attacker has computational capabilities (T5) to make intelligent
decisions on exercising memory writes. CET addresses attempts to
corrupt the shadow stack through malicious writes by exploiting
vulnerabilities like buffer overflows, use-after-free, etc. by
extending the page tables such that pages mapped as shadow stack
pages are not writeable by software use of memory store
instructions. The CPU enforces that software writes to the shadow
stack occur only in the context of a CALL instruction and new
CET ISA for shadow stack management invoked by software.
Control transfer instructions/flows and shadow stack management
instructions perform loads/stores to the shadow stack. Such
load/stores from control transfer instructions and shadow stack
management instructions are termed as shadow_stack_load and
shadow_stack_store (or collectively as shadow_stack_accesses;
enforcing type safety in accesses) to distinguish them from
load/store performed by other instructions like MOV, XSAVES, etc
that are performed by software.

2.5.1. x86 paging protections. CET extends x86 paging
architecture to allow pages to be mapped in linear address space as
shadow stack pages. A page mapped as not-writeable-but-dirty i.e.
W=0, D=1 is treated by the CPU as a shadow stack page. By using
this software-unused encoding of writeable and dirty attributes we
avoid introducing new paging attribute bits. The chosen page
control bit encodings for shadow stack mappings also ensure that
shadow stack pages are not writeable and hence naturally protected
from unintended or malicious software writes. CET further
enforces that shadow_stack_accesses must be to shadow stack
regions by causing a page fault if the shadow stack addresses are
not mapped to shadow stack pages. This helps detect any attempts
to pivot the SSP to writeable memory or to overflow/underflow the
SSP beyond the bounds of the current active shadow stack. CET
also enforces that shadow_stack_accesses from supervisor mode
must be to shadow stacks mapped as supervisor pages i.e. using a
user shadow stack in supervisor mode is disallowed by the CPU.
Lastly, CET enforces that paging write protection (CR0.WP)
cannot be disabled when CET is enabled to prevent unintended
writes to shadow stack by disabling paging write protection.

2.5.2. Second level page table protection. OS/supervisor shadow
stacks can be write-protected using the extended page tables (EPT)
established by a virtual machine manager (VMM) by using a new
EPT attribute “supervisor shadow stack” to designate the (guest)
physical pages used by the OS for shadow stacks as supervisor
shadow stack pages. When this functionality is enabled
shadow_stack_accesses to supervisor shadow stacks are only
allowed to (guest) physical pages mapped as “supervisor shadow
stack pages” under EPTs by the VMM. Shadow stack writes to

pages mapped as “supervisor shadow stack” pages in EPT do not
require the EPT to provide write permission. This allows a VMM
to write protect OS/guest supervisor shadow stack pages from CPU
initiated stores as well as device DMA accesses (when the EPT is
shared by the IOMMU).

2.6. Shadow stack tokens
As stated earlier direct manipulation of SSP register using move
instruction is not supported by CET. To allow multiple execution
context within application programs and in operating system, CET
provide mechanisms for saving and restoring shadow stack pointer
(i.e. SSP register) to and from memory without compromising
design goals and security properties. In order to establish a new
shadow stack in SSP register while continuing to provide
guarantees against memory safety bugs, the following properties
are enforced by the CPU:

• Secure storage: Memory storing shadow stack pointer must

be protected against memory safety errors (T1 and T3).
• Immutability: Even if an adversary is able to obtain a write

primitive to this secure storage, they shouldn’t be able to
write any value of their choice. If an adversary changes the
pointer value, using that value should result in a processor
fault and notify the operating system of that violation.

• One time use: Pointer stored in memory to establish new
shadow stack can be used once and further usage should result
into a fault. This prevents any possibility of two execution
contexts (e.g. two program threads) establishing same shadow
stack.

As described earlier, CET shadow stack memory access-control
satisfies the property of read-only permissions while still allowing
stores using shadow_stack_store primitive in selected architectural
flows. This access-control model allows CET to use shadow stack
memory itself as secure storage for shadow stack pointers. To
enforce immutability, CET enforces that shadow stack pointer
itself should be a function of the address on which it is stored. As
part of the save sequence, shadow stack is first aligned on 8 byte
boundary and then shadow stack pointer is saved on it. To further
harden type checking and one time usage property, CET uses
lower 2 bits of the stored shadow stack value for keeping extra
information to track state of pointer (see section 2.5 and 2.6 for
usage of lower 2 bits). This results in saving the shadow stack
pointer in a specific format - collectively these stored shadow stack
pointer formats are called as ‘shadow stack tokens’.
Section 2.7 and 2.8 describes different form of shadow stack
tokens and their usage in shadow stack switching mechanisms.

