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ABSTRACT 
Intel has developed Control-flow Enforcement Technology (CET) 
[27] that provides CPU instruction set architecture (ISA) 
capabilities to defend against Return-oriented Programming (ROP) 
and call/jmp-oriented programming (COP/JOP) style control-flow 
subversion attacks. This attack methodology uses code sequences 
in authorized modules with at least one instruction in the sequence 
being a control transfer instruction that depends on attacker-
controlled data either in the return stack or in a register/memory 
for the target address. Attackers stitch these sequences together by 
diverting the control flow instruction (e.g. RET, CALL, JMP) from 
its original   target address to a new target (via modification in the 
data stack or in the register or memory used by these instructions). 
This paper describes CET security objectives, threat model and 
various architectural design choices to ensure that the design meets 
the security objectives. We conclude the paper with performance 
data and related work in this domain. 

CCS CONCEPTS 
• Security and privacy → Security in hardware → Hardware 
security implementation; • Security and privacy → 
Intrusion/anomaly detection and malware mitigation. 
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1. INTRODUCTION 
Introduction of security features like No-Execute [1] to prevent 
data execution (DEP), supervisory mode execute prevention 
(SMEP) [1], supervisory mode access prevention (SMAP) [1], etc. 
have pushed the state of art of exploitation of software to code-
reuse attacks based exploitation techniques like Return-Oriented 
Programming (ROP) [2], Jump-Oriented Programming (JOP) [3] 
and Call-oriented programming (COP) [4].  Defending against 
such exploits requires prevention of malicious attempts to invoke 
control flows that are not part of the program’s control-flow graph. 
Control- flow Integrity (CFI) [3, 16] proposed that a program 
should only execute control flows that are programmed in by the 
programmer. Specifically, CFI requires that an indirect branch 
should only target instructions in the program that have been 
designated as targets of indirect branches. Consequently, a forward 
branch through an indirect call or jump should only transfer control 
to valid targets for calls and jumps in the program and a return 
instruction should only transfer control to the call site that initiated 
the call to the procedure being returned from. 
Intel Control-flow Enforcement Technology (CET) is a CPU 
instruction set extension to implement CFI and defend against 
ROP/JOP style control-flow subversion attacks. It adds the 
following capabilities to the Intel instruction set architecture: 
 
• Shadow Stack – return address protection to prevent Return 

Oriented Programming 
• Indirect branch tracking – free branch protection to enforce 

security properties on Jump/Call Oriented Programming. 
 

CET shadow stack is a second stack used exclusively during 
control transfer operations to store a copy of the return address 
pointer. The shadow stack is write protected using a new extension 
to page permissions to prevent software-originated unintended 
writes to the shadow stack. The CALL instruction pushes a copy of 
the return address on the shadow stack in addition to the legacy 
behavior of pushing the return address on the data stack. The RET 
instruction is modified to pop the return address from both stacks 
and if the two return addresses do not match, causes an exception 
and thus prevents and reports attempts to modify the return address 
maliciously (or in error). 
CET Indirect branch tracking introduces a new instruction 
ENDBRANCH that is used to mark valid code targets for indirect 
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call and jumps in the program. If an indirect call or jump targets an 
instruction other than ENDBRANCH, the processor generates an 
exception and thus prevents and reports attempts to redirect control 
flow to unintended code targets in the program. The approach 
taken here is a coarse-grained forward branch enforcement that can 
be further restricted using software instrumentation and compiler 
techniques. 
CET introduces a new fault-type exception – control protection 
(#CP) – to notify privileged software when control flow violations 
are detected. The #CP exception also reports an error code to 
notify the reason to the exception handler. 

1.1. Adversary model and CET objectives 
We enumerate the following threats (written as adversary 
capabilities) to define the scope of mitigations we aim to provide 
with CET: 
 
• T1: Can find software vulnerabilities that allows the adversary 

to read and write anywhere in software-accessible memory. 
• T2: Can discover the complete layout of the address space 

(e.g. where stacks, heaps, and images are mapped). 
• T3: Can repeat memory reads and writes at will. 
• T4: Can produce stimulus that make code take different paths 

and observe the state of the program including the stack state 
in these paths. 

• T5: Can send data to a “computation server” to compute 
payload needed for subsequent reads/writes. 

• T6: Can perform control transfers to existing code to execute 
(code re-use) in order to change state of processor registers. 
 

Following assumptions were made about constraints on the 
adversary: 
 
• R1: Cannot add new code without verification and all existing 

code is read-only and not modifiable (e.g. W ⊕ X policy). 
 

While defining the technology, we enumerate following design 
goals and constraints: 
 
• D1: Must provide protection mechanism for new architectural 

assets (i.e. new hardware register, memory) against code re-
use and memory safety errors. 

• D2: Must be applicable to CPU-enforced privilege levels 
(user/supervisor)  

• D3: Must be applicable to CPU modes used by commodity 
software, such as 32/64-bit, hypervisor, system management 
mode, enclaves, etc. 

• D4: Must ensure no loss of control-flow enforcement 
protection occurs at transitions points between modes and 
context switches.  

• D5: Must have minimal overheads on performance, memory 
usage and code size growth. 

• D6: Avoid embedding programming language specific 
constructs in the ISA 

• D7: Provide only the necessary (minimal) capabilities for 
software to be able to impose instruction alignment and return 
address protection for language and usage-specific policies. 

• D8: Preserve the stack and function call ABI 
• D9: Must not place any restrictions on common software 

constructs like tail calls, co-routines, etc. 
 
In section 2, we describe the security model of the shadow stack 
capability and the new instructions introduced to manage the 
shadow stack. In section 3, we describe the security model of the 
indirect branch tracking capability. In section 4, we discuss the 
speculation-safe hardening properties of CET. In later sections, we 
present the performance evaluation, security metrics, and discuss 
related work, with conclusions. 

2. CET SHADOW STACK 
A shadow stack is a second stack used exclusively for control 
transfer operations to store and to retrieve the return address 
pointers. The shadow stack is distinct from the ordinary data stack, 
and holds no data. 

2.1. SSP register encoding and type safety 
CET defines a shadow stack pointer (SSP) register that contains the 
linear address of the top of the current shadow stack. Since SSP is 
a new architectural register and must be protected (per design goal 
D1) against an adversary that can use code re-use capability (per 
threat T6) to change it. Thus opcode encoding does not allow SSP 
register to be directly encoded as a source, destination or memory 
operand in instructions other than shadow stack management 
instructions. This reduces potential useful code re-use gadgets in 
program memory and helps mitigate techniques like stack pivoting 
used to subvert control flow. 
CET enforces type safety by enforcing that values that are 
generated as part of CET instructions or implicit ISA flows (e.g. 
privilege transitions) are consumed only by complementary CET 
instructions or complimentary ISA flows. Examples of such 
enforcement are cited in section 2.3, 2.4, 2.7 and 2.8. 

2.2. Shadow stack for each privilege and exception 
delivery 

One of the design goals of CET has been to provide support for 
control flow enforcement at each privilege level of processor (D2, 
D3 and D4). The x86 segmentation protection mechanism supports 
four privilege levels, numbered from 0 to 3. The greater numbers 
mean lesser privileges. Most operating systems running on x86 
architecture only use two privilege levels where the operating 
system kernel and its services execute at privilege level 0 and the 
applications execute in user mode at privilege level 3. CET 
considers programs executing at privilege level 0, 1 and 2 to be 
equally privileged and supervisory programs and thus when CET is 
enabled for supervisor mode it is active at privilege levels lower 
than 3. In the x86 architecture, call gates facilitate controlled 
transfer of program control between different privilege levels and 
when a call gate is used to transfer control to a more privileged 
level, the processor automatically switches to the data stack for the 
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destination privilege level using the pointers to the privilege level 
0, 1 and 2 stacks stored in the Task-State Segment (TSS) data 
structure of the current running task. 
Intel 64 bit architecture supports an interrupt stack table (IST) to 
provide a method for specific interrupts (such as NMI, double-
fault, and machine check) to always execute with a known good 
stack. The IST mechanism provides up to seven IST pointers that 
can be selected using a 3-bit IST index from the interrupt-gate-
descriptor (IDT), which when not 0, is used to select the pointer to 
the data stack to switch to when delivering those specific 
interrupts. 
CET extends this automatic stack switching to also switch the SSP 
when CET is enabled in supervisor mode. The SSP for the 
privilege level 0, 1 or 2 is obtained from one of following new 
model specific registers (MSRs) depending on the target privilege 
level: 

• IA32_PL2_SSP, if transitioning to ring 2 
• IA32_PL1_SSP, if transitioning to ring 1 
• IA32_PL0_SSP, if transitioning to ring 0 

 
The collection of these three MSRs is referred to as 
IA32_PL0/1/2_MSR in following sections. When a stack switch 
occurs through IST mechanism and CET is enabled at privilege 
level of the interrupt handler, a new SSP is selected using the IST 
index from a table of SSPs pointed to by the 
IA32_INTERRUPT_SSP_TABLE_ADDR MSR defined by CET. 
CET treats the OS kernel as being in the trust boundary of the user 
mode programs. Thus CET does not attempt to restrict any control 
transfers initiated by the OS to user mode programs. In x86 
architecture the ring 0 is the most privileged ring and can invoke 
privileged instructions. Rings 1 and 2 cannot invoke privileged 
instructions however they have same memory access privileges as 
ring 0. Since they have equal privilege for memory accesses the 
CET architecture treats them as being in the “same privilege 
class”. The architecture therefore enforces the control transfers 
between these privileged rings through shadow stacks and indirect 
branch tracking when CET is enabled for supervisor mode. 

2.3. CALL operation 
In the Intel 64 and IA-32 architecture (x86 architecture), the near 
CALL instruction allows control transfers to local procedures 
within the current code segment. The far call allows control 
transfer to procedures in a different code segment and can be used 
to access operating system procedures. A far call also allows 
transitioning to a 32-bit code segment to allow legacy (32 bit) 
binary to co-exist with 64-bit binary in 64-bit mode. The near 
CALL instruction pushes the Return Instruction Pointer on the data 
stack. When CET is enabled, the near CALL additionally pushes 
the Return Instruction Pointer on the shadow stack. The far CALL 
instruction, or an interrupt or exception flow, pushes the Code 
Segment (CS) selector and the Return Instruction Pointer on the 
data stack of the called procedure. When CET is enabled, the far 
CALL additionally pushes the CS, the Linear Instruction Pointer 
(LIP is computed by the CPU as the base of the Code Segment 
descriptor plus the logical address value of the Return Instruction 
Pointer) and the SSP at the time of initiating the far transfer on the 

shadow stack of the called procedure. The pushes on the shadow 
stack are always performed as 8 byte pushes. Pushing the previous 
SSP on the shadow stack prevents a far CALL from being paired 
with a near return as the addresses on the shadow stack are non-
executable (enforcing type safety). For these far transfers, the 
choice to store the Linear Instruction Pointer on the shadow stack 
instead of the logical address Return Instruction Pointer was made 
to ensure detection of conditions where the base address of the 
Code Segment descriptor may have been changed between a far 
CALL and the matching far RET. When the far transfer to higher 
privilege level originates in user mode i.e. privilege level 3, the 
processor switches both - the data and shadow stack to that of the 
new privilege level. The user mode shadow stack pointer is saved 
to into a new MSR called IA32_PL3_SSP. The processor does not 
push any return addresses on the new supervisor shadow stack. 
This follows the trust model where the user level programs have 
the supervisor in their trust boundary, so the OS can change the 
address to subsequently return to or the SSP of the user space 
program. If the far transfer is to 32-bit mode the processor causes a 
general protection fault if the SSP is not in the lower 4 GB of the 
linear address space. By faulting and not implicitly truncating the 
SSP to 32 bits the CET architecture avoids any unintended or 
malicious aliasing to another shadow stack. A far transfer in the 
x86 architecture may or may not involve a privilege change. When 
there is a privilege change it is associated with a stack switch and 
the processor requires the new stack to be 8 byte aligned. When 
there is no privilege change, the processor prior to pushing the 
return address information on the shadow stack aligns it to the next 
8 byte boundary and zeroes out any alignment hole created to 
avoid unknown data from appearing on the shadow stack. The 
section 2.7 discusses stack switching on privilege changes. 
Alignment of shadow stack to 8 byte boundaries and saving the 
return address information in 8 byte elements avoids type 
confusion when transitioning between 64-bit and 32-bit modes. 