2.7. Processor initiated stack switch
The OS is required to program the IA32_PL0/1/2_MSRs to point to
the bottom of the supervisor shadow stacks of the current task and
to ensure that no two logical processors have the MSRs pointing to
the same shadow stack. However, the operating system may
context switch IA32_PL0/1/2_SSP MSRs and save them in
memory where they are susceptible to being modified (adversary
capabilities T1 and T3). Likewise shadow stacks pointers in

Security analysis of processor instruction set architecture for
enforcing control-flow integrity HASP’19, June, 2019, Phoenix, Arizona USA

memory referenced by the IA32_INTERRUPT_SSP_TABLE MSR
may be modified. The modifications may be an attempt to point
these MSRs to an address beyond the bottom of the shadow stack
and thereby create bad return addresses on the shadow stack. The
modifications may also be an attempt to point them to the shadow
stack that is active on another logical processor such that return
addresses pushed by one logical processor are consumed by
another (threats T2 and T4). To overcome the issues mentioned
above, CET implements a token check mechanism to detect such
modifications and ensure that the shadow stack starts out empty
and that the same shadow stack cannot be activated simultaneously
on two logical processors. Supervisor shadow stacks must be
constructed with a token at the bottom of the shadow stack called
the “supervisor shadow stack token”. This token is a 64-bit value
formatted as follows:

• Bit 63:3 – 8 byte aligned linear address of the token itself.
• Bit 2:1 – reserved. Must be zero.
• Bit 0 – Busy bit. The busy bit when 1 indicates that the

corresponding shadow stack is active on some logical
processor, thus enforcing the one time use property.

To switch stack on transition to higher privilege level, the
processor performs the following steps:

• Loads the “supervisor shadow stack token” from the address

in IA32_PL0/1/2_SSP.
• Verifies the busy bit and all reserved bits in the token is 0.

This prevents a given shadow stack from being made active
on two logical processors simultaneously.

• Verifies that the address programmed in the MSR matches the
address in the “supervisor shadow stack token”.

• If the checks 2 and 3 are successful then the busy bit in the
token is set to 1 and the processor switches the SSP to the
value specified in the IA32_PL0/1/2_SSP MSRs.

The load in step 1 and store in step 4 are done as shadow stack
accesses to ensure that the address points to a page mapped as a
shadow stack page. Step 3 ensures that the address in the MSR is
pointing to the bottom of the shadow stack i.e. an empty shadow
stack. This check relies on the property that an 8 byte aligned
location on the shadow stack having a value that is the address of
that 8 byte location never occurs on a shadow stack except when
created by the OS by storing this “supervisor shadow stack token”.
The steps 1 through 4 are done as an atomic transaction to avoid
TOCTOU issues. If the checks 2 or 3 fail then the busy bit is not
set and a general protection (#GP) exception is caused.
Figure 1 illustrates this token check to make the shadow stack
active. In this example, the IA32_PL0_SSP MSR points to address
0xFF8. The token check loads the 8 byte token at address 0xFF8
and verifies that busy bit is 0 and that the address in the token
matches the address in the MSR. As the token check succeeds, the
busy bit in the token is set to 1 and the SSP is now updated to point
to 0xFF8 making this shadow stack active, Next push on this
shadow stack saves at the address 0xFF0.

Figure 1: Processor initiated shadow stack switching

When the processor returns to a lower privilege level it switches to
the shadow stack of the lower privilege level. The current active
shadow stack is made free by the far RET/IRET instructions by
performing following steps:

• Loads the “supervisor shadow stack token” from the address

in SSP
• Checks if the busy bit is 1 and all reserved bits are 0
• Checks if the address programmed in “supervisor shadow

stack token” matches SSP
• If the checks 2 and 3 are successful then clears the busy bit in

the token

The load in step 1 and store in step 4 are done as a shadow stack
accesses to ensure that the address points to a page mapped as a
shadow stack page. The steps 1 through 4 are done as an atomic
transaction to avoid TOCTOU issues. The checks 2 and 3 when
successful indicate that the SSP is at the bottom of the shadow
stack i.e. there are no valid call frames on the shadow stack. If
there are valid call frames on the shadow stack then the shadow
stack remains busy.

2.8. Shadow stack management instructions
Shadow stack management instructions provide controlled and safe
ways to manipulate SSP to implement common software constructs
like stack unwinding, thread switching, etc. The following
descriptions group the instructions by their typical usage.

2.8.1. Stack unwinding.
Like the data stack, the shadow stack grows from high to low
address and thus unwinding the shadow stack involves
incrementing the SSP. To support unwinding the shadow stack, the
RDSSP instruction may be used to read the contents of the SSP as
needed in the program – for example by the setjmp function. To
unwind to the snapshot, the INCSSP instruction can be used – for
example by the longjmp function – to unwind the current SSP to
the value recorded at the previous snapshot. Since the shadow
stack only holds return addresses the number of bytes to unwind is
usually small. For example, to unwind from a call depth of 100
functions the INCSSP instruction would be invoked with operand
100. Here are summary descriptions of INCSSP and RDSSP.

• INCSSP – increment the SSP by ‘n * operand size of shadow

stack’, where n is an 8 bit operand. The instruction does a
‘pop-and-discard’ on the first and last frame in the range. The

HASP’19, June, 2019, Phoenix, Arizona USA Vedvyas Shanbhogue et al.