2.4. RET/IRET operation 
The RET instruction allows near and far returns to match the near 
and far versions of the CALL instruction. The IRET instruction 
returns program control from an interrupt or exception handler to 
the interrupted procedure. When CET is enabled, the near RET 
instruction pops the return address from both the shadow stack and 
the data stack. If the return address values popped from the two 
stacks are not equal then the processor causes a control protection 
exception (#CP) with error code “NEAR-RET”. When CET is 
enabled, the far RET and IRET (except when transition to user 
space) pops the return-SSP, LIP and the CS from the shadow stack. 
If the CS and LIP do not match the return address as determined by 
popping the CS and Return Instruction Pointer from the data stack, 
the processor causes a #CP exception with error code “FAR-
RET/IRET”. The error code provided with the resulting #CP 
exception helps identify the type of call frame that caused the fault. 
If the return was successful then the SSP is set to the return-SSP. If 
a RET or IRET instruction is used to return to user space i.e. to 
privilege level 3, the processor establishes the SSP for the user 
mode using contents of the IA32_PL3_SSP MSR. No return 
address verification is done. The OS is allowed to switch shadow 
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stacks and return to any address in user mode. This follows the 
trust model where the user level programs have the OS in their 
trust boundary.  

2.5. Write protecting the shadow stack 
Adversary model for CET assumes that attacker has capabilities to 
perform read and writes at will innumerable number of times (T1 
and T3) using some memory safety bug. CET further assumes that 
attacker has computational capabilities (T5) to make intelligent 
decisions on exercising memory writes. CET addresses attempts to 
corrupt the shadow stack through malicious writes by exploiting 
vulnerabilities like buffer overflows, use-after-free, etc. by 
extending the page tables such that pages mapped as shadow stack 
pages are not writeable by software use of memory store 
instructions.  The CPU enforces that software writes to the shadow 
stack occur only in the context of a CALL instruction and new 
CET ISA for shadow stack management invoked by software. 
Control transfer instructions/flows and shadow stack management 
instructions perform loads/stores to the shadow stack. Such 
load/stores from control transfer instructions and shadow stack 
management instructions are termed as shadow_stack_load and 
shadow_stack_store (or collectively as shadow_stack_accesses; 
enforcing type safety in accesses) to distinguish them from 
load/store performed by other instructions like MOV, XSAVES, etc 
that are performed by software. 
 
2.5.1. x86 paging protections. CET extends x86 paging 
architecture to allow pages to be mapped in linear address space as 
shadow stack pages. A page mapped as not-writeable-but-dirty i.e. 
W=0, D=1 is treated by the CPU as a shadow stack page. By using 
this software-unused encoding of writeable and dirty attributes we 
avoid introducing new paging attribute bits. The chosen page 
control bit encodings for shadow stack mappings also ensure that 
shadow stack pages are not writeable and hence naturally protected 
from unintended or malicious software writes. CET further 
enforces that shadow_stack_accesses must be to shadow stack 
regions by causing a page fault if the shadow stack addresses are 
not mapped to shadow stack pages. This helps detect any attempts 
to pivot the SSP to writeable memory or to overflow/underflow the 
SSP beyond the bounds of the current active shadow stack. CET 
also enforces that shadow_stack_accesses from supervisor mode 
must be to shadow stacks mapped as supervisor pages i.e. using a 
user shadow stack in supervisor mode is disallowed by the CPU. 
Lastly, CET enforces that paging write protection (CR0.WP) 
cannot be disabled when CET is enabled to prevent unintended 
writes to shadow stack by disabling paging write protection. 
 
2.5.2. Second level page table protection. OS/supervisor shadow 
stacks can be write-protected using the extended page tables (EPT) 
established by a virtual machine manager (VMM) by using a new 
EPT attribute “supervisor shadow stack” to designate the (guest) 
physical pages used by the OS for shadow stacks as supervisor 
shadow stack pages. When this functionality is enabled 
shadow_stack_accesses to supervisor shadow stacks are only 
allowed to (guest) physical pages mapped as “supervisor shadow 
stack pages” under EPTs by the VMM. Shadow stack writes to 

pages mapped as “supervisor shadow stack” pages in EPT do not 
require the EPT to provide write permission. This allows a VMM 
to write protect OS/guest supervisor shadow stack pages from CPU 
initiated stores as well as device DMA accesses (when the EPT is 
shared by the IOMMU). 

2.6. Shadow stack tokens 
As stated earlier direct manipulation of SSP register using move 
instruction is not supported by CET. To allow multiple execution 
context within application programs and in operating system, CET 
provide mechanisms for saving and restoring shadow stack pointer 
(i.e. SSP register) to and from memory without compromising 
design goals and security properties. In order to establish a new 
shadow stack in SSP register while continuing to provide 
guarantees against memory safety bugs, the following properties 
are enforced by the CPU: 
 
• Secure storage: Memory storing shadow stack pointer must 

be protected against memory safety errors (T1 and T3). 
• Immutability: Even if an adversary is able to obtain a write 

primitive to this secure storage, they shouldn’t be able to 
write any value of their choice. If an adversary changes the 
pointer value, using that value should result in a processor 
fault and notify the operating system of that violation. 

• One time use: Pointer stored in memory to establish new 
shadow stack can be used once and further usage should result 
into a fault. This prevents any possibility of two execution 
contexts (e.g. two program threads) establishing same shadow 
stack. 
 

As described earlier, CET shadow stack memory access-control 
satisfies the property of read-only permissions while still allowing 
stores using shadow_stack_store primitive in selected architectural 
flows. This access-control model allows CET to use shadow stack 
memory itself as secure storage for shadow stack pointers. To 
enforce immutability, CET enforces that shadow stack pointer 
itself should be a function of the address on which it is stored.  As 
part of the save sequence, shadow stack is first aligned on 8 byte 
boundary and then shadow stack pointer is saved on it. To further 
harden type checking and one time usage property, CET uses 
lower 2 bits of the stored shadow stack value for keeping extra 
information to track state of pointer (see section 2.5 and 2.6 for 
usage of lower 2 bits). This results in saving the shadow stack 
pointer in a specific format - collectively these stored shadow stack 
pointer formats are called as ‘shadow stack tokens’.  
Section 2.7 and 2.8 describes different form of shadow stack 
tokens and their usage in shadow stack switching mechanisms. 

2.7. Processor initiated stack switch 
The OS is required to program the IA32_PL0/1/2_MSRs to point to 
the bottom of the supervisor shadow stacks of the current task and 
to ensure that no two logical processors have the MSRs pointing to 
the same shadow stack. However, the operating system may 
context switch IA32_PL0/1/2_SSP MSRs and save them in 
memory where they are susceptible to being modified (adversary 
capabilities T1 and T3). Likewise shadow stacks pointers in 
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memory referenced by the IA32_INTERRUPT_SSP_TABLE MSR 
may be modified. The modifications may be an attempt to point 
these MSRs to an address beyond the bottom of the shadow stack 
and thereby create bad return addresses on the shadow stack. The 
modifications may also be an attempt to point them to the shadow 
stack that is active on another logical processor such that return 
addresses pushed by one logical processor are consumed by 
another (threats T2 and T4). To overcome the issues mentioned 
above, CET implements a token check mechanism to detect such 
modifications and ensure that the shadow stack starts out empty 
and that the same shadow stack cannot be activated simultaneously 
on two logical processors. Supervisor shadow stacks must be 
constructed with a token at the bottom of the shadow stack called 
the “supervisor shadow stack token”. This token is a 64-bit value 
formatted as follows: 
 
• Bit 63:3 – 8 byte aligned linear address of the token itself. 
• Bit 2:1 – reserved. Must be zero. 
• Bit 0 – Busy bit. The busy bit when 1 indicates that the 

corresponding shadow stack is active on some logical 
processor, thus enforcing the one time use property.  

 
To switch stack on transition to higher privilege level, the 
processor performs the following steps: 
 
• Loads the “supervisor shadow stack token” from the address 

in IA32_PL0/1/2_SSP.  
• Verifies the busy bit and all reserved bits in the token is 0. 

This prevents a given shadow stack from being made active 
on two logical processors simultaneously. 

• Verifies that the address programmed in the MSR matches the 
address in the “supervisor shadow stack token”.  

• If the checks 2 and 3 are successful then the busy bit in the 
token is set to 1 and the processor switches the SSP to the 
value specified in the IA32_PL0/1/2_SSP MSRs. 

 
The load in step 1 and store in step 4 are done as shadow stack 
accesses to ensure that the address points to a page mapped as a 
shadow stack page. Step 3 ensures that the address in the MSR is 
pointing to the bottom of the shadow stack i.e. an empty shadow 
stack. This check relies on the property that an 8 byte aligned 
location on the shadow stack having a value that is the address of 
that 8 byte location never occurs on a shadow stack except when 
created by the OS by storing this “supervisor shadow stack token”. 
The steps 1 through 4 are done as an atomic transaction to avoid 
TOCTOU issues. If the checks 2 or 3 fail then the busy bit is not 
set and a general protection (#GP) exception is caused.  
Figure 1 illustrates this token check to make the shadow stack 
active. In this example, the IA32_PL0_SSP MSR points to address 
0xFF8. The token check loads the 8 byte token at address 0xFF8 
and verifies that busy bit is 0 and that the address in the token 
matches the address in the MSR. As the token check succeeds, the 
busy bit in the token is set to 1 and the SSP is now updated to point 
to 0xFF8 making this shadow stack active, Next push on this 
shadow stack saves at the address 0xFF0. 
 

 

Figure 1:  Processor initiated shadow stack switching 

When the processor returns to a lower privilege level it switches to 
the shadow stack of the lower privilege level. The current active 
shadow stack is made free by the far RET/IRET instructions by 
performing following steps: 
 
• Loads the “supervisor shadow stack token” from the address 

in SSP  
• Checks if the busy bit is 1 and all reserved bits are 0 
• Checks if the address programmed in “supervisor shadow 

stack token” matches SSP 
• If the checks 2 and 3 are successful then clears the busy bit in 

the token 
 

The load in step 1 and store in step 4 are done as a shadow stack 
accesses to ensure that the address points to a page mapped as a 
shadow stack page. The steps 1 through 4 are done as an atomic 
transaction to avoid TOCTOU issues. The checks 2 and 3 when 
successful indicate that the SSP is at the bottom of the shadow 
stack i.e. there are no valid call frames on the shadow stack. If 
there are valid call frames on the shadow stack then the shadow 
stack remains busy. 

2.8. Shadow stack management instructions 
Shadow stack management instructions provide controlled and safe 
ways to manipulate SSP to implement common software constructs 
like stack unwinding, thread switching, etc. The following 
descriptions group the instructions by their typical usage. 

2.8.1. Stack unwinding.  
Like the data stack, the shadow stack grows from high to low 
address and thus unwinding the shadow stack involves 
incrementing the SSP. To support unwinding the shadow stack, the 
RDSSP instruction may be used to read the contents of the SSP as 
needed in the program – for example by the setjmp function. To 
unwind to the snapshot, the INCSSP instruction can be used – for 
example by the longjmp function – to unwind the current SSP to 
the value recorded at the previous snapshot. Since the shadow 
stack only holds return addresses the number of bytes to unwind is 
usually small. For example, to unwind from a call depth of 100 
functions the INCSSP instruction would be invoked with operand 
100. Here are summary descriptions of INCSSP and RDSSP. 
 
• INCSSP – increment the SSP by ‘n * operand size of shadow 

stack’, where n is an 8 bit operand. The instruction does a 
‘pop-and-discard’ on the first and last frame in the range. The 
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‘pop-and-discard’ and the restriction of ‘n’ to be at most 255 
prevents using INCSSP to roll off one shadow stack into 
another by skipping over an intervening guard page.  

• RDSSP – instruction used to read the contents of the SSP 
register into a GPR.  
 