‘pop-and-discard’ and the restriction of ‘n’ to be at most 255
prevents using INCSSP to roll off one shadow stack into
another by skipping over an intervening guard page.

• RDSSP – instruction used to read the contents of the SSP
register into a GPR.

2.8.2. Software initiated stack switching.
Stack switching is required when the OS scheduler schedules a
new task and switches from the current task stack to the next task
stack. Similar thread switching may be performed in user space to
support user space thread schedulers and co-routines. The
RSTORSSP and SAVPREVSSP instructions are provided to
perform the stack switching in a controlled manner. When the
scheduler switches away from an active shadow stack and later
switches back to that shadow stack, CET ensures that the SSP
established is same as at the time of switching away.
The shadow stack switching sequence is a two-step process;
execute RSTORSSP to verify and switch to the new shadow stack,
then execute SAVEPREVSSP to record a restore point on the old
shadow stack. A restore point is recorded in the form of saving a
“Shadow Stack Restore token” at the top of the old shadow stack.
Alternatively, the OS can create the restore point when setting up a
new shadow stack.
CET enforces there can be only one restore point valid on the
shadow stack (one time use property of token) and if a restore
point is valid on the shadow stack then that shadow stack is not
active. CET further enforces that when a shadow stack is activated
the SSP is restored to the last value of SSP when that shadow stack
was previously active. CET further enforces that the restore point
that records the last active SSP is protected from unintended
writes. Lastly CET enforces that a restore point created in 32-bit or
64-bit mode can be restored only in the matching mode (enforcing
type safety).
The RSTORSSP instruction verifies a “Shadow Stack Restore”
token referenced by the memory operand of this instruction to
determine a valid restore point on the new shadow stack. This
“Shadow stack restore token” is a 64-bit value formatted as
follows:

• Bit 63:2 – 4-byte aligned SSP for which this restore point was

created. This SSP must be at an address that is 8 or 12 byte
above the address where this token itself is found. The
RSTORSSP instruction verifies this property.

• Bit 1 – reserved. Must be zero
• Bit 0 – Mode bit. If 0 then this shadow stack restore token can

be used by RSTORSSP instruction in 32-bit mode. If 1 then
this shadow stack restore token can be used by the
RSTORSSP instruction in 64-bit mode.

The “shadow stack restore token” is created by the
SAVEPREVSSP instruction (described later). The RSTORSSP
instruction verifies the “shadow stack restore token” and switches
the SSP as follows:

• Verifies that the memory operand of the instruction is an 8

byte aligned address.

• Loads the “shadow stack restore token” from the address in
specified as the memory operand.

• Verifies reserved bits in the token are 0.
• Verifies that the SSP recorded in bits 63:2 of the token is 8

bytes or 12 bytes higher than the address of the token.
• Verifies that if the current mode of the machine is 64-bit then

the bit 0 is 1 else it must be 0.
• If the checks 2, 3 and 4 succeed replaces the “shadow stack

restore token” on shadow stack with a “previous SSP token”
which records the SSP active when the RSTORSSP
instruction was invoked

• Switches SSP to the value address of the token such that now
the “previous SSP token” is at the top of the stack.

The load in step 2 and store in step 6 is done as
shadow_stack_accesses to ensure that the address points to a page
mapped as a shadow stack page. The steps 2 through 6 are done as
an atomic transaction to avoid TOCTOU issues. The property
verified by step 1 and 4 ensures the token is a valid token as the
SAVEPREVSSP pushes the “shadow stack restore token” after
alignment to the next 8 byte boundary.
The “previous SSP token” records the SSP that was active at the
time the RSTORSSP instruction was invoked and is formatted as
follows:

• Bit 63:2 – previous SSP pointing to the top of old shadow

stack i.e. the SSP active when RSTORSSP was invoked
• Bit 1 – set to 1 to indicate this is a “previous SSP token”
• Bit 0 – Mode bit. If 0 then this “previous SSP token” can be

used by SAVEPREVSSP in 32-bit mode. If 1 then this
“previous SSP token” can be used by SAVEPREVSSP in 64-
bit mode.

This is illustrated by the following example (Figure 2):

Figure 2: Software initiated shadow stack switching

In Figure 2, the SSP is currently pointing to the current active
shadow stack and has a value of 0x1000. The target shadow stack
has a “shadow stack restore token” at address 0x3FF8 and records