2.8.2. Software initiated stack switching.  
Stack switching is required when the OS scheduler schedules a 
new task and switches from the current task stack to the next task 
stack. Similar thread switching may be performed in user space to 
support user space thread schedulers and co-routines. The 
RSTORSSP and SAVPREVSSP instructions are provided to 
perform the stack switching in a controlled manner. When the 
scheduler switches away from an active shadow stack and later 
switches back to that shadow stack, CET ensures that the SSP 
established is same as at the time of switching away. 
The shadow stack switching sequence is a two-step process; 
execute RSTORSSP to verify and switch to the new shadow stack, 
then execute SAVEPREVSSP to record a restore point on the old 
shadow stack. A restore point is recorded in the form of saving a 
“Shadow Stack Restore token” at the top of the old shadow stack. 
Alternatively, the OS can create the restore point when setting up a 
new shadow stack. 
CET enforces there can be only one restore point valid on the 
shadow stack (one time use property of token) and if a restore 
point is valid on the shadow stack then that shadow stack is not 
active. CET further enforces that when a shadow stack is activated 
the SSP is restored to the last value of SSP when that shadow stack 
was previously active. CET further enforces that the restore point 
that records the last active SSP is protected from unintended 
writes. Lastly CET enforces that a restore point created in 32-bit or 
64-bit mode can be restored only in the matching mode (enforcing 
type safety). 
The RSTORSSP instruction verifies a “Shadow Stack Restore” 
token referenced by the memory operand of this instruction to 
determine a valid restore point on the new shadow stack. This 
“Shadow stack restore token” is a 64-bit value formatted as 
follows: 
 
• Bit 63:2 – 4-byte aligned SSP for which this restore point was 

created. This SSP must be at an address that is 8 or 12 byte 
above the address where this token itself is found. The 
RSTORSSP instruction verifies this property. 

• Bit 1 – reserved. Must be zero 
• Bit 0 – Mode bit. If 0 then this shadow stack restore token can 

be used by RSTORSSP instruction in 32-bit mode. If 1 then 
this shadow stack restore token can be used by the 
RSTORSSP instruction in 64-bit mode. 
 

The “shadow stack restore token” is created by the 
SAVEPREVSSP instruction (described later). The RSTORSSP 
instruction verifies the “shadow stack restore token” and switches 
the SSP as follows: 
 
• Verifies that the memory operand of the instruction is an 8 

byte aligned address. 

• Loads the “shadow stack restore token” from the address in 
specified as the memory operand. 

• Verifies reserved bits in the token are 0. 
• Verifies that the SSP recorded in bits 63:2 of the token is 8 

bytes or 12 bytes higher than the address of the token.  
• Verifies that if the current mode of the machine is 64-bit then 

the bit 0 is 1 else it must be 0.  
• If the checks 2, 3 and 4 succeed replaces the “shadow stack 

restore token” on shadow stack with a “previous SSP token” 
which records the SSP active when the RSTORSSP 
instruction was invoked 

• Switches SSP to the value address of the token such that now 
the “previous SSP token” is at the top of the stack. 
 

The load in step 2 and store in step 6 is done as 
shadow_stack_accesses to ensure that the address points to a page 
mapped as a shadow stack page. The steps 2 through 6 are done as 
an atomic transaction to avoid TOCTOU issues. The property 
verified by step 1 and 4 ensures the token is a valid token as the 
SAVEPREVSSP pushes the “shadow stack restore token” after 
alignment to the next 8 byte boundary. 
The “previous SSP token” records the SSP that was active at the 
time the RSTORSSP instruction was invoked and is formatted as 
follows: 
 
• Bit 63:2 – previous SSP pointing to the top of old shadow 

stack i.e. the SSP active when RSTORSSP was invoked 
• Bit 1 – set to 1 to indicate this is a “previous SSP token” 
• Bit 0 – Mode bit. If 0 then this “previous SSP token” can be 

used by SAVEPREVSSP in 32-bit mode. If 1 then this 
“previous SSP token” can be used by SAVEPREVSSP in 64-
bit mode.  
 

This is illustrated by the following example (Figure 2): 

 

Figure 2: Software initiated shadow stack switching 

In Figure 2, the SSP is currently pointing to the current active 
shadow stack and has a value of 0x1000. The target shadow stack 
has a “shadow stack restore token” at address 0x3FF8 and records 



Security analysis of processor instruction set architecture for 
enforcing control-flow integrity HASP’19, June, 2019, Phoenix, Arizona USA 

 

 

the new SSP to restore as 0x4000. The RSTORSSP instruction is 
invoked with the memory operand specifying the address of the 
“shadow stack restore token” as 0x3FF8. The RSTORSSP 
instruction verifies the mode of the machine against the mode M 
recorded in the token, verifies that the reserved bit at position 1 is 0 
and that the address is in the token, 0x4000 in this example, is 8 or 
12 bytes from the address of the token itself. Since these checks 
succeed, the SSP is now set to 0x3FF8 and the “shadow stack 
restore token” is replaced by the “previous SSP token”. Subsequent 
to switching to the new shadow stack, a restore point can be 
created on the old shadow stack using SAVEPREVSSP 
instruction. The SAVEPREVSSP instruction uses the “previous 
SSP token” created by the RSTORSSP instruction to create a 
“shadow stack restore token” on the old shadow stack. The 
SAVEPREVSSP instruction does not take any operand but 
consumes a “previous SSP token” at the top of the shadow stack 
i.e. at the current SSP as follows: 
 
• Verifies that the SSP 8 byte aligned address. 
• Pops 8 bytes of “previous SSP token” from the shadow stack. 
• Verifies that the bit 1 is set to 1. 
• Verifies that if the current mode of the machine is 64-bit then 

the bit 0 is 1 else it must be 0.  
• Aligns the previous SSP recorded in the “previous SSP token” 

to next 8 byte boundary and pushes a “shadow stack restore 
token” to the old shadow stack. 
 

In this example, continuing with the state following the 
RSTORSSP, the SAVEPREVSSP instruction is invoked. The 
SAVEPREVSSP instruction finds the “previous SSP token” with 
the previous SSP recorded as 0x1000 and verifies it. Following this 
verification, the processor pushes a “shadow stack restore token” 
on the previous shadow stack at address 0xFF8. If a restore point 
on the old shadow stack is not needed, then the “previous SSP 
token” created by the RSTORSSP instruction on the current 
shadow stack can be popped using the INCSSP instruction. 

2.8.3. Shadow stack fixup.  
CET defines two instructions to enable software to fix-up the 
shadow stack contents if required. The first instruction WRUSS 
(Writes User Shadow Stacks) is a privileged instruction that can 
only be invoked by the OS. The OS may use WRUSS to, for 
example, create a bootstrap “shadow stack restore token” for a 
user mode thread or for actions like creating a call frame for signal 
delivery. A second instruction - WRSS – does a write to the 
Shadow Stack. WRSS is expected to be used only in specific 
instances to support a software construct (e.g. if the program 
implements an unusual control transfer using a push followed by a 
RET) for the short term before the software can be updated to not 
require such fix ups. 
WRUSS can be used by the OS to write to user mode shadow 
stacks but not to supervisor mode shadow stacks. A page fault 
exception occurs if the address operand of the instruction does not 
reference a user mode shadow stack and prevent any attempts to 
maliciously modify the parameters of this instruction to point to a 
supervisor shadow stack. 

WRSS can only write to user shadow stack when invoked in user 
mode and can only write to supervisor shadow stacks in supervisor 
mode. CET provides supervisory controls that allows an OS to 
enable this instruction for user and supervisor mode if the current 
user program or OS needs this function. For most applications it is 
expected that this instruction will be disabled and when disabled 
invocation of this instruction leads to an invalid opcode fault. 

2.8.4. Fast system call support 
The Intel 64 architecture defines SYSCALL and SYSENTER 
instructions to invoke an OS system call handler at privilege level 
0 and switch to the OS data stack. When CET is enabled, these 
instructions save the user mode SSP to the IA32_PL3_SSP MSR 
and set the SSP to 0 (invalid). The OS returns to user mode 
following the system call handling using the SYSRET or 
SYSEXIT instructions. These instructions restore the user mode 
SSP from the IA32_PL3_SSP MSR. An OS that needs to make 
function calls from the system call handler must first activate a 
supervisor mode shadow stack because the SSP following 
SYSCALL/SYSENTER is 0 (invalid). CET provides the 
SETSSBSY instruction to activate the privilege level 0 shadow 
stack referenced by IA32_PL0_SSP. SETSSBSY instruction 
verifies the “supervisor shadow stack token” referenced by the 
IA32_PL0_SSP MSR and if verification is successful, makes the 
token busy and sets SSP to content of IA32_PL0_SSP MSR. If 
token verification fails, the processor will raise a #CP exception 
with error code “SETSSBSY”. If a system call handler has 
activated a shadow stack, it must use CLRSSBSY instruction to 
deactivate this shadow stack. The CLRSSBSY instruction takes a 
memory operand that points to the “supervisor shadow stack 
token” of the stack to deactivate and if the token verifies, clears the 
busy bit in the token. If token verification fails, processor sets 
carry flag (CF) as error indicator. If the CF is set following 
CLRSSBSY instruction the OS should consider this a fatal error. 
The SSP following the CLRSSBSY instruction is set to 0 (invalid). 

3. INDIRECT BRANCH TRACKING 
To detect and prevent attempts to redirect control flow to 
unintended targets, CET added support for indirect branch 
tracking. Indirect branch tracking introduces new branch 
termination instructions: ENDBR32 for 32-bit programs and 
ENDBR64 for 64-bit programs. CET detects and prevents attempts 
to redirect control flow to unintended targets in the program by 
causing a #CP exception if the instruction at the target of an 
indirect call or jump targets is not a matching branch termination 
instruction. 
The ENDBR32 and ENDBR64 opcodes are selected such that they 
are NOP instructions on Intel 64 processors that do not support 
CET. On processors supporting CET, these instructions are still 
NOP-like as they do not affect the execution state of the program, 
do not cause any additional register pressure and are minimally 
intrusive from power and performance perspective. This allows 
CET instrumented programs to execute on processors that do not 
support CET. 
To track indirect call/jump for terminations, the processor 
implements two state machines; one for user mode and one for 
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supervisor mode. At reset the user and supervisor mode state 
machines are in IDLE state. When instructions other than indirect 
call/jump retire the state machine stays in the IDLE state. On an 
indirect call or jump instruction completion, the state machine 
transitions to WAIT_FOR_ENDBRANCH state. In this state, the 
state machine will cause a #CP fault with error code 
“ENDBRANCH” if the next instruction (i.e. the instruction at the 
target of the indirect call or jump) is not ENDBR64 in 64-bit mode 
or ENDBR32 in 32-bit mode. If the instruction is a proper 
ENDBRANCH, the state machine moves back to IDLE state. 

 

Figure 3: Software initiated shadow stack switching 

The indirect branch tracking does not apply to relative call, relative 
jump or conditional jumps (Jcc) as these forms have their target 
encoded into the instruction and cannot be manipulated. 

3.1. NO-TRACK prefixed jmp/call 
For certain constructs such as switch-case for which the compiler 
has full control over the possible jump targets, (for example, 
because it ensured all possible case were validated), it is possible 
for the compiler to opt out of emitting an ENDBR32/ENDBR64 
instruction at the target of these JMP by prefixing the JMP with a 
NO-TRACK prefix. Such prefixed indirect JMP do not require an 
ENDBRANCH instruction at their target and the state machine 
stays in IDLE state. Software may choose to restrict certain 
sensitive functions in program address space (e.g. exec, execv, 
etc.) to be called from only designated call sites in program. Such 
call sites can either use direct addresses or use the NO-TRACK 
prefixed call to these functions – for both the CPU will not require 
an ENDBRANCH instruction at the entry point of these sensitive 
functions. Not having an ENDBRANCH instruction at the entry 
point of these functions makes such functions strictly reachable via 
these designated call sites. Other indirect call sites trying to reach 
such sensitive functions will lead to #CP exception with error code 
“ENDBRANCH”. 

3.2. ENDBRANCH Opcode selection 
The ENDBR32 opcode is F3 0F 1E FB and the ENDBR64 opcode 
is F3 0F 1E FA. The opcodes were selected to avoid cases where 
the last few bytes of an instruction and first few bytes of the next 
instruction could decode to an unintended ENDBRANCH 
instruction. A CET enabled compiler should not emit the 0F 1E FA 
or 0F 1E FB NOP in CET compiled code. If the last 2 bytes of an 
instruction are F3 0F then next two instructions must be “push DS 

(1Eh)” and “STI (FBh) or CLI (FAh)” to form an unintended 
ENDBRANCH instruction. If the last 3 bytes of an instruction are 
to be F3 0F 1E then the next instruction must be “STI (FBh) or 
CLI (FAh)” to form an unintended ENDBRANCH instruction. 
CLI/STI and PUSH DS are not typically compiler generated 
instructions. Push DS is not a valid instruction in 64-bit mode. If 
an instruction encodes an immediate that matches the 
ENDBR32/ENDBR64 instruction then the compiler/code 
generator should elide those using techniques like constant 
blinding. 