Security analysis of processor instruction set architecture for
enforcing control-flow integrity HASP’19, June, 2019, Phoenix, Arizona USA

the new SSP to restore as 0x4000. The RSTORSSP instruction is
invoked with the memory operand specifying the address of the
“shadow stack restore token” as 0x3FF8. The RSTORSSP
instruction verifies the mode of the machine against the mode M
recorded in the token, verifies that the reserved bit at position 1 is 0
and that the address is in the token, 0x4000 in this example, is 8 or
12 bytes from the address of the token itself. Since these checks
succeed, the SSP is now set to 0x3FF8 and the “shadow stack
restore token” is replaced by the “previous SSP token”. Subsequent
to switching to the new shadow stack, a restore point can be
created on the old shadow stack using SAVEPREVSSP
instruction. The SAVEPREVSSP instruction uses the “previous
SSP token” created by the RSTORSSP instruction to create a
“shadow stack restore token” on the old shadow stack. The
SAVEPREVSSP instruction does not take any operand but
consumes a “previous SSP token” at the top of the shadow stack
i.e. at the current SSP as follows:

• Verifies that the SSP 8 byte aligned address.
• Pops 8 bytes of “previous SSP token” from the shadow stack.
• Verifies that the bit 1 is set to 1.
• Verifies that if the current mode of the machine is 64-bit then

the bit 0 is 1 else it must be 0.
• Aligns the previous SSP recorded in the “previous SSP token”

to next 8 byte boundary and pushes a “shadow stack restore
token” to the old shadow stack.

In this example, continuing with the state following the
RSTORSSP, the SAVEPREVSSP instruction is invoked. The
SAVEPREVSSP instruction finds the “previous SSP token” with
the previous SSP recorded as 0x1000 and verifies it. Following this
verification, the processor pushes a “shadow stack restore token”
on the previous shadow stack at address 0xFF8. If a restore point
on the old shadow stack is not needed, then the “previous SSP
token” created by the RSTORSSP instruction on the current
shadow stack can be popped using the INCSSP instruction.

2.8.3. Shadow stack fixup.
CET defines two instructions to enable software to fix-up the
shadow stack contents if required. The first instruction WRUSS
(Writes User Shadow Stacks) is a privileged instruction that can
only be invoked by the OS. The OS may use WRUSS to, for
example, create a bootstrap “shadow stack restore token” for a
user mode thread or for actions like creating a call frame for signal
delivery. A second instruction - WRSS – does a write to the
Shadow Stack. WRSS is expected to be used only in specific
instances to support a software construct (e.g. if the program
implements an unusual control transfer using a push followed by a
RET) for the short term before the software can be updated to not
require such fix ups.
WRUSS can be used by the OS to write to user mode shadow
stacks but not to supervisor mode shadow stacks. A page fault
exception occurs if the address operand of the instruction does not
reference a user mode shadow stack and prevent any attempts to
maliciously modify the parameters of this instruction to point to a
supervisor shadow stack.

WRSS can only write to user shadow stack when invoked in user
mode and can only write to supervisor shadow stacks in supervisor
mode. CET provides supervisory controls that allows an OS to
enable this instruction for user and supervisor mode if the current
user program or OS needs this function. For most applications it is
expected that this instruction will be disabled and when disabled
invocation of this instruction leads to an invalid opcode fault.

2.8.4. Fast system call support
The Intel 64 architecture defines SYSCALL and SYSENTER
instructions to invoke an OS system call handler at privilege level
0 and switch to the OS data stack. When CET is enabled, these
instructions save the user mode SSP to the IA32_PL3_SSP MSR
and set the SSP to 0 (invalid). The OS returns to user mode
following the system call handling using the SYSRET or
SYSEXIT instructions. These instructions restore the user mode
SSP from the IA32_PL3_SSP MSR. An OS that needs to make
function calls from the system call handler must first activate a
supervisor mode shadow stack because the SSP following
SYSCALL/SYSENTER is 0 (invalid). CET provides the
SETSSBSY instruction to activate the privilege level 0 shadow
stack referenced by IA32_PL0_SSP. SETSSBSY instruction
verifies the “supervisor shadow stack token” referenced by the
IA32_PL0_SSP MSR and if verification is successful, makes the
token busy and sets SSP to content of IA32_PL0_SSP MSR. If
token verification fails, the processor will raise a #CP exception
with error code “SETSSBSY”. If a system call handler has
activated a shadow stack, it must use CLRSSBSY instruction to
deactivate this shadow stack. The CLRSSBSY instruction takes a
memory operand that points to the “supervisor shadow stack
token” of the stack to deactivate and if the token verifies, clears the
busy bit in the token. If token verification fails, processor sets
carry flag (CF) as error indicator. If the CF is set following
CLRSSBSY instruction the OS should consider this a fatal error.
The SSP following the CLRSSBSY instruction is set to 0 (invalid).

3. INDIRECT BRANCH TRACKING
To detect and prevent attempts to redirect control flow to
unintended targets, CET added support for indirect branch
tracking. Indirect branch tracking introduces new branch
termination instructions: ENDBR32 for 32-bit programs and
ENDBR64 for 64-bit programs. CET detects and prevents attempts
to redirect control flow to unintended targets in the program by
causing a #CP exception if the instruction at the target of an
indirect call or jump targets is not a matching branch termination
instruction.
The ENDBR32 and ENDBR64 opcodes are selected such that they
are NOP instructions on Intel 64 processors that do not support
CET. On processors supporting CET, these instructions are still
NOP-like as they do not affect the execution state of the program,
do not cause any additional register pressure and are minimally
intrusive from power and performance perspective. This allows
CET instrumented programs to execute on processors that do not
support CET.
To track indirect call/jump for terminations, the processor
implements two state machines; one for user mode and one for

HASP’19, June, 2019, Phoenix, Arizona USA Vedvyas Shanbhogue et al.

supervisor mode. At reset the user and supervisor mode state
machines are in IDLE state. When instructions other than indirect
call/jump retire the state machine stays in the IDLE state. On an
indirect call or jump instruction completion, the state machine
transitions to WAIT_FOR_ENDBRANCH state. In this state, the
state machine will cause a #CP fault with error code
“ENDBRANCH” if the next instruction (i.e. the instruction at the
target of the indirect call or jump) is not ENDBR64 in 64-bit mode
or ENDBR32 in 32-bit mode. If the instruction is a proper
ENDBRANCH, the state machine moves back to IDLE state.

Figure 3: Software initiated shadow stack switching

The indirect branch tracking does not apply to relative call, relative
jump or conditional jumps (Jcc) as these forms have their target
encoded into the instruction and cannot be manipulated.

3.1. NO-TRACK prefixed jmp/call
For certain constructs such as switch-case for which the compiler
has full control over the possible jump targets, (for example,
because it ensured all possible case were validated), it is possible
for the compiler to opt out of emitting an ENDBR32/ENDBR64
instruction at the target of these JMP by prefixing the JMP with a
NO-TRACK prefix. Such prefixed indirect JMP do not require an
ENDBRANCH instruction at their target and the state machine
stays in IDLE state. Software may choose to restrict certain
sensitive functions in program address space (e.g. exec, execv,
etc.) to be called from only designated call sites in program. Such
call sites can either use direct addresses or use the NO-TRACK
prefixed call to these functions – for both the CPU will not require
an ENDBRANCH instruction at the entry point of these sensitive
functions. Not having an ENDBRANCH instruction at the entry
point of these functions makes such functions strictly reachable via
these designated call sites. Other indirect call sites trying to reach
such sensitive functions will lead to #CP exception with error code
“ENDBRANCH”.

3.2. ENDBRANCH Opcode selection
The ENDBR32 opcode is F3 0F 1E FB and the ENDBR64 opcode
is F3 0F 1E FA. The opcodes were selected to avoid cases where
the last few bytes of an instruction and first few bytes of the next
instruction could decode to an unintended ENDBRANCH
instruction. A CET enabled compiler should not emit the 0F 1E FA
or 0F 1E FB NOP in CET compiled code. If the last 2 bytes of an
instruction are F3 0F then next two instructions must be “push DS

(1Eh)” and “STI (FBh) or CLI (FAh)” to form an unintended
ENDBRANCH instruction. If the last 3 bytes of an instruction are
to be F3 0F 1E then the next instruction must be “STI (FBh) or
CLI (FAh)” to form an unintended ENDBRANCH instruction.
CLI/STI and PUSH DS are not typically compiler generated
instructions. Push DS is not a valid instruction in 64-bit mode. If
an instruction encodes an immediate that matches the
ENDBR32/ENDBR64 instruction then the compiler/code
generator should elide those using techniques like constant
blinding.

4. SPECULATION SAFE PROPERTIES OF CET
CET enforces additional constraints to mitigate speculative
execution side-channel attacks which leverage spectre [26] style
branch target injection attacks.

Constraining execution at targets of RET
When CET shadow stack is enabled, instructions at the target of a
RET instruction will not execute, even speculatively, if the RET
addresses (both from data stack or shadow stack) are speculative-
only or do not match, unless the target of the RET is also predicted
(e.g. by some micro-architectural predictor due to a previous
CALL before that address). A RET address would be speculative-
only if it was modified by an older speculative-only store or was an
older value than the most recent value stored to that address on
logical processor.

Speculation constraint on missing ENDBRANCH
When the CET tracker is in WAIT_FOR_ENDBRANCH state,
instruction execution will be limited or blocked, even
speculatively, if the next instruction is not an ENDBRANCH. This
means that when indirect branch tracking is enabled and not
suppressed, the instructions at the target of a near indirect
JMP/CALL without the no-track prefix will only speculatively
execute if there is an ENDBRANCH at the target. Early
implementations of CET may limit the speculative execution to a
small number of instructions (less than 8, with no more than 5
loads) past a missing ENDBRANCH, while later implementations
may completely block the speculative execution of instructions
after a missing ENDBRANCH. This mechanism also limits or
blocks speculation of the next sequential instructions after an
indirect JMP/CALL; presuming the JMP/CALL puts the CET
tracker into WAIT_FOR_ENDBRANCH state and the next
sequential instruction is not an ENDBRANCH. Additional
restrictions on speculative execution of code which has an
ENDBRANCH present at the target of an indirect branch may be
enforced via software instrumentation.