4. SPECULATION SAFE PROPERTIES OF CET 
CET enforces additional constraints to mitigate speculative 
execution side-channel attacks which leverage spectre [26] style 
branch target injection attacks. 

Constraining execution at targets of RET 
When CET shadow stack is enabled, instructions at the target of a 
RET instruction will not execute, even speculatively, if the RET 
addresses (both from data stack or shadow stack) are speculative-
only or do not match, unless the target of the RET is also predicted 
(e.g. by some micro-architectural predictor due to a previous 
CALL before that address). A RET address would be speculative-
only if it was modified by an older speculative-only store or was an 
older value than the most recent value stored to that address on 
logical processor. 

Speculation constraint on missing ENDBRANCH 
When the CET tracker is in WAIT_FOR_ENDBRANCH state, 
instruction execution will be limited or blocked, even 
speculatively, if the next instruction is not an ENDBRANCH. This 
means that when indirect branch tracking is enabled and not 
suppressed, the instructions at the target of a near indirect 
JMP/CALL without the no-track prefix will only speculatively 
execute if there is an ENDBRANCH at the target. Early 
implementations of CET may limit the speculative execution to a 
small number of instructions (less than 8, with no more than 5 
loads) past a missing ENDBRANCH, while later implementations 
may completely block the speculative execution of instructions 
after a missing ENDBRANCH. This mechanism also limits or 
blocks speculation of the next sequential instructions after an 
indirect JMP/CALL; presuming the JMP/CALL puts the CET 
tracker into WAIT_FOR_ENDBRANCH state and the next 
sequential instruction is not an ENDBRANCH. Additional 
restrictions on speculative execution of code which has an 
ENDBRANCH present at the target of an indirect branch may be 
enforced via software instrumentation. 

5. RESULTS AND DISCUSSION 

5.1. Performance 
The performance impact of shadow stacks was evaluated using a 
suite of microprocessor benchmark and application traces executed 
on a cycle accurate processor performance model. The CALL 
instruction model was updated to do the additional push on the 
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shadow stack and the RET instruction model updated to pop return 
address from shadow stack and compare against the return address 
from the data stack. The geometric mean of instruction-per-cycle 
(IPC) loss across workload traces is around 1.65%. The range of 
IPC loss ranged from 0.08% (HPC and multimedia kernels traces) 
and 2.71% (sysmark benchmark traces). 
The performance impact of indirect branch tracking was evaluated 
by compiling C and C++ programs from the SPEC CPU 2006 
C/C++ using a modified ICC compiler with CET support. As 
ENDBRANCH instructions execute as NOP on current shipping 
processors, (and will execute as NOP on future processors that 
support CET) these programs are executed with ENDBRANCH 
instrumentation on Core i7-6500U Processor to measure the 
performance impact - No perceptible slowdown was measured on 
average.  

5.2. Security Metrics 
The shadow stack restricts the flexibility available in creating ROP 
gadget chains by enforcing matching calls and returns and also 
enforcing a LIFO order on the returns. The shadow stack being 
write protected blocks attempts to inject return address frames on 
the shadow stack through arbitrary writes (thwarting adversary 
capabilities T1 and T3). The shadow stack pointer register not being 
directly writeable and paging checks that require the page 
referenced by call and returns to be mapped as a shadow stack 
page blocks attempts to pivot the shadow stack to writeable 
memory or to another shadow stack. Re-using old call frames on 
the shadow stack is not possible as the only instructions provided 
are to unwind the shadow stack through INCSSP. 
With indirect branch tracking, COP/JOP gadgets are now limited 
to only calling or jumping to indirect callable functions, as only 
such functions would have an ENDBRANCH instruction. The 
exploit author will also need to precisely control the parameters 
needed to be passed to each of the functions in the chain. Likewise 
since entire functions are called and the use of “unintended 
gadgets” is blocked by the indirect branch tracking, the parameters 
to such functions will need to be carefully controlled to not have a 
return in the function path as a function that was jumped to but 
returned from will be fatal to the gadget chain due to the shadow 
stack enforcement. Requiring that JOP/COP chains to call or jump 
to the entry point of functions also constrains the attackers ability 
to retain control on the stack and registers as the x86 calling 
convention requires the called procedure to restore all of the 
registers and so they begin with pushing the registers on the stack 
and end by popping them off. Not being able to exploit function 
tails to do register restores creates an impediment in gadget 
chaining. Exploit techniques like call-preceded ROP [4] are 
effectively blocked by the shadow stack and indirect branch 
tracking. Characteristics of the x86 ISA allows finding sufficient 
byte sequences [18] that decode to jmp through register instruction. 
However unlike ret, the indirect jmp through register is much less 
frequent in programs [19]. Indirect branch tracking significantly 
restricts the gadget catalog by requiring that gadgets must be of the 
endbranch; jmp *y form and be valid instruction sequences in the 
program. Chaining of these gadgets through an update-load-branch 
gadget [19, 3] of the form endbranch; pop x; jmp *x requires the 

property that the register y used to link back to the dispatcher be 
preserved, which further restricts choice from the restricted gadget 
catalog. Likewise, calling functions is also restricted to functions 
that have their address taken and the invocation has to be at the 
function entry point placing further constraints on control of stack 
and register contents. With the CPU providing the indirect branch 
tracking and return address protection, software and toolchains can 
further augment protection with language and platform specific 
policies and restrictions on control flow enforcement to increase its 
precision. One example policy could be to restrict the indirect calls 
to only land on functions that have the same prototype as intended 
by the call site [20, 17, 22]. With this policy a call site may look 
like: mov $0xaabbccdd, %rax; call *%rbx and a hash check 
performed in the prolog of the address-taken functions as: 
endbranch; cmp $0xaabbccdd, %rax; jne error. Other policies 
may be to restrict sensitive kernel functions to core OS and not 
drivers, restricting sensitive functions to be invoked only from 
specific call sites, etc. 

Average indirect target reduction 
Average indirect target reduction (AIR) [9] is a metric proposed by 
Zhang et. al. to measure strength of control flow integrity (CFI) of 
a program and represents set of reachable  program addresses via 
indirect control transfer sites in program. We use the AIR metric as 
a measure of the improvement to a program using CET using 
below equation. 