5. RESULTS AND DISCUSSION

5.1. Performance
The performance impact of shadow stacks was evaluated using a
suite of microprocessor benchmark and application traces executed
on a cycle accurate processor performance model. The CALL
instruction model was updated to do the additional push on the

Security analysis of processor instruction set architecture for
enforcing control-flow integrity HASP’19, June, 2019, Phoenix, Arizona USA

shadow stack and the RET instruction model updated to pop return
address from shadow stack and compare against the return address
from the data stack. The geometric mean of instruction-per-cycle
(IPC) loss across workload traces is around 1.65%. The range of
IPC loss ranged from 0.08% (HPC and multimedia kernels traces)
and 2.71% (sysmark benchmark traces).
The performance impact of indirect branch tracking was evaluated
by compiling C and C++ programs from the SPEC CPU 2006
C/C++ using a modified ICC compiler with CET support. As
ENDBRANCH instructions execute as NOP on current shipping
processors, (and will execute as NOP on future processors that
support CET) these programs are executed with ENDBRANCH
instrumentation on Core i7-6500U Processor to measure the
performance impact - No perceptible slowdown was measured on
average.

5.2. Security Metrics
The shadow stack restricts the flexibility available in creating ROP
gadget chains by enforcing matching calls and returns and also
enforcing a LIFO order on the returns. The shadow stack being
write protected blocks attempts to inject return address frames on
the shadow stack through arbitrary writes (thwarting adversary
capabilities T1 and T3). The shadow stack pointer register not being
directly writeable and paging checks that require the page
referenced by call and returns to be mapped as a shadow stack
page blocks attempts to pivot the shadow stack to writeable
memory or to another shadow stack. Re-using old call frames on
the shadow stack is not possible as the only instructions provided
are to unwind the shadow stack through INCSSP.
With indirect branch tracking, COP/JOP gadgets are now limited
to only calling or jumping to indirect callable functions, as only
such functions would have an ENDBRANCH instruction. The
exploit author will also need to precisely control the parameters
needed to be passed to each of the functions in the chain. Likewise
since entire functions are called and the use of “unintended
gadgets” is blocked by the indirect branch tracking, the parameters
to such functions will need to be carefully controlled to not have a
return in the function path as a function that was jumped to but
returned from will be fatal to the gadget chain due to the shadow
stack enforcement. Requiring that JOP/COP chains to call or jump
to the entry point of functions also constrains the attackers ability
to retain control on the stack and registers as the x86 calling
convention requires the called procedure to restore all of the
registers and so they begin with pushing the registers on the stack
and end by popping them off. Not being able to exploit function
tails to do register restores creates an impediment in gadget
chaining. Exploit techniques like call-preceded ROP [4] are
effectively blocked by the shadow stack and indirect branch
tracking. Characteristics of the x86 ISA allows finding sufficient
byte sequences [18] that decode to jmp through register instruction.
However unlike ret, the indirect jmp through register is much less
frequent in programs [19]. Indirect branch tracking significantly
restricts the gadget catalog by requiring that gadgets must be of the
endbranch; jmp *y form and be valid instruction sequences in the
program. Chaining of these gadgets through an update-load-branch
gadget [19, 3] of the form endbranch; pop x; jmp *x requires the

property that the register y used to link back to the dispatcher be
preserved, which further restricts choice from the restricted gadget
catalog. Likewise, calling functions is also restricted to functions
that have their address taken and the invocation has to be at the
function entry point placing further constraints on control of stack
and register contents. With the CPU providing the indirect branch
tracking and return address protection, software and toolchains can
further augment protection with language and platform specific
policies and restrictions on control flow enforcement to increase its
precision. One example policy could be to restrict the indirect calls
to only land on functions that have the same prototype as intended
by the call site [20, 17, 22]. With this policy a call site may look
like: mov $0xaabbccdd, %rax; call *%rbx and a hash check
performed in the prolog of the address-taken functions as:
endbranch; cmp $0xaabbccdd, %rax; jne error. Other policies
may be to restrict sensitive kernel functions to core OS and not
drivers, restricting sensitive functions to be invoked only from
specific call sites, etc.

Average indirect target reduction
Average indirect target reduction (AIR) [9] is a metric proposed by
Zhang et. al. to measure strength of control flow integrity (CFI) of
a program and represents set of reachable program addresses via
indirect control transfer sites in program. We use the AIR metric as
a measure of the improvement to a program using CET using
below equation.

(1 −	 𝑇i 𝑆
(

)*+

)

Here n is the total number of indirect branch transfer sites in the
program, S represents set of program addresses which all the
indirect branch transfer sites can direct control flow with no CFI
protections. And Ti is represents set of program addresses to which
ith indirect branch transfer site can direct control flow with CFI
protections. On x86, indirect control transfers can target any byte
in program, thus S is program code size. Lower AIR value
represents bigger (weak CFI) set of reachable addresses via
indirect control transfer sites while higher AIR value represents a
smaller (strong CFI) set of reachable addresses via indirect control
transfer sites.
With CET enabled, the ret instruction can target exactly one target
in the program which is the return address at top of the shadow
stack and the call/jmp indirect can only target an endbranch. For
the SPEC CPU 2006 C/C++ benchmark the average AIR metric
was computed as 99.98% and for individual programs ranges from
99.93% (xalancbmk) to 99.99%.