(1 −	 𝑇i 𝑆
(

)*+

) 

Here n is the total number of indirect branch transfer sites in the 
program, S represents set of program addresses which all the 
indirect branch transfer sites can direct control flow with no CFI 
protections. And Ti is represents set of program addresses to which 
ith indirect branch transfer site can direct control flow with CFI 
protections. On x86, indirect control transfers can target any byte 
in program, thus S is program code size. Lower AIR value 
represents bigger (weak CFI) set of reachable addresses via 
indirect control transfer sites while higher AIR value represents a 
smaller (strong CFI) set of reachable addresses via indirect control 
transfer sites.  
With CET enabled, the ret instruction can target exactly one target 
in the program which is the return address at top of the shadow 
stack and the call/jmp indirect can only target an endbranch. For 
the SPEC CPU 2006 C/C++ benchmark the average AIR metric 
was computed as 99.98% and for individual programs ranges from 
99.93% (xalancbmk) to 99.99%. 

Linux Kernel Gadget Analysis 
We analyzed the Linux kernel (v4.9.9) binary for available gadgets 
using the ROPgadget tool [21]. The ROPgadget tool searches 
binaries for gadgets to facilitate research related to ROP exploits. 
The Linux binary we used was a default configuration kernel build 
of size 25 MB. We restricted our ROPgadget tool scan up to a 
gadget depth of 10 bytes yielding a sum of 197241 gadgets – we 
expect the usable gadget count to be more than that sum since we 
restricted our search space to a depth of 10 bytes due to limitations 
of the tool. The distribution of the counts for different gadget sizes 
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is shown in figure 4. Gadgets harvested via the ROPgadget tool 
ends in an indirect branch and are linkable/chainable. In contrast, 
in a CET-enabled binary, the exploit writer is restricted to using 
exported functions that have an ENDBRANCH and returning to 
the last address on the shadow stack. In the Linux kernel binary 
analyzed, 18412 exported functions were found. These exported 
functions need to be chained using an indirect call/jump and not 
through malicious use of ret. The measured average size of the 
kernel exported functions is 214 bytes and indicate the increase in 
complexity of using COP due to larger side-effects. 
 

 

Figure 4: Gadgets found in Linux Kernel v4.9.9 

We also analyzed the 18412 exported functions for the presence of 
an outgoing indirect CALL/JMP from those functions, and 
possible dispatch loops - the presence of a loop around an outgoing 
indirect branch that allows for functions to be chained. We found 
2988 functions with outgoing indirect CALLs and none with 
indirect JMP. Of the 2988 exported functions with forward links, 
we found 148 functions that have at least one dispatch loop. This 
elimination of unintended gadgets and small number of exported 
functions that can be linked indicates that the attack surface can 
now be analyzed systematically to eliminate un-needed cases and 
address un-safe code constructions via redesign or focused checks 
via known software techniques. 
 

 

Figure 5: Linux exported function size distribution 

5.3. Related work 
Shadow stacks have been proposed as an effective means for return 
address protection. Dang et. al. [8] provide a survey of the various 
shadow stack techniques [8] using software instrumentation and 

the associated performance overheads. Pointer authentication Code 
(PAC) [23] and CCFI [24] have proposed using cryptographic 
message authentication code (MACs) to protect control flow 
elements such as return addresses. Safestack separates the program 
stack into two regions to protect return addresses [25]. Davi et. al. 
propose HAFIX [12] that uses hidden label stack based hardware 
implementation to restrict returns to active call sites. Lee et. al. 
propose a Secure Return Address Stack (SRAS) [14] that modifies 
call and return instructions to implement a secure stack in 
hardware and use pinned physical memory as a backing store. CET 
approach to shadow stack has parallels to the SRAS scheme but 
unlike SRAS, it does not implement a hidden shadow stack and 
supports shadow stack in linear address space of program. A 
desirable property of the shadow stack is to protect it from 
unintended writes. Shadow stack schemes using software 
instrumentation have relied on information hiding [11] to prevent 
writes to the shadow stack whereas hardware schemes have been 
proposed [12, 14]  using on-chip memory for the shadow stack. 
CET extends x86 paging and EPT architecture to allow the OS and 
VMM to write-protect the shadow stacks. While protecting the 
return addresses using shadow stacks it is also important to be able 
to preserve the last-in-first-out (LIFO) [12, 13] property of control 
flow. CET defines a LIFO shadow stack and defines instructions to 
enable non-LIFO software constructs in a safe manner. An indirect 
call or jump can target any executable byte in the program and 
given the dense encoding of the x86 ISA the byte stream thus 
targeted may be interpreted as a valid sequence of instructions with 
high probability. Control-flow integrity schemes have tried to 
address this issue by introducing instrumentation to check if the 
target of the indirect call or jump is a valid target. Abadi et. al. [6] 
propose using prefetch instruction to embed an ID at valid indirect 
call/jump targets and inject a code sequence prior to the indirect 
call/jump to check the ID. Microsoft Control Flow Guard (CFG) 
[7] introduces a bitmap where each bit indicates whether there is a 
start of a function in the 16 bytes of process address space 
corresponding to that bit. A guard check function is invoked prior 
to an indirect call to test the CFG bitmap to determine if the target 
is a valid target. Hardware Control Flow Integrity proposal [5] 
proposes a pair of new instructions called “jump landing point” 
(JLP) and “call landing point” (CLP) that can be used to mark 
destinations of control flow branches in a program. LLVM Indirect 
Function Call Check (IFCC) [17] generates jump tables for 
indirect-call targets and adds code at indirect-call sites to transform 
function pointers such that they point to a jump table entry. 
Schuster et. al [15] have proposed defenses by restricting the 
invocation of sensitive functions to specific call sites in the 
program. CET provides the branch terminating instructions 
(ENDBR32/64) to enforce instruction alignment and restrict 
control transfers to valid indirect call targets in the program with 
low overhead and enables complimentary software and language 
specific policies to be anchored around the hardware enforcement. 

6. CONCLUSIONS 
CET provides the first general-purpose processor implementation 
of robust technologies for preventing control-flow subversion 
using techniques like ROP, and provides software with capabilities 
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to restrict COP/JOP attacks. CET design strives for minimal 
performance and memory overheads, while meeting strong security 
and compatibility objectives. In this paper, we perform an analysis 
of the enforcement of the security objectives for CET. In future 
work, we aim to evaluate how the CET ISA can be leveraged by 
software for further strengthening CFI properties for specific 
software domains. 
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