Linux Kernel Gadget Analysis
We analyzed the Linux kernel (v4.9.9) binary for available gadgets
using the ROPgadget tool [21]. The ROPgadget tool searches
binaries for gadgets to facilitate research related to ROP exploits.
The Linux binary we used was a default configuration kernel build
of size 25 MB. We restricted our ROPgadget tool scan up to a
gadget depth of 10 bytes yielding a sum of 197241 gadgets – we
expect the usable gadget count to be more than that sum since we
restricted our search space to a depth of 10 bytes due to limitations
of the tool. The distribution of the counts for different gadget sizes

HASP’19, June, 2019, Phoenix, Arizona USA Vedvyas Shanbhogue et al.

is shown in figure 4. Gadgets harvested via the ROPgadget tool
ends in an indirect branch and are linkable/chainable. In contrast,
in a CET-enabled binary, the exploit writer is restricted to using
exported functions that have an ENDBRANCH and returning to
the last address on the shadow stack. In the Linux kernel binary
analyzed, 18412 exported functions were found. These exported
functions need to be chained using an indirect call/jump and not
through malicious use of ret. The measured average size of the
kernel exported functions is 214 bytes and indicate the increase in
complexity of using COP due to larger side-effects.

Figure 4: Gadgets found in Linux Kernel v4.9.9

We also analyzed the 18412 exported functions for the presence of
an outgoing indirect CALL/JMP from those functions, and
possible dispatch loops - the presence of a loop around an outgoing
indirect branch that allows for functions to be chained. We found
2988 functions with outgoing indirect CALLs and none with
indirect JMP. Of the 2988 exported functions with forward links,
we found 148 functions that have at least one dispatch loop. This
elimination of unintended gadgets and small number of exported
functions that can be linked indicates that the attack surface can
now be analyzed systematically to eliminate un-needed cases and
address un-safe code constructions via redesign or focused checks
via known software techniques.

Figure 5: Linux exported function size distribution

5.3. Related work
Shadow stacks have been proposed as an effective means for return
address protection. Dang et. al. [8] provide a survey of the various
shadow stack techniques [8] using software instrumentation and

the associated performance overheads. Pointer authentication Code
(PAC) [23] and CCFI [24] have proposed using cryptographic
message authentication code (MACs) to protect control flow
elements such as return addresses. Safestack separates the program
stack into two regions to protect return addresses [25]. Davi et. al.
propose HAFIX [12] that uses hidden label stack based hardware
implementation to restrict returns to active call sites. Lee et. al.
propose a Secure Return Address Stack (SRAS) [14] that modifies
call and return instructions to implement a secure stack in
hardware and use pinned physical memory as a backing store. CET
approach to shadow stack has parallels to the SRAS scheme but
unlike SRAS, it does not implement a hidden shadow stack and
supports shadow stack in linear address space of program. A
desirable property of the shadow stack is to protect it from
unintended writes. Shadow stack schemes using software
instrumentation have relied on information hiding [11] to prevent
writes to the shadow stack whereas hardware schemes have been
proposed [12, 14] using on-chip memory for the shadow stack.
CET extends x86 paging and EPT architecture to allow the OS and
VMM to write-protect the shadow stacks. While protecting the
return addresses using shadow stacks it is also important to be able
to preserve the last-in-first-out (LIFO) [12, 13] property of control
flow. CET defines a LIFO shadow stack and defines instructions to
enable non-LIFO software constructs in a safe manner. An indirect
call or jump can target any executable byte in the program and
given the dense encoding of the x86 ISA the byte stream thus
targeted may be interpreted as a valid sequence of instructions with
high probability. Control-flow integrity schemes have tried to
address this issue by introducing instrumentation to check if the
target of the indirect call or jump is a valid target. Abadi et. al. [6]
propose using prefetch instruction to embed an ID at valid indirect
call/jump targets and inject a code sequence prior to the indirect
call/jump to check the ID. Microsoft Control Flow Guard (CFG)
[7] introduces a bitmap where each bit indicates whether there is a
start of a function in the 16 bytes of process address space
corresponding to that bit. A guard check function is invoked prior
to an indirect call to test the CFG bitmap to determine if the target
is a valid target. Hardware Control Flow Integrity proposal [5]
proposes a pair of new instructions called “jump landing point”
(JLP) and “call landing point” (CLP) that can be used to mark
destinations of control flow branches in a program. LLVM Indirect
Function Call Check (IFCC) [17] generates jump tables for
indirect-call targets and adds code at indirect-call sites to transform
function pointers such that they point to a jump table entry.
Schuster et. al [15] have proposed defenses by restricting the
invocation of sensitive functions to specific call sites in the
program. CET provides the branch terminating instructions
(ENDBR32/64) to enforce instruction alignment and restrict
control transfers to valid indirect call targets in the program with
low overhead and enables complimentary software and language
specific policies to be anchored around the hardware enforcement.

6. CONCLUSIONS
CET provides the first general-purpose processor implementation
of robust technologies for preventing control-flow subversion
using techniques like ROP, and provides software with capabilities

Security analysis of processor instruction set architecture for
enforcing control-flow integrity HASP’19, June, 2019, Phoenix, Arizona USA

to restrict COP/JOP attacks. CET design strives for minimal
performance and memory overheads, while meeting strong security
and compatibility objectives. In this paper, we perform an analysis
of the enforcement of the security objectives for CET. In future
work, we aim to evaluate how the CET ISA can be leveraged by
software for further strengthening CFI properties for specific
software domains.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their review and feedback.

REFERENCES
[1] Intel® 64 and IA-32 Architectures Software Developer Manuals.

https://software.intel.com/en-us/articles/intel-sdm

[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM
Transactions on Information and System Security (TISSEC).

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. 2011. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and
Communications Security.

[4] N. Carlini and D. Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In 23rd USENIX Security Symposium (USENIX
Security 14).

[5] Systems and security services analysis office. 2015. Hardware
Control Flow Integrity (CFI) for an IT ecosystem.
https://github.com/iadgov/Control-Flow-Integrity/tree/master/paper.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. 2009. Control-
flow integrity principles, implementations, and applications. ACM
Transactions on Information and System Security.

[7] Control Flow Guard. https://msdn.microsoft.com/en-
us/library/windows/desktop/mt637065(v=vs.85).aspx

[8] T. H. Dang, P. Maniatis, and D. Wagner. 2015. The performance cost
of shadow stacks and stack canaries. In ACM Symposium on
Information, Computer and Communications Security, ASIACCS
’15.

[9] M. Zhang and R. Sekar. 2013. Control Flow Integrity for COTS
Binaries. In USENIX Security.

[10] Intel® 64 and IA-32 Architectures Optimization Reference Manual.
https://www.intel.com/content/dam/www/public/us/en/documents/ma
nuals/64-ia-32-architectures-optimization-manual.pdf.

[11] A. Oikonomopoulos, C. Giuffrida, E. Athanasopoulos, and H. Bos.
2016. Poking holes into information hiding. In USENIX SEC.

[12] L. Davi, P. Koeberl, and A.-R. Sadeghi. 2014. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of
embedded systems against software exploitation. In Annual Design
Automation Conference - Special Session: Trusted Mobile Embedded
Computing, DAC ’14.

[13] M. Theodorides and D. Wagner. 2017. Breaking Active-Set
Backward-Edge CFI. Proceedings of the IEEE International
Symposium on Hardware Oriented Security and Trust (HOST '17)

[14] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. 2003. Enlisting
Hardware Architecture to Thwart Malicious Code Injection,
Proceedings of the International Conference on Security in Pervasive
Computing, Boppard, Germany.

[15] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T.
Holz. 2015. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications, in
IEEE Symposium on Security and Privacy (S&P).

[16] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. 2005. Control-
flow integrity. In Proceedings of the 12th ACM conference on
Computer and communications security.

[17] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike. 2014. Enforcing forward-edge control-flow
integrity in GCC & LLVM. In USENIX conference on Security.

[18] S. Checkoway and H. Shacham. 2010. Escape from return-oriented
programming: Return-oriented programming without returns (on the
x86). Technical Report CS2010-0954, UC San Diego.

[19] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham,
H., and Winandy, M. 2010. Return-oriented programming without
returns. In ACM Conference on Computer and Communications
Security (CCS).

[20] PaX Team. 2015. RAP: RIP ROP
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-
ROP.pdf

[21] Salwan, J. Ropgadget
https://github.com/JonathanSalwan/ROPgadget

[22] Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias
Athanasopoulos, and Cristiano Giuffrida. 2016. A Tough call:
Mitigating Advanced Code-Reuse Attacks At The Binary Level. In
2016 IEEE Symposium on Security and Privacy.

[23] Pointer Authentication on ARMv8.3.
https://www.qualcomm.com/media/documents/files/whitepaper-
pointer-authentication-on-armv8-3.pdf

[24] Mashtizadeh, A. J., Bittau, A., Mazieres, D., and Boneh, D. 2014.
Cryptographically enforced control flow integrity. In
arXiv:1408.1451[cs.CR].

[25] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George
Candea, R. Sekar, and Dawn Song. 2014. Code-pointer integrity. In
Proceedings of the 11th USENIX conference on Operating Systems
Design and Implementation (OSDI'14).

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz and Yuval Yarom. 2019. In Proceedings
of the 40th IEEE Symposium on Security and Privacy.

[27] Intel® Control-flow Enforcement Technology Preview document.
https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf

