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ABSTRACT

Intel control-flow enforcement technology (CET) is a new hard-
ware feature available in recent Intel processors. It supports the
coarse-grained control-flow integrity for software to defeat mem-
ory corruption attacks. In this paper, we retrofit CET, particularly
the write-protected shadow pages of CET used for implementing
shadow stacks, to develop a generic and efficient intra-process
memory isolation mechanism, dubbed CETIS.

To provide user-friendly interfaces, a CETIS framework was
developed, which provides memory file abstraction for the isolated
memory regions and a set of APIs to access said regions. CETIS also
comes with a compiler-assisted tool chain for users to build secure
applications easily. The practicality of using CETIS to protect CPI,
CFIXX, and JIT-compilers was demonstrated, and the evaluation
reveals that CETIS is performed better than state-of-the-art intra-
memory isolation mechanisms, such as MPK.
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1 INTRODUCTION

Intra-process memory isolation is a classic approach for contain-
ing the faulty or malicious code. To defeat control-flow hijacking
attacks, including code-injection attacks [6, 12, 34], code-reuse
attacks [4, 29, 32], and data-only attacks [14, 16, 31], security re-
searchers have proposed techniques such as code-pointer integrity
(CPI) [18], shadow stacks [2] and CFIXX [1]. Such techniques pro-
tect sensitive pointers, return addresses, or virtual table pointers
in isolated regions of a process and permit accesses to said regions
only from trusted code. Another use case of intra-process isolation
is the use of Just-In-Time (JIT) compilers to isolate the code cache
for the JITed code from being tampered with by attackers with
arbitrary memory write capabilities.

Existing intra-process memory isolation mechanisms can be
roughly categorized into address-based isolation and domain-based
isolation [39]. Address-based isolation restricts (e.g., bound-check)
each memory access from the untrusted code to ensure that the
isolated memory region cannot be accessed [17, 38], such as the
Software Fault Isolation (SFI) [38]. As well as causing severe code
bloat [2], a large amount of instruction instrumentation will in-
cur high performance overhead [8]. As such, the focus of most
recent studies has been on domain-based isolation, which manip-
ulates the memory access permission of the isolated memory re-
gion instead. When the trusted code accesses said region, the ac-
cess permission is enabled, and the permission is disabled after
the access is finished. To improve the efficiency of the permis-
sion switching, researchers have leveraged various hardware fea-
tures, such as VMFUNC [13, 17, 19, 30], memory protection keys
(MPK)[2, 11, 13, 17, 27, 28, 37] and supervisor memory access pre-
vention (SMAP) [39]. Among such schemes, the MPK-based isola-
tion scheme is the most prominent and extensively studied, as it
does not rely on hardware virtualization. However, MPK-based solu-
tions still suffer from high performance overhead when permission
switching is frequent [39, 42], e,g., CPI and shadow stack.

In this paper, we proposed a new memory isolation mechanism
named CETIS, by retrofitting the shadow stack (SHSTK) mechanism
in the newly introduced Intel Control-flow Enforcement Technol-
ogy (CET) [15]. To ensure the integrity of return addresses, SHSTK
introduces a new memory page type called the shadow stack pages
(hereinafter referred to as shstk pages) to store return addresses. It
is achieved by using an unused combination of the R/W bit and the
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Dirty bit in the page table entry (PTE). Since the access permission
of the shstk pages is read-only, regular store instructions cannot
write such pages. The CALL and RET instructions update the shstk
pages implicitly, and if the return addresses at the top of the main
stack and the shadow stack are not matched during the function
return, a hardware exception will be raised. To support error han-
dling, SHSTK also provides a WRSS instruction to modify the return
addresses stored in the shstk pages.

At present, the general belief is that SHSTK is only useful in
protecting the integrity of return addresses and cannot be extended
to achieve more generic isolation [8]. However, such isolation was
actually achieved with CETIS in this work. CETIS places the iso-
lated memory region on the shstk pages and ensures that the WRSS
instruction—the only way to access said region—can only be used
by the trusted code. Further, since the NX bit can be orthogonal with
the R/W bit and the Dirty bit in PTE, the isolated memory region
can also have the execution permission to protect the JITed code.
Thus, CETIS provides a brand-new memory isolation abstraction
that protects the integrity of data and code from other compartments.
Additionally, as CETIS separates the isolated memory region from
the shadow stacks used by CET, CETIS can work alongside CET.

However, as SHSTK and WRSS are not designed for general-
purpose memory isolation, retrofitting such hardware features to
build a generic and efficient memory isolation mechanism is techni-
cally non-trivial. The primary challenge stems from the constraints
of using the WRSS instructions.

First, the WRSS instruction can only write fixed-sized data (i.e.,
4/8 bytes) into the shstk pages, and the destination address must be
4/8 byte aligned. As such, to use WRSS, a caching mechanism must
be developed for software: when writing data at a given address,
software needs to read the data at the aligned address first, combine
the data, and then write back the combined data at the aligned
address. Choosing an optimal write strategy with WRSS’s alignment
requirement is challenging since the program is required to infer
the destination address of WRSS and optionally perform the read
and combine operation as needed.

Second, despite also being a memory access instruction, the WRSS
instruction is not as efficient as mov. In our empirical evaluation, the
latency of WRSS is around 9.3 CPU cycles, while that of mov is less
than 1 CPU cycle (when no cache miss occurs). Therefore, the lower
number of the WRSS instructions are, the less performance overhead
it would introduce. Hence, to support use cases that continuously
write small-sized data (e.g., one byte), a buffering approach must
be adopted, wherein software needs to combine the data into a
buffer and flush the buffer into the memory with WRSS as needed.
However, there are challenges in maintaining the consistency of
the buffer and the isolated memory region and avoiding irrelevant
software from disrupting the content of the buffer.

To address the aforementioned challenges, CETIS proposes a new
memory file abstraction (called cmfiles) for the isolated memory
regions and a set of APIs to access said regions. CETIS supports two
different access modes: the read/write mode and the append mode.
The read/write mode can read/write data at arbitrary position with
arbitrary length in a cmfile. To meet the alighment requirements,
CETIS provides APIs for users to provide alignment hints. CETIS
can also automatically infer the alignment of the destination posi-
tion. The append mode is used for frequent updates of small-sized
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data. A write-combine buffer is also introduced, which is imple-
mented in a reserved general-purpose register. A compiler-assisted
tool chain is provided for maintaining the consistency of the buffers
and the isolated memory region.

We implemented CETIS on the Linux/X86_64 platform. To eval-
uate the performance overhead in comparison with alternative
solutions, we also deployed the SFI-based isolation scheme, the
MPK-based isolation scheme, and CETIS to protect the two defenses:
CP1I [18] and CFIXX [1]. The experiments on SPEC CPU2006/2017
benchmarks and the Nginx web server revealed that CETIS achieved
the lowest performance overhead on average. We also applied
CETIS to protect the JITed code of the JavaScript engine, Chakra-
Core. The results suggest that compared with other isolation schemes,
CETIS is the most efficient.

In general, the contributions of this paper are as follows:

e A novel CET-based isolation mechanism. We propose a new
memory isolation scheme using SHSTK in CET, which can be
applied to protect sensitive data in software defenses and the
JITed code in JIT compilers.

e A comprehensive study on CET’s SHSTK and WRSS. We
conduct a comprehensive study on CET’s SHSTK and the newly
introduced WRSS instruction, in terms of their performance,
architectural/micro-architectural behavior, etc.

e A new software framework. We developed a software frame-
work, including a set of user-friendly and performance-optimized
APIs and a compiler-assisted tool chain, for easy integration
with CETIS.

e New insights from implementation and evaluation. We
implement and evaluate a prototype of CETIS, and the results
show that it outperforms the existing approaches. Our study
suggests that CETIS is not only practical but efficient.

2 BACKGROUND AND RELATED WORK

2.1 Intra-process Memory Isolation

Intra-process memory isolation is usually used to protect the iso-
lated memory region. Information hiding (IH) is a commonly used
(pseudo) isolation method [41], which hides the isolated region
within a wide address space, and relies on a high random entropy
to keep it safe. But, recent studies [9, 20, 26] have shown that IH is
no longer safe. Hence, strict memory isolation is needed to protect
the isolated region [40]. The existing (strict) isolation methods can
be classified into address-based and domain-based isolation.

Address-based isolation method. The address-based isolation
restricts (e.g., bound-check) each memory access from the untrusted
code to ensure that the isolated region cannot be accessed, such as
the Software Fault Isolation (SFI) [38]. To accelerate bound check-
ing, Intel introduced the Memory Protection Extensions (MPX) [15],
which introduces BNDCU/BNDCL instruction to quickly check whether
a given value is within a boundary. Due to the huge code instru-
mentation, the MPX-based isolation still incurs high performance
overhead. When protecting the shadow stack, an average overhead
of 14.57% is incurred on the SPEC CPU2006 [39]. In addition, it
causes serious code bloat (e.g., the average of 41.67% [2] on SPEC).
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Domain-based isolation method. The domain-based isolation
changes the access permission of the isolated memory region by en-
abling/disabling the access permission before/after accessing it. The
mprotect() system call is commonly used to switch the access permis-
sion. To accelerate the permission switching, the hardware features
were used in recent works. Some works [2, 11, 13, 17, 27, 28, 37] used
the Memory Protection Keys (MPK) [15], some works [13, 17, 19, 30]
used the VMFUNC [3], and SEIMI [39] used the Supervisor Memory
Access Prevention (SMAP). The MPK-based isolation was found to
be the most efficient without relying on virtualization. MPK divides
the user memory space into 16 domains via attaching 4-bit mem-
ory protection keys in the page table entry (PTE) and provides a
WRPKRU instruction (taking about 27 CPU cycles) to change the ac-
cess permission of each domain. However, the MPK-based isolation
is still not fast enough. It incurs an overhead of 61.18% to protect
the shadow stack [2].

Some works proposed the privileged move method [2] by in-
troducing a new instruction to only access the isolated memory
region [8, 21, 33]. IMIX [8] enables a reserved bit in PTE to identify
whether the page is sensitive, and provides a new memory access
instruction SMOV to access the sensitive pages, while other memory
access instructions cannot do. MicroStache [21] follows a similar
idea by introducing new XLD/XST instructions. HDFI [33] introduces
a tag for each machine word, which indicates whether the machine
word is sensitive. It adds the SDSET1 instruction to mark the data as
sensitive, and adds the LDCHKQ@/LDCHK1 instruction checks whether
the data tag meets the expectation when loading the target data.
Notably, these approaches need to modify the simulator, and thus,
cannot be deployed on commercial processors. CETIS is the first
work to achieve this on commercial processors.

2.2 Intel Control-flow Enforcement Technology

The Intel Control-flow Enforcement Technology (CET) is a new
hardware feature of Intel’s 11th generation processors, and consists
of two components: Indirect Branch Tracking (IBT) and Shadow
Stacks (SHSTK). The IBT is used to protect the forward control flow
of a program. When the program is indirectly called/jumped, the
newly added state machine enters the WAIT_FOR_ENDBRANCH
state. Only when the next executed instruction is the ENDBR, the
state machine will enter the IDLE state, allowing the program to
continue; otherwise, a control protection exception (#CP) will be
triggered. As a result, coarse-grained CFI can be achieved by in-
serting the ENDBR instruction before all indirect call/jump targets.
Based on IBT, one could achieve coarse-grained control flow in-
tegrity (CFI). Further, FineIBT [22] proposed a more fine-grained
CFI by combining IBT with the default LLVM-CFIL.

SHSTK is a hardware shadow stack, and the newly added shadow
stack pointer (%SSP) register points to the top of the shadow stack.
The CALL and RET instructions also push and pop the return address
on the shadow stack. When executed, the RET instruction checks
whether the return addresses on the top of the main stack and the
shadow stack are the same. If not, a #CP exception will be raised.

To store the protected shadow stack, SHSTK introduces a new
memory page type, the shadow stack page (i.e., shstk page). SHSTK
uses an unused combination of bits in the PTE to identify the shstk
pages — the R/W bit (set as 0) and the dirty bit (set as 1) [15]. That
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Fig. 1: The high-level idea of CETIS.

is, the shstk page is a read-only dirty page and the regular memory
access instructions do not have write permission, but the CPU is
able to store the return address on the page when executing the
CALL instruction. Since the mismatch of return address may occur
in certain legal scenarios, such as the C++ exception handling, the
WRSS instruction is introduced to modify the return address on
the shstk pages. The WRSS instruction has two variants to support
different data sizes, i.e., WRSSQ (for 8 bytes) and WRSSD (for 4 bytes).
The WRSSQ/WRSSD instruction writes the 8-byte/4-byte data from
a 64-bit/32-bit general-purpose register to a destination address
on the shstk page. Further, the destination address must be 8-byte
aligned for WRSSQ and 4-byte aligned for WRSSD. If the alignment
requirement is not met, a #GP exception will be raised.

Mitigation against spectre attacks. IBT ensures the instructions
at the target of an indirect JMP/CALL will only speculatively execute
if there is an ENDBR instruction at the target, and SHSTK ensures
the return stack buffer cannot be misused to speculatively return
to a location when the return address is mismatched. Swivel [23]
leverages CET to harden WebAssembly against Spectre attacks on
the branch target buffer (BTB) and the return stack buffer (RSB).

3 OVERVIEW

In this section, we outline the high-level idea of building a memory
isolation technique using SHSTK and the empirical analysis of
SHSTK’s architectural and micro-architectural features for such
use cases.

3.1 CETIS: CET-based Isolation Technique

Because the shstk pages can only be written by WRSS instructions
but not other memory access instructions, we opportunistically
retrofit this property to develop a generic memory isolation tech-
nique. To expand further, CETIS sets the isolated memory region as
the shstk pages, which can only be written by the trusted code using
WRSS instructions. The integrity is effectively ensured by restricting
the ability of the untrusted code to use WRSS instructions.

The high-level idea of CETIS is shown in Fig. 1. It allocates
contiguous shstk pages as the sensitive memory region to store the
sensitive memory objects. There is a guard page (i.e., a read-only
page) before and after the isolated memory regions. CETIS does
not preclude the normal use of SHSTK, which could allocate other
shstk pages as the shadow stack to store return addresses and set
the %SSP register to point to said pages. Other regular memory
regions, such as the stack and the heap, are still set as the normal
memory pages. The isolated memory region can only be written
by WRSS instructions, and can be read arbitrarily as usual.

Since CETIS separates the memory access operations on the
regular memory region and the isolated memory region, it is funda-
mentally different from existing address-based and domain-based
isolation methods. The core idea of existing methods is to restrict
the regular memory access instructions, for example, by confining
the address range in address-based methods and controlling the ac-
cess permission in domain-based isolation methods. Contrastingly,
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Fig. 2: Performance of software shadow stack mechanism and CET’s
SHSTK on SPEC CPU 2017 C/C++ benchmarks.

CETIS introduces the new WRSS instruction for accessing isolated
memory regions, which restricts any code without accesses to the
new instruction from accessing isolated domains.

3.2 Threat Model

We assume an adversary can exploit the vulnerabilities in the victim
program to obtain arbitrary memory read/write primitives, but
she is not yet able to alter its control flow (which is likely to be
her goal, though). We further assume the system software, e.g.,
the operating system and the hypervisor, and the hardware are
secure and trustworthy. The threat model of CETIS is the same as
prior works [17, 27, 39]. While CETIS is designed to be generic, we
specifically consider two common use cases.

Use case 1. The protected programs can be server programs, such
as the Nginx web server, or user applications, such as browsers.
Memory corruption defenses are deployed to prevent attackers from
hijacking the control flow. CETIS can be used to protect the sensitive
memory objects isolated by the defenses and/or the metadata of
the defenses, such as the safe region in the CPI.

We assume the defense mechanism is properly implemented.
Therefore, the defense mechanism ensures that the adversary can-
not launch code-injection attacks or code-reuse attacks to execute
unintended WRSS instructions; and CETIS prevents the adversary
from tampering with the sensitive memory objects, which is the pre-
requisite of breaking the defense mechanism. As such, the defense
mechanism and CETIS protect each other.

Use case 2. The protected software has integrated a just-in-time
(JIT) compiler. The attack target of adversaries is to break the in-
tegrity of the code cache and inject shellcode therein, i.e., attackers
use the arbitrary write primitive to modify the code cache directly.
CETIS can be used to protect the code cache against such attacks. In
such a scenario, CETIS shares the same threat model with other iso-
lation works on JIT compilers, such as libmpk [27] and ERIM [37].

3.3 Understanding SHSTK and WRSS

Retrofitting CET’s SHSTK for memory isolation seems a promising
idea, but the potential impact on the performance of the applications
using CETIS needed to be estimated first. Specifically, we aim to
empirically analyze the following properties:

o Performance impact due to SHSTK. As CETIS needs to enable
the SHSTK mechanism, an application using CETIS would have
to use the SHSTK mechanism. Thus, we need to evaluate the
degree of the slowdown to the application caused by SHSTK.
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Fig. 3: The latency of writing data using MOVQ/MOVD and WRSSQ/WRSSD
with different numbers of instructions (average of 1 million repeti-
tions). M indicates cache miss, and H indicates cache hit. The target
address of the write operation is cache-line aligned.

e Latency of WRSS. As CETIS uses WRSS instructions to store
data into the isolated memory region, we need to measure the
latency of WRSS to estimate the impact of frequent stores.

e Comparison with MPK. Though providing a different abstraction,
CETIS is considerably similar to MPK in terms of use cases. We
need to compare CETIS with the MPK-based scheme, which is
generally regarded as the state-of-the-art method for isolation.

o Other properties of SHSTK. We need to understand whether
SHSTK is restricted to only hold data, and whether there are
constraints or performance penalties if the shstk pages can also
hold and execute code.

As such, we conducted the empirical tests in consideration of
the above aims. All the following experiments were performed on
an Intel(R) Core (TM) i7-1165G7 CPU with Linux kernel v5.10.0.

3.3.1 The Performance Evaluation of SHSTK. We used SPEC CPU
2017 C/C++ benchmarks to evaluate the performance of the software-
implemented shadow stack and the Intel CET’s SHSTK based shadow
stack. We used the compact register scheme [2] for the software
shadow stack, which reserves the %R15 register to store the shadow
stack’s base address. We evaluated the performance of the software
shadow stack with and without the protection of the MPK-based
isolation method. Since Intel CET was already supported by LLVM,
we used the Clang-7.0.1 compiler directly to enable the Intel CET’s
SHSTK mechanism when compiling the SPEC benchmarks.

As shown in Fig. 2, six test cases were missed, i.e., omnetpp_r/s,
leela_r/s, parest_r and povray_r. This was due to #CP exception
being triggered when the return addresses do not match on the main
stack and shadow stack. The experiments showed that SHSTK (the
geo_mean 2.02%) was highly efficient in protecting the backward
edges of the control flow. Further, SHSTK was slightly slower than
the software shadow stack without the isolation protection (the
geo_mean 1.13%), but was much faster than the software shadow
stack with the MPK-based protection (the geo_mean 18.05%).

Observation 1: SHSTK is highly efficient and could be widely
deployed. Compared with software-based solutions, CET’s
SHSTK is more efficient in isolating the shadow stacks.

3.3.2 Latency of WRSS. As a memory access instruction, WRSS was
compared with the regular memory access instruction, MOV. WRSS
supports memory writes with two different data sizes, i.e., WRSSQ
with 8B and WRSSD with 4B. We compared WRSSQ with MOVQ and
compared WRSSD with MOVD. We assessed the latency of WRSS and
MOV under controlled cache misses or cache hits. Fig. 3(a) showed
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//write the 1-byte 'a' at the 8-byte aligned address (dst)

asm volatile(
"mov $0x61,%%rcx \n\t"
"mov (%0),%%rax \n\t"
"mov $0x0,%%al \n\t"
"or %%rax.,%%rcx \n\t"
"wrssq %%rex ,(%0) \n\t"
cr"r'(dst): "rex ", "rax");

//%rcx contains the data 'a
//read 8 bytes data at the dst
//clear the lowest 1-byte data
//combine the written data
//write the combined data

Listing 1: Example code for writing 1-byte data at 8-byte aligned
address by using WRSSQ.

the latency of writing data using MOVQ and WRSSQ with different
numbers of instructions, while Fig. 3(b) showed the latency of
MOVD and WRSSD. The target address of each write operation was
cache-line (64-byte) aligned in this experiment. We can see that the
latency of a write operation was the same whether or not the write
operation encountered a cache hit or a cache miss, which could
be attributed to the store buffer (see further analysis in Appendix
§A.0.1). And the latencies of WRSSQ and WRSSD were the same (both
took 9.3 cycles), which was slower than MOV (0.8 cycles).

Observation 2: The latency of WRSS takes about 9.3 CPU
cycles which is slower than the MOV instruction. The latencies
of two variants, i.e., WRSSQ and WRSSD, are the same.

3.3.3  Comparison with MPK. To estimate the performance of CETIS
with respect to MPK-based isolation schemes, we compared WRSS
with isolated memory updates using MPK. We defined PKMOV as the
following sequence: enabling write permission (WRPKRU)—writing
data (MOV)—disabling write permission (WRPKRU). We constructed
an experimented to compare the write latency with WRSS and PKMOV
with different data lengths. The destination addresses were cache-
line aligned to meet the alignment requirement of WRSS.

The experimental results are shown in Fig. 4. We can see that
WRSSQ performed better than WRSSD due to the support of longer
data writes. And WRSSQ performed better than PKMOVQ when the
data size was less than or equal to 24 bytes. As the data size increased
to over 24 bytes, PKMOVQ performed better than WRSSQ.

We can also see that the latency of writing 1 byte to 7 bytes
of data by using WRSSQ was slightly higher than that of writing 8
bytes, and the latency of writing 9 bytes to 15 bytes was slightly
higher than 16 bytes. This could be attributed to the need for an
additional data combination operation: WRSSQ can only write data
with a fixed length (i.e., 8 bytes) and the destination address has
to be 8-byte aligned. Data combination is illustrated in Listing 1,
which provides an example of writing one-byte data at the 8-byte
aligned address dst. It needs to read the data at the aligned address
first (line 4), then combine the data (line 5 and line 6), and write
the combined data at the aligned address using WRSSQ (line 7). If
the address is not 8-byte aligned, the data combination operation
will be more complicated.

Observation 3: A data combination operation is needed when
using WRSS to write data with arbitrary length at an arbitrary
address. WRSSQ performs better than WRSSD and is better than
PKMOV when the data writing is within 24 bytes.

3.3.4  Other properties of shstk pages. As mentioned in §2.2, the
shstk pages are identified by using an unused combination of the
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R/W bit and the dirty bit in PTE. Hence, we found that other bits
in PTE could be orthogonal to the bits set of the shstk pages. Such
finding could be used to achieve other interesting mechanisms.
For example, since the NX bit can be cleared in PTE, the shstk
pages can be executable; and since the protection key bits can
be enabled, the shstk pages can be also protected by the MPK.
§3.3.2 has already evaluated the write operation (i.e., WRSS), we
also evaluated the read and execution operations. We used mov
instruction to sequentially read 80KiB of data in 20 consecutive
4KiB normal pages and shstk pages, respectively, to evaluate the
impact of shstk pages on read operations. To evaluate the impact
of shstk pages on execution operations, we set 20 consecutive 4KiB
code pages which held consecutive simple inc instructions (with
the register operand), and measured the latency of the instructions
after these pages were configured as normal pages and shstk pages,
respectively. We found that (1) the read and execution operations
had no additional restrictions (e.g., no alignment requirements)
compared to the operations on the normal memory pages; and (2)
the latencies of read and execution operations on the shstk pages
were the same as the operations on the normal memory pages.

Observation 4: The shstk pages can be executable to protect
the code, and there is no difference between the read/execu-
tion operation on the shstk pages and the normal pages.

3.4 Challenges of Utilizing SHSTK in CETIS

Based on the above observations, we find that SHSTK is efficient
and CETIS could be performed better than MPK-based scheme in
the situation wherein a small amount of data is written at a time.
Further, CETIS can be used to protect more generic data, such as
code. However, several challenges render the efficient use of WRSS
difficult for programmers:
Challenge-1. A data combination operation is needed when using
WRSS instructions to write data with arbitrary length. Choosing the
optimal write strategy with WRSS instructions based on the situation
of the address alignment and the data length is challenging.
Challenge-2. The WRSS instruction is not as efficient as the MOV
instruction. To complete a given data write operation, as few WRSS
instructions as possible need to be used. Therefore, it is important to
buffer small data writes. Accordingly, determining how to maintain
and secure this buffer is challenging.

In the next section, we will introduce the CETIS framework and
show how CETIS addresses the aforementioned challenges.

4 THE CETIS FRAMEWORK

To address the challenges listed in §3.4, CETIS provides a software
framework (as shown in Fig. 6) for developers to adopt CETIS
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easily. Specifically, CETIS provides a memory file abstraction for the
isolated memory regions. One isolated memory region is abstracted
as a CETIS memory file structure. Accessing to these regions is
performed as read/write to the files using a set of APIs offered by
CETIS. As a software framework, CETIS provides a static library
(i.e., CETIS rt-compiler in Fig. 6) and a modified compiler tool-chain.

4.1 The CETIS Memory File Abstraction

As shown in Fig. 5, an isolated memory region is abstracted as a
new memory file structure, referred to as cmfile (CETIS memory
file). A similar file abstraction is selected due to the buffer design
in CETIS being similar to the file buffer in the GNU C Library. The
details of isolated memory regions and complicated WRSS usages
are completely hidden from users. Users can operate cmfiles di-
rectly to ensure the memory objects’ integrity. CETIS is responsible
for translating the operations on a cmfile to the operations on the
corresponding isolated memory region. Each cmfile position is con-
tinuously mapped to the corresponding isolated memory location.
And they differ by a fixed offset which is 4KiB aligned.

The cmfile supports two different access modes — the read/write
mode and the append mode.
Read/Write mode. The read/write mode allows users to read
and write data with arbitrary length at an arbitrary position of a
cmfile. Since read/write operations are directly translated into the
accesses of the isolated memory region, no buffering is necessary.
In this mode, a read operation is directly translated into a memory
load with mov, and a write operation is translated into a store with
WRSSQ, which is optionally proceeded by a load with mov and a data
combination operation. For example, as shown in Fig. 5 (a), writing
4 bytes of data at position 0x2 will be translated into one memory

load with mov (@), one data combination operation (@) and one
write operation with WRSSQ (®).

Since data combination operations are highly dependent on ad-
dress alignment, if the alignment can be determined statically, the
operations can be optimized. For the operation in Fig. 5 (a), 8 bytes
of data are being written at the position 0x18, it only needs one
WRSSQ instruction (®). To support automated alignment inference,
CETIS leverages the known-bits analysis in LLVM, which performs
backward analysis to prove that each individual bit of a value is
either zero or one, and to determine if the lowest 3 bits of the write
position are known or not. If they are known, CETIS will then use
this alignment information to optimize this write operation. CETIS
also supports user-provided alignment hints. If users provide the
alignment hint for a write position, CETIS will use this information
to optimize all relevant write operations. Note that false alignment
inference will not cause the crash of the program, since it can be
handled lazily in CETIS by capturing the #GP exception.

Append mode. The append mode is designed to support the writ-
ing of small-sized data at consecutive positions of a cmfile. In this
mode, CETIS introduces a write-combine buffer, which integrates
the idea of caching and buffering, and only flushes the buffer to
the isolated memory region when needed. CETIS reserves a 64-bit
general purpose register %R14, which is used as a buffer that caches
up to 8 bytes of data at an 8-byte aligned position in the cmfile.
Users can specify the starting position of the append operations on
the cmfile. A memory pointer, named append_ptr, is introduced to
store the translated memory location from this specified position.
Each append operation will append data at the append_ptr and
then increase the append_ptr by the size of this appended data. The
buffer always caches 8 bytes of data starting at the aligned address
append_ptr&~0x7. Once the append_ptr reaches the buffer’s bound-
ary, the buffer will be synchronized, i.e., flushing its content into
the corresponding memory chunk and then loading the next 8 bytes
of data from the memory. In Fig. 5 (a), the two consecutive append
operations each appending 2-byte data from position 0x34 will be
translated into two data combination operations into the buffer (&
and ®). Since the append_ptr reaches the buffer’s boundary, the
buffer’s content will be flushed into the isolated memory region
using WRSSQ (@). If the append_ptr exceeds the buffer’s boundary
due to changing the starting append position by users, the buffer
will be synchronized, i.e., flushing and loading at the new aligned
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address. Users can also flush/load the buffer at any time using the
CETIS-provided synchronization operation.

Supporting multiple cmfiles. Each isolated memory region cor-
responds to one cmfile. CETIS supports multiple cmfiles for each
process. When operating on multiple cmfiles, however, the append
mode introduces new challenges: the write-combined buffer, %R14,
must be shared by all cmfiles; CETIS needs to switch buffers when
performing the append operations on different cmfiles, for which
the concept of the current cmfile is introduced. Users can only per-
form the append operations on the current cmfile, and thus need to
explicitly switch the current cmfile to perform append operations
on other cmfiles. CETIS flushes the contents of the buffer before
the switch and loads it from another cmfile after the switch.

The data structures in CETIS. As shown in Fig. 5 (b), to describe
a cmfile, CETIS introduces a structure called CMFILE (similar to the
FILE in the GNU C Library) which contains three fields: base is the
base address of the corresponding isolated memory region; size is
the size of the isolated memory region; aptr_tab_idx is the index
of this cmfile’s append_ptr in the APTR_TABLE, which contains
append_ptrs of all cmfiles. To indicate the current cmfile, CETIS
introduces a memory pointer called CURRENT which points to the
current CMFILE. To support multi-threading, the APTR_TABLE
and the CURRENT are stored in a dedicated page of the thread-local
storage area (at the location %FS-PAGE_SIZE). Since the isolated
regions may be shared between threads, all CMFILEs are stored at
a dedicated page which is pointed to by the %GS register.

The Integrity of CETIS’s data structures. All data structures in
CETIS are stored on the shstk pages, including append_ptr. Updates
of these data structures need to use WRSSQ. Since the append_ptr
needs to be updated in each append operation, using WRSSQ for each
append operation will negate the performance gain of buffering.
To address such problem, CETIS reserves the %R15 register to store
the value of the append_ptr. During the append operation, CETIS
only needs to update the %R15 register. When switching cmfiles,
this register needs to be synchronized, i.e., storing its value into the
append_ptr of the switched-out cmfile in the APTR_TABLE and
loading the value from the append_ptr of the switched-in cmfile.

4.2 Maintaining the Append-mode Buffers

As mentioned in §4.1, CETIS needs to reserve two general pur-
pose registers %R14 and %R15 for the buffer and the append_ptr in
the append mode. We next discuss how to prevent these registers
from being used by irrelevant code (§4.2.1) and how to ensure the
consistency of the buffered values in these registers(§4.2.2).

4.2.1 Avoiding Buffer Corruption. Intuitively, if the two registers
are reserved in the whole program, corruption of the registers can be
avoided using compiler-assisted approaches. However, this requires
CETIS to re-compile all shared libraries, which can be impractical.
Therefore, CETIS chooses to reserve the two registers selectively
instead of in the whole program—as long as there is a function in a
code file that uses append-mode buffers, all functions in the same
folder where this code file is located are assumed to reserve registers.
This may be coarse-grained, but it already achieves a good balance
between the overhead of the frequent synchronization operations
and the overhead of reserving registers on too many functions.
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For the convenience of discussion, we denote a function that
uses the append-mode buffers as a rsvdFunc and denote other func-
tions as the nmlFuncs. CETIS identifies all rsvdFuncs and nmlFuncs
during compilation, and forces synchronization of the buffers (in-
cluding both %R14 and %R15) (1) when a rsvdFunc invokes nmIFuncs
and (2) when a nmlFunc invokes rsvdFuncs. However, precisely
identifying all transitions between rsvdFuncs and nmlFuncs is chal-
lenging. To ensure completeness, we adopt a conservative strategy,

which may cause unnecessary register synchronizations but no

missed ones: (1) In a rsvdFunc, the synchronization will be inserted
at the call-site of a direct/indirect call to a nmlFunc, since the con-
trol flow may be transferred from a rsvdFunc to a nmlFunc at these
call-sites; (2) The synchronization will be inserted at the control
flow transition from nmlFunc to rsvdFunc, that is, the entrance of all
rsvdFuncs that are called directly or maybe indirectly by nmlFuncs.
Only a rsvdFunc is a global function or its address has been taken,
it will be recognized as a possible indirect call target by nmlFuncs.
If it is also the direct call target of rsvdFuncs, this rsvdFunc will
be cloned into two variants: one still has the synchronization; the
other does not, which is only used for the direct call by rsvdFuncs.

4.2.2  Preserving Buffer Consistency. The buffer is synchronized
either implicitly by CETIS or explicitly by the users. For ease of
discussion, we use append_ptr(reg) to represent %R15 and use ap-

pend_ptr(mem)to represent the append_ptr stored in the APTR_TABLE.
The synchronization operations contain the flush/load operations

of the buffer and the store/load operations of the append_ptr(reg).

Implicit synchronizations. Three situations may trigger implicit
synchronizations of the buffer and the append_ptr:

e Buffer sync. caused by append_ptr changes. When the ap-
pend_ptr(reg) exceeds (due to users’ setting) or reaches (due to
increasing in append operations) the buffer’s boundary, CETIS
will flush the buffer and load the 8 bytes of data at the aligned
address of the current append_ptr.

Buffer/append_ptr sync. caused by cmfile switches. When
switching cmfiles, CETIS needs to synchronize the buffer and
the append_ptr. Before switching, CETIS flushes the buffer and
stores the append_ptr(reg) to the append_ptr(mem); after switch-
ing, CETIS loads the corresponding memory chunk of the switched-
in cmfile into the buffer, and loads the append_ptr(reg) from the
append_ptr(mem) of the switched-in cmfile.

Buffer/append_ptr sync. caused by irrelevant code invokes.
When the control flow is transferred between rsvdFuncs and
nmlFuncs, CETIS needs to synchronize the buffer and the ap-
pend_ptr(reg). If the control flow is transferred from rsvdFuncs

to nmlFuncs, CETIS flushes the buffer and stores the append_ptr(reg)
to the append_ptr(mem); in contrast, CETIS loads the buffer and
append_ptr(reg).

Explicit synchronizations. There are two situations where the
users need to perform the buffer synchronizations explicitly:

o Users must synchronize the buffer explicitly during mode switch.
When switching CETIS from the read/write mode to the append
mode, users need to flush the buffer; when switching CETIS from
the append mode to the read/write mode, users need to reload
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Table 1: CETIS APIs

Description

Cat. APIs

CETIS initialization.
Allocate a cmfile.
Deallocate a cmfile.

int cetis_init (void)
1 CMFILE *cmf_open (size_t len, bool is_exec)
int cmf_close (CMFILE “cmfp)

FPI make_pos_ind (CMFILE *cmfp, off _t off)
assume_pos_aligned (FPI fpi, size_t align)

2 int cmf_write (FPI fpi, void “src, size_t len)
int cmf _read (FPI fpi, void *dst, size_t len)

Construct a position indicator.
Alignment hint for compiler.
Write data without buffer.
Read data without buffer.

int cmf append_byte (uchar val)
int cmf append_word (ushort val)
int cmf_append_dword (uint val)
int cmf append_qword (ulong val)

Append val w/ buffer at the append
position of the current cmfile.

int set_curr_append_pos (off_t off) Set the current append position.
If the argument is true, flush the
buffer to make its content global vi-
sible; otherwise, reload the buffer.
Switch cmfile.

Obtain the current cmfile pointer.

int cmf_sync_buf (bool is_flush)

int set_curr_cmf (CMFILE “cmfp)
CMFILE *get_curr_cmf (void)

the buffer. We do not anticipate frequent switches between the
two modes in the practical use of CETIS.

o Users must flush the buffer explicitly in multi-thread programs.
If a thread uses append operations on a cmfile, we do not ensure
memory consistency when other threads use read/write/append
operations on the same cmfile. Users need to use the flush oper-
ation in conjunction with locks to ensure memory consistency.
Since both the append_ptr(reg) and the append_ptr(mem) are
thread-private, there is no need to synchronize them.

4.3 The CETIS API

Based on the cmfile abstraction of CETIS, we design a set of APIs
(as shown in Table 1) to support the read/write mode and the append
mode, rather than using different sets of APIs to support differ-
ent modes. Such design draws on the APIs of the FILE, such as
open()/close(), fseek() and ffllush(), and encapsulates the internal
implementation as much as possible, thereby providing the con-
venience of use for users. We demonstrate the use of the APIs in
Listing 2. The APIs are divided into three categories.

The first category consists of the APIs for initialization. Before
using CETIS, users should invoke the cetis_init() (line 7 in List-
ing 2) to initialize the CETIS framework. CETIS will first check
whether the current system supports Intel CET, then allocate the
data structures used in CETIS on the shstk pages, and finally regis-
ter a signal handler to intercept #GP. Users may allocate a cmfile
by invoking cetis_open() (lines 8-9). CETIS will then allocate
contiguous shstk pages to the isolated memory region and initial-
ize the CMFILE and the APTR_TABLE structures. Users can also
de-allocate a cmfile by using cetis_close() (line 20).

The second category consists of the APIs for the read/write mode.
Users can read (via cmf_read()) and write (via cmf_write()) data
with arbitrary length at the arbitrary position through a file position
indicator FPI (lines 12 and 19), which is constructed by invoking
make_pos_ind(). FPI contains the translated memory location
from the cmfile position (lines 1-5). As mentioned in §4.1, to further
improve efficiency, users can use assume_pos_aligned() (line 11)
to provide the alignment hint of the FPI for the compiler. The
compiler uses the address alignment of this FPI to optimize the
internal code of the following cmf_write().

The third category consists of the APIs for the append mode.
Four APIs (i.e., cmf_append_{byte|word|dword|gword}()) are
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typedef struct file_pos_ind{ulong addr; CMFILE =*cmfp;}FPI;
FPI make_pos_ind (CMFILE *cmfp, off_t off) {
FPI cmfile_pi; cmfile_pi.cmfp=cmfp;
cmfile_pi.addr=cmfp->base+off; return cmfile_pi;

int main() {
cetis_init();
CMFILE xfpl=cmf_open(0x1000,true);
CMFILE *fp2=cmf_open(0x2000,false);
FPI cmfile_pi=make_pos_ind(fp1,0); /* construct a FPI x/
assume_pos_aligned(cmfile_pi,b8); /% alignment hint =%/
cmf_write(cmfile_pi,src,8); /* write 8B w/o buffer =x/
set_curr_cmf (fp1);/* switch current cmfile to fpl x/
set_curr_append_pos(@x20); /x set current append pos.x/
cmf_append_byte(valuel); /* append 1 byte to fpl =%/
set_curr_cmf (fp2);/* switch current cmfile to fp2 =x/
cmf_append_word(value2);/* append 2 bytes to fp2 %/
cmf_sync_buf(true); /x flush the buffer's content x/
cmf_read(cmfile_pi,dst,8); /x read 8B w/o bufferx/
cmf_close(fpl); cmf_close(fp2); return 0;

Listing 2: A code snippet for using CETIS APIs.

provided to append fixed-sized data (i.e., 1/2/4/8 bytes) to the ap-
pend position of the current cmfile (lines 15 and 17). To set the
current cmfile, users can use set_curr_cmf () (line 13) and the
buffer will be switched to this cmfile accordingly. The default ap-
pend position of a cmfile is at the beginning of this cmfile. Users
can also invoke set_curr_append_pos () (line 14) to specify a new
append position, and CETIS will synchronize the buffer (only when
the new position exceeds the buffer’s boundary) and switch it to
the new position. CETIS is not responsible for ensuring the APIs’
correctness if users read/write data at the same cmfile position by
using cmf_read()/cmf_write() and the append APIs simultane-
ously. Users should invoke cmf_sync_buf () (line 18) explicitly to
synchronize the buffer. The reason cmf_sync_buf () is not invoked
between cmf_write() (line 12) and cmf_append_byte () (line 15)
is that the APIs in lines 13-14 synchronize the buffer implicitly.

As mentioned in §4.1, global variables such as CMFILEs and
APTR_TABLE are isolated in the shstk pages. Local variables may
be corrupted in concurrent scenarios, for example, one thread may
invoke cmfile_write(), and another thread may leverage the ar-
bitrary write primitive to corrupt the local variables of the API,
thereby changing the semantics of the API and indirectly breaking
the isolation. To overcome the problem, local variables inside the
APIs are promoted to registers, instead of being spilled to memory.
Arguments passing between APIs such as position indicators may
also be corrupted, which is discussed in §8.

5 CASE STUDIES

5.1 Code-pointer Integrity (CPI)

CPI protects the programs’ code pointers, data pointers that may
be used to reference the code pointers, and the return address, all
of which are called sensitive pointers. As shown in Fig. 7 (a), the
safe region of CPI includes safe pointer store and safe stacks. In safe
pointer store, each sensitive pointer owns a data structure, which
contains the value, upper and lower bound of the object pointed
to by the sensitive pointer. The size of each structure is 24 bytes,
and its address is 8-byte aligned. Safe stacks are used to protect the
return address. The integrity of the safe region needs to be ensured.
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Fig. 7: Losslessly compress CPI’s metadata.

When using CETIS to protect CPI’s safe region, the safe stacks are
no longer needed as SHSTK is enabled to protect the return address.
We use cmf_open() to allocate a cmfile to hold the safe pointer
store and use cmf_read()/cmf_write() to access each sensitive
pointer’s data structure in the safe pointer store. Each update to
this 24-byte data structure requires executing the WRSSQ instruction
3 times. To improve the performance, we further compress the data
structure. {Value, upper, lower} are all within the range of the object
pointed to by the pointer, that is, using the value as the base address,
the upper and lower can be obtained by adding or subtracting the
offsets, thus, the metadata can be compressed losslessly. When
reading metadata, the compressed value can be restored to the
original metadata according to the compression rules.

The X86_64 processors can index 28 bytes of address space. Only
the lower 48 bits of the userspace pointer are valid, and the upper
16 bits are all 0. As shown in Fig. 7 (b), we compress the metadata of
each sensitive pointer into 16 bytes, called compress_val. The lower
48 bits in compress_val are value of the sensitive pointers. The
remaining bits are mainly used to store offset1 and offset2, among
which offset1 is equal to value minus lower, and offset2 is equal
to upper minus value. Bits 62 and 63 are extend bits, which are
used to identify the type of the sensitive pointers corresponding to
the metadata: when extend=1, the pointer is a code pointer; when
extend=2, the pointer is a data pointer that points to a “small object”,
whose size is less than 128 bytes, and offset1 and offset2 can be
encoded within 7 bits; when extend=3, the pointer is a data pointer
that points to a “large object”, whose size is larger than or equal to
128 bytes; and when extend=0, the pointer has been freed.

Different types of pointers have different metadata compression
strategies, as shown in Fig. 8, in which the data on the gray back-
ground represent the content that needs to be written to the cmfile.
Our goal is to minimize the amount of data written to the cmfile
each time. We can see that the code pointers only need to store the
value to compress_val (i.e., 8 bytes); the data pointers that point to
the “small object” store the value and two offsets (i.e., 8 bytes); the 48
to 61 bits of the compress_value of the data pointers pointing to the
“large object” are not enough to store the offsets, and thus, an extra
8 bytes are needed. When the pointers are free, the lower 8 bytes
are set to 0. Under the strategy of compressing metadata, only the
data pointers pointing to the “large object” need to store 16 bytes,
and in other cases, only 8 bytes need to be stored, which minimizes
the number of WRSSQ instructions for better performance.

5.2 CFIXX

Dynamic dispatch is the core feature of polymorphism in C++,
which allows the child class to rewrite virtual functions inherited
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Fig. 8: Compress_val of different types of sensitive pointers.

from the parent class. Polymorphism is implemented through vir-
tual tables, with each table containing the pointers of all virtual func-
tions in a class. To protect the integrity of virtual tables, they are all
stored in the . rodata section with read-only permission. However,
the virtual table pointers are still stored in the writable memory
which can be tampered with to launch VTable hijacking attacks [43].
To prevent such attacks, more fine-grained CFIs [24, 25, 36] have
been proposed to check the validity of each virtual function invok-
ing; other works have been proposed to ensure the integrity of the
virtual table pointers, such as CFIXX [1] and VTrust [44].

CFIXX [1] stores a backup of the virtual table pointers in a meta-
data table which is isolated by using the address-based isolation
method. CFIXX uses the virtual table pointer stored in the metadata
table to index the target function pointers to complete the invoking
of the virtual function. In detail, CFIXX modifies the compiler to
intercept the creation of the virtual table pointers in two places —
the constructor of the class and the initialization code of each RTTI
object, and then additionally stores the pointers into the metadata
table. CFIXX also modifies the compiler so that the virtual table
pointer is obtained from the protected metadata table every time.

CETIS replaced the address-based isolation used in CFIXX to
ensure the integrity of the metadata table. We use cmf_open() to
allocate a cmfile to hold the metadata table. Storing the virtual table
pointers into the metadata table is replaced to use cmf_write().
Since the virtual table pointer is 8 bytes and its address is 8-byte
aligned, each write operation to the cmfile only needs one WRSSQ
instruction. The virtual table pointers are obtained from the meta-
data table by using cmf_read(). Although CFIXX aims to protect
the forward edges of control flows, the protection of the backward
edges is still needed (also mentioned in its paper). When using
CETIS, the return addresses are protected by SHSTK by default.

5.3 JIT Compiler

To improve efficiency, the JavaScript engine introduces the Just-In-
Time (JIT) compiler. For the bytecodes that are frequently inter-
preted and executed, such as loop bodies and hot functions, the JIT
compiler compiles them into semantically and functionally equiv-
alent JITed code which is stored into a code cache. When these
bytecodes are executed again later, the JIT engine directly jumps to
the corresponding code cache for execution, without interpreting
it. To allow the JIT compiler to write the JITed code into the code
cache, both write and execute permissions are required, which vio-
lates the W @ X policy. Attackers can launch code injection attacks
by tampering with the code cache.

Some JIT engines such as ChakraCore protect the code cache
based on the mprotect() system call. Fig. 9(a) shows the JIT com-
pilation procedure of ChakraCore. When emitting the code cache,
a JIT engine compiles the Intermediate representation (IR) one
by one, and the generated JITed code fragments will be stored
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Fig. 9: The workflow of JIT compilation in ChakraCore.

in an encodeBuffer. After the emitting process, the encodeBuffer
will be written into the code cache through memcpy(). mprotect()
enables the write permission before memcpy() and disables it af-
terwards. Notably, mprotect() only protects the code cache from
being tampered with, but the encodeBuffer that temporarily stores
the binary code fragments is also readable and writable. Attackers
may indirectly tamper with the code cache by manipulating the en-
codeBuffer. To resist attacks against the encodeBuffer, ChakraCore
adds a checksum[35] for the encodeBuffer. When the JIT engine
compiles each IR into machine code for storage in the encodeBuffer,
it calculates the checksum of the machine code. After the code is
copied to the code cache, the JIT engine will calculate the check-
sum again, and an exception will be raised if it does not match the
previous checksum. Some works, such as libmpk [27], use the MPK-
based isolation method to protect the code cache, while retaining
the checksum mechanism to protect the encodeBuffer.

When using CETIS to protect the code cache, we modify Chakra-
Core’s JIT compiler to invoke cmf_open() for allocating an exe-
cutable cmfile to hold the code cache. Since the code is emitted
almost continuously, we mainly use the append APIs, which have
a built-in security buffer, to store the compiled binary code directly
into the cmfile without temporary storage in the encodeBuffer.
Fig. 9(b) shows the JIT compilation in ChakraCore with CETIS. The
temporary encodeBuffer is no longer needed and therefore the at-
tack vector is eliminated. Based on the method mentioned in §4.2.1,
CETIS identifies that all functions in the ChakraCore/1ib/Backend
folder need to reserve the %R14 and %R15 registers.

6 IMPLEMENTATION

Enabling CET for the whole system. CET is enabled when the
23rd bit (CET bit) of the %CR4 register is set. The MSR registers
[IA32_U_CET_MSR and IA32_S_CET_MSR configure CET for the
user mode and kernel mode, respectively. Taking IA32_U_CET_MSR
as an example, in the user mode, bit 0 controls whether the SHSTK
is enabled, bit 1 controls whether the WRSS instruction can be used,
and bit 2 controls whether the IBT is enabled.

Enabling CET’s SHSTK for a process. A process’ SHSTK capabil-
ity is marked in its ELF header and can be verified from the readelf
output. To build a SHSTK-enabled application, Binutils v2.31, GLIBC
v2.28, GCC v8.1 or LLVM v10.0.1 or later are required. The process
can use the compiler option -fcf~protection to enable CET, where full
and none are used to enable and disable the CET support of the pro-
cess, return and branch respectively indicates that the SHSTK and
IBT are enabled. GCC enables CET by default. If the programs need
any shared libraries, the loader checks all dependencies and enables
CET when all requirements are met. For backward compatibility,
GLIBC provides a few CET tunables via GLIBC_TUNABLES envi-
ronment variable, such as glibc.tune.x86_shstk=on, which enables
SHSTK for programs that need legacy shared libraries.
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Allocating the shadow stack pages. Programs can allocate shstk
pages by using mmap() with VM_SHADOW_STACK flag, and the
permission cannot include PROT_WRITE. In the CET patch, when
a process enables the CET’s SHSTK through the compilation option,
only the SHSTK is enabled by default, while the WRSS instruction is
not supported. CETIS modified the CET patch (3 LoC) to support the
WRSS when the SHSTK is enabled. Additionally, the CET patch does
not support the kernel to enable the CET. CETIS will be extended
to kernel space when the patch is available.

7 EVALUATION

We implemented CETIS on Ubuntu 20.10 (Kernel v5.10.0 with CET
patch) that runs on a 2.80 GHz 11th Gen Intel(R) Core (TM) i7-
1165G7 CPU with 8 cores and 32GB RAM. In this section, we eval-
uated the performance overhead of protecting CPI’s safe region
(§7.1) and the CFIXX’s metadata table and the code cache in the JIT
compiler of the ChakraCore (1.12.0.0-beta) (§7.2).

7.1 Protecting Memory-Corruption Defenses

Defenses Configuration. To evaluate the practicality and per-
formance of CETIS in protecting the isolated regions, we adopted
two defenses, CPI [18] and CFIXX [1], and applied CETIS to protect
their sensitive data, i.e., CPIs safe region and CFIXX’s metadata ta-
ble. For comparison, we implemented the SFI-based and MPK-based
schemes for these defenses. Since MPX [15] is discarded in the new
processors (with CET especially), we omitted MPX-based solutions
in our study. We used the address sandboxing SFI scheme [38], and
only memory writes were masked in the LLVM backend pass.

Macrobenchmarks. To evaluate the performance of different isola-
tion techniques, we chose the CPU-intensive benchmarks, i.e., SPEC
CPU2006 and SPEC CPU2017 C/C++ benchmarks. We compiled
them at the O2 optimization level with the link-time optimization,
and ran them with the ref dataset. For SPEC CPU2017, we used
2 copies for SPECrate benchmarks and 2 threads for SPECspeed
benchmarks. We used two defenses, CPI and CFIXX, to protect each
benchmark. For each combination of benchmark and defense, we
conducted experiments for four cases: (1) protected only by the IH-
based defense, (2) protected by the SFI-based isolation, (3) protected
by the MPK-based isolation, and (4) protected by the CETIS-based
isolation. The baseline does not enforce any protection.
Real-world application. To evaluate CETIS ’s robustness and im-
pact on real-world applications, we chose a popular web server, i.e.,
Nginx-1.14.2, as our protection target. Since Nginx is written in the
C language and CFIXX is a defense mechanism for C++ programs,
we only evaluate CPI on protecting Nginx. Similar to macrobench-
marks, we also conduct experiments with four protection cases.

7.1.1  Macro-benchmarks Evaluation.

CPI. Fig. 10 (1) and (3) show the performance overhead on the
SPEC CPU2006 and CPU2017 incurred by CPI [18] when using
IH/SFI/MPK/CETIS to protect its safe region (i.e., safe pointer store
and safe stacks). Some benchmarks are missing, because the CPI
failed to compile or run, or they raise #CP exception. They are
perlbench, sjeng, and omnetpp in CPU2006; for CPU2017, besides
the benchmarks listed in §3.3.1, perlbench_r/s, gcc_r/s, x264_r/s, and
blender_r are missing. We found the following two situations may
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Fig. 10: Performance overhead on the SPEC CPU2006/2017 C/C++ benchmarks incurred by CPI and CFIXX when using IH/SFI/MPK/CETIS to
protect their sensitive data. All overheads are normalized to the unprotected benchmarks.

raise the #CP exceptions during function returns: (1) pushing re-
turn address on the stack without using the CALL instruction; (2)
changing return address before executing the RET instruction. IH,
SFI and MPK indicate that CPI’s safe region (including safe stacks)
is protected by information hiding, the SFI-based scheme and the
MPK-based scheme; with MPK+SHSTK, the MPK only protects the
safe pointer store, and the return addresses are protected by SHSTK
instead of the safe stacks. It can be used to evaluate the perfor-
mance improvement effectuated by the SHSTK compared with the
safe stack; CETISy,, indicates the return addresses are protected
by SHSTK, and the safe pointer store is protected by CETIS and up-
dated by only using the read/write mode APIs; CETIS;,,. indicates
that use the lossless compression method in §5.1 compared with
CETIS;,. Note that the compression is only used in CETIS ..

In summary, when using IH, SFI, MPK, MPK+SHSTK, CETIS,,,
and CETIS;,,¢ to protect CPI, the geometric mean of the perfor-
mance overhead on SPEC2006 is 1.93%, 12.94%, 24.88%, 10.30%,
6.22%, and 4.05%, respectively; and the geometric mean of the per-
formance overhead on SPEC2017 is 1.85%, 12.26%, 27.88%, 9.23%,
4.77%, and 3.97%, respectively. We can see that, CETIS is more effi-
cient than SFI-based and MPK-based schemes, and the CETIS with
lossless compression incurs the lowest performance overhead.

To better compare CETIS with SFI-based/MPK-based schemes,
we define OH peme as the overhead incurred by a defense with a
specific isolation scheme. We also define A, px (=OHppksshsek —
OHcetis,,,) as the relative overhead between MPK+SHSTK and
CETISrw; Appkc FOHppksshstk — OHeetis, ) as the relative over-
head between MPK+SHSTK and CETIS,,c; A fi is the relative
overhead between SFI and CETIS,w; Asic is the relative overhead
between SFI and CETIS; 4.

Compared with MPK+SHSTK, CETIS;,, is faster in all 31 cases,
and the range of Ay is [0.15%, 40.66%]; CETIS . is faster in 28
cases. For these 28 cases, the range of A, pxc is [0.02%, 30.71%];
for the remaining cases, the range of Ap,,xc is [-8.17%, -2.79%].

Table 2: The statistics of write and read operations used on CPIL

Benchmarks Write Read

namd 3.7E+03 (0.19%)  1.9E+06 (99.81%)
gobmk 2.6E+08 (10.38%)  2.2E+09 (89.62%)
xalancbmk 3.9E+09 (7.73%)  4.7E+10 (92.27%)
namd_r 8.1E+05 (30.17%)  1.9E+06 (69.83%)

5.7E+09 (8.65%)
3.7E+07 (0.23%)

6.1E+10 (91.35%)
1.6E+10 (99.77%)

xalancbmk_r/s
imagick_r/s

Compared with SFI, CETIS,,, is faster in 25 cases. For these 25
cases, the range of Asf,- is [0.20%, 78.70%]; for the remaining cases,
the range of Ag; is [-56.56%, -0.48%]. CETIS v is faster than SFI
in 24 cases. For these 24 cases, the range of A f;c is [0.02%, 83.72%];
for the remaining cases, the range of Agy;c is [-75.41%, -2.32%].

The impact of the compressed write on CPI. Although CETIS; ¢
performs better on average than CETIS,,,, we still found that the

performance overheads of CETIS,,. in several cases, which are

listed in Table 2, are higher than that of CETIS,,,. This is because

that, when the sensitive pointers are de-referenced, decompressing

the metadata after reading from the isolated region in the compres-
sion method incurs additional overhead. As shown in Table 2, the

read operations on the isolated region account for the majority.

CFIXX. Fig. 10 (2) and (4) show the performance overheads on the
SPEC CPU2006 and SPEC CPU2017 incurred by CFIXX [1] when
using SFI/MPK/CETIS to protect its metadata table, which stores
the virtual table pointers. Some benchmarks are missing because of
raising #CP exception, they are povray and omnetpp in CPU2006,
and parest_r, povray_r, omnetpp_r/s, leela_r/s in CPU2017. SFI rep-
resents that metadata table is protected by the SFI-based scheme;
SFI+SHSTK indicates that the return addresses are additionally pro-
tected by CET’s SHSTK; MPK+SHSTK uses the MPK-based scheme
to protect the metadata table and CET’s SHSTK to protect the return
address; CETIS,, indicates that the return addresses are protected
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Fig. 11: Performance overhead on Nginx incurred by CPI when using
IH/SFI/MPK/CETIS to protect its safe region.

by CET’s SHSTK, and the metadata table is protected by CETIS and
updated by only using the read/write mode APIs.

In summary, when using SFI, SFI+SHSTK, MPK+SHSTK, and
CETIS;, to protect CFIXX, the geometric mean of the performance
overhead on SPEC2006 is 5.08%, 8.38%, 14.92%, and 5.64%, respec-
tively; and the geometric mean of the performance overhead on
SPEC2017 is 4.06%, 6.08%, 7.61%, and 5.28%, respectively. CETIS is
more efficient than SFI+SHSTK and MPK+SHSTK schemes, and is
1.22% slower than SFL. We define A,y (=OHppisshstk =~ OHeetis, )
as the relative overhead between MPK+SHSTK and CETIS,;,,. Com-
pared with MPK+SHSTK, CETIS,, is faster in all 11 cases, and the
range of Apypy. is [0.18%, 34.23%].

7.1.2  Real-world Application Evaluation.

Nginx. ApacheBench (ab) is used to simulate 10 concurrent clients
sending 10,000 requests; each request asks the Nginx server to trans-
fer a file remotely. We vary the size of the requested file, i.e., {1K,
5K, 20K, 100K, 200K}, to represent different configurations. Fig. 11
shows the performance overhead of Nginx under the protection
of CPI with IH, SFI, MPK, MPK+SHSTK, CETIS;,, and CETIS,yc.
The protection deployed in the six experiments are the same as
SPEC in §7.1.1. The geometric means of performance overhead are
1.10%, 2.29%, 3.43%, 2.14%, 1.68% and 1.56%, respectively. As the file
size increases, the overheads of all schemes decline. Further, CETIS
performed better than the SFI-based and MPK-based schemes.

7.2 Protecting Code Cache of ChakraCore

To evaluate the practicality and performance of CETIS to pro-
tect sensitive code, we applied CETIS to protect ChakraCore’s
code cache. For comparison, we also implemented the MPK-based
scheme (the same as ERIM [37] and libmpk [27]) for ChakraCore.
We evaluated their performance overheads with the Octane bench-
mark [10], which is the JIT-heavy benchmark at runtime. Each
JavaScript program in the benchmarks was executed 30 times, and
we calculated the average score. Five cases, that is, code-load, gbemu,
mandreel, typescript and zlib, can not execute normally because of
#CP exception triggered by the CET.

Fig. 12 shows the performance overhead on the Octane bench-
mark. ChakraCore uses mprotect() syscall to ensure the WeX strat-
egy on code cache, and the encodeBuffer of ChakraCore is pro-
tected by using the checksum; mprotect+SHSTK protects the return
addresses by CET’s SHSTK additionally, and the geometric mean
performance overhead is 11.08%; MPK+SHSTK represents that using
the MPK-based scheme to ensure the integrity of the code cache,
the encodeBuffer is protected by the checksum, and the return
addresses are protected by the SHSTK, and the geometric mean
overhead is 9.84%; CETIS,, represents that the JITed code is directly
written to the code cache by using the read/write mode APIs, thus
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the encodeBuffer is no longer needed, and the return addresses
are protected by the SHSTK. And the geometric mean overhead
is 10.59%; CETIS4ppena mainly uses the append APIs to write the
JITed code, and the geometric mean overhead is 8.53%.

We can see that using the append mode of CETIS to protect code
cache outperformed the mprotect-based and MPK-based schemes.
Compared with MPK+SHSTK, CETISppeng exhibited a perfor-
mance improvement of up to 2.66% (Regexp), with the worst exam-
ple being 1.14% slower than MPK+SHSTK (Raytrace). We can also
see that CET’s SHSTK incurred 11.08% performance overhead on
ChakraCore, which was much higher than that on SPEC (as shown
in Fig. 2). This was due to the CALL/RET instructions being executed
considerably frequently in the JITed code. The two instructions
were updated to access the shadow stack in CET, and the frequent
execution would cause a higher performance overhead. To further
verify it, we conducted an experiment to measure the execution
frequency of the CALL/RET instructions in ChakraCore by using
the Intel PT [15]. The frequency on average was 83/us which was
much higher than that in SPEC2006 (19/ps on average). Fig. 12 also
shows the frequencies of each case, we can see that the higher the
frequency, the higher the performance overhead.

8 DISCUSSION

Other attacks on JavaScript engines. As mentioned in §5.3, some
works [27] only protected the code cache and the encodeBuffer,
which is actually insufficient in terms of safety. Some works found
that the source data of the code cache are also potential attack
targets, such as the IR in the JIT compiler [7], the object tables in
the JS Interpreter [28]. If the attacker modifies such data, the code
cache will eventually be tampered with. NoJITSu [28] uses Intel
MPK [15] to isolate sensitive memory objects such as bytecode,
object tables, IR, and code cache. CETIS can be integrated with it,
and stores the sensitive memory objects in shstk pages for isolating.
Comparison with MPK-based isolation technique. The MPK-
based isolation ensures integrity and confidentiality of the isolated
region, while CETIS cannot independently ensure confidentiality
because the shstk pages do not restrict read operations. CETIS could
be integrated with address-based isolation (such as SFI and Intel
MPX][15]) to restrict the read operations. CETIS only supports 2
domains, while MPK supports up to 16 domains. How to expand
CETIS to support more domains is left for future work.
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Both CETIS and MPK-based isolation need to be deployed in
conjunction with defenses, such as CFI and CP], to ensure control-
flow integrity. Without these defenses, neither CETIS nor MPK-
based isolation can prevent the attacks in the PKU pitfall [5], such
as constructing WRPKRU or WRSS instructions in executable pages.
Protecting OS kernel and enclave with CETIS. Since CET
already supports kernel-space protection, CETIS can be used to
protect sensitive memory objects (e.g., the page table) in the kernel.
Further, the preview manual released by Intel has shown that the
future CET will be supported in the SGX enclave [15]. Since the
shstk page type is supported in the EPCM, CETIS can isolate code
and data inside an enclave, while the MPK-based isolation cannot
be used, since the protection keys are not trusted by the enclave.
Possible attacks against CETIS. Attackers may attack against
CETIS in three ways:

e Function-calls spraying. Because the isolated regions start
and end with a guard page, when attackers try to execute a
large number of CALLs to adjust %SSP, SHSTK will crash when
reaching the guard pages.

e Arguments corrupting. Attackers may tamper with the ar-
guments, such as position indicators, when they are passed
between APIs through non-control data attacks. MPK faces the
same threat, i.e., the dynamically computed addresses within
the isolated region could be tampered with when passed to the
MPK-protected MOV instructions. However, a successful attack
has not been demonstrated as of yet. A possible solution is to
pass arguments through registers.

¢ Unintended gadgets. Attackers could also use other WRSS and
INCSSP/RSTORSSP (for adjusting %SSP) to corrupt the isolated
regions. This could be mitigated by inserting the bound-checks
before these instructions, thereby ensuring the isolated regions
cannot be accessed.

Thread safety of CETIS APIs. The data combination in write
mode reads the data at the aligned address, combines the data, and
writes to the aligned address. The write operation is not an atomic
write and is not thread-safe. Additionally, if a thread uses append
operations on a cmfile, CETIS does not ensure memory consistency
when other threads operate on the same cmfile. Therefore, memory
consistency needs to be ensured by users.

The impact of reserving registers. To support the write-combine
buffer, two general-purpose registers were reserved in the append
mode in CETIS. To evaluate the impact of reserving registers, we
reserved %R14 and %R15 in the whole ChakraCore, and found that
when testing the Octane [10], the performance slowdown is 0.89%.
In the experiments, we reserved registers for the functions in a
specific folder, and incurred 0.54% overhead.

9 CONCLUSION

Intra-process memory isolation is an important mechanism for
preventing memory-corruption attacks. In this paper, we propose
CETIS, a generic and efficient memory isolation technique based
on Intel CET’s SHSTK. In order to allow users to use CETIS effi-
ciently and conveniently, CETIS is offered as a software framework,
with a set of user-friendly APIs and a library. Experiments show
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that CETIS is more efficient than existing in-process isolation tech-
niques, such as the MPK-based isolation schemes.

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foun-
dation of China (NSFC) under Grants 61902374 and U1736208.

REFERENCES

[1] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. 2018. Cfixx:
Object type integrity for c++ virtual dispatch. In Symposium on Network and
Distributed System Security (NDSS).

[2] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining light

on shadow stacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,

985-999.

Chapter 23.1 Introduction to virtual machine extensions. 2019. Intel 64 and IA-32

Architectures Software Developer’s Manual.

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,

Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming

without returns. In Proceedings of the 17th ACM conference on Computer and

communications security. 559-572.

R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020.

PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In 29th USENIX

Security Symposium (USENIX Security 20). 1409-1426.

Aurélien Francillon and Claude Castelluccia. 2008. Code injection attacks on

harvard-architecture devices. In Proceedings of the 15th ACM conference on Com-

puter and communications security. 15-26.

Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.

2017. Jitguard: hardening just-in-time compilers with sgx. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security. 2405~

2419.

[8] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza
Sadeghi. 2018. IMIX: In-Process Memory Isolation EXtension. In USENIX Security.

[9] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and
Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to Overcome Diver-
sification and Information Hiding. In NDSS.

[10] Google. 2017. The JavaScript Benchmark Suite for the modern web.  http:
//chromium.github.io/octane/.

[11] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L Scott.
2019. IskiOS: Lightweight defense against kernel-level code-reuse attacks. arXiv
preprint arXiv:1903.04654 (2019).

[12] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. 2006. A classifica-
tion of SQL-injection attacks and countermeasures. In Proceedings of the IEEE
international symposium on secure software engineering, Vol. 1. IEEE, 13-15.

[13] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,

Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Iso-

lation for High-Throughput Data Plane Libraries. In USENIX ATC.

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of

non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP).

IEEE, 969-986.

[15] Intel. 2020. Intel 64 and IA-32 Architectures Software Developer’s Manual.

[16] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.

Block oriented programming: Automating data-only attacks. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security.

1868-1882.

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-

los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware.

In EuroSys (Belgrade, Serbia). 16 pages. https://doi.org/10.1145/3064176.3064217

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,

and Dawn Song. 2014. Code-pointer Integrity. In OSDL

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting

Memory Disclosure with Efficient Hypervisor-enforced Intra-domain Isolation.

In CCS (Denver, Colorado, USA). ACM, 1607-1619. https://doi.org/10.1145/

2810103.2813690

[20] Kangjie Lu, Wenke Lee, Stefan Nirnberger, and Michael Backes. 2016. How to
Make ASLR Win the Clone Wars: Runtime Re-Randomization. In NDSS.

[21] Lucian Mogosanu, Ashay Rane, and Nathan Dautenhahn. 2018. MicroStache: A
Lightweight Execution Context for In-Process Safe Region Isolation. In RAID.

[22] Joao Moreira. 2021. FineIBT. https://Issna2021.sched.com/event/ljR8?iframe=no.

[23] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan John-
son, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean
Tullsen, et al. 2021. Swivel: Hardening WebAssembly against Spectre. In 30th
USENIX Security Symposium (USENIX) Security 21).

3

—_
=T

[5

[6

[7

(14

[17

[18

[19


http://chromium.github.io/octane/
http://chromium.github.io/octane/
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/2810103.2813690

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

[24] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 577-587.

[25] Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security.

914-926.

Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. 2016. Poking Holes in Information Hiding. In USENIX Security.

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.

libmpk: Software abstraction for intel memory protection keys (intel MPK). In

2019 USENIX Annual Technical Conference (USENIX ATC). 241-254.

[28] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, and Michael

Franz. 2020. NoJITsu: Locking Down JavaScript Engines. In 27th Annual Network

and Distributed System Security Symposium, NDSS 2020, San Diego, California,

USA, February 23-26, 2020. The Internet Society. https://www.ndss-symposium.

org/ndss-paper/nojitsu-locking-down-javascript-engines/

Marco Prandini and Marco Ramilli. 2012. Return-oriented programming. [EEE

Security & Privacy 10, 6 (2012), 84-87.

Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,

and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel

and User Space. In 2020 IEEE Symposium on Security and Privacy (SP). 563-577.

https://doi.org/10.1109/SP40000.2020.00041

Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose, Kevin Z Snow,

and Michalis Polychronakis. 2017. Revisiting browser security in the modern

era: New data-only attacks and defenses. In 2017 IEEE European Symposium on

Security and Privacy (EuroS&P). IEEE, 366-381.

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In Proceedings of the 14th ACM conference

on Computer and communications security. 552-561.

C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. 2016. HDFI:

Hardware-Assisted Data-Flow Isolation. In 2016 IEEE Symposium on Security and

Privacy (SP). 1-17. https://doi.org/10.1109/SP.2016.9

Zhendong Su and Gary Wassermann. 2006. The essence of command injection

attacks in web applications. Acm Sigplan Notices 41, 1 (2006), 372-382.

Theori. 2016. Chakra JIT CFG Bypass. http://theori.io/research/chakra-jit-cfg-

bypass.

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing forward-edge control-

flow integrity in {GCC} & {LLVM}. In 23rd { USENIX} Security Symposium

({USENIX} Security 14). 941-955.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process

Isolation with Protection Keys (MPK). In USENIX Security.

[38] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient Software-based Fault Isolation. SIGOPS Oper. Syst. Rev. 27, 5 (Dec. 1993),

203-216. https://doi.org/10.1145/173668.168635

Zhe Wang, Chenggang Wu, Mengyao Xie, Yingian Zhang, Kangjie Lu, Xiaofeng

Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. Seimi: Efficient and

secure smap-enabled intra-process memory isolation. In 2020 IEEE Symposium

on Security and Privacy (SP). IEEE, 592-607.

Z.Wang, C. Wu, Y. Zhang, B. Tang, P. Yew, M. Xie, Y. Lai, Y. Kang, Y. Cheng, and

Z. Shi. 5555. Making Information Hiding Effective Again. IEEE Transactions on

Dependable and Secure Computing 01 (mar 5555), 1-1. https://doi.org/10.1109/

TDSC.2021.3064086

[41] Zhe Wang, Chenggang Wu, Yingian Zhang, Bowen Tang, Pen-Chung Yew,
Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and Zhiping Shi. 2019.
SafeHidden: An Efficient and Secure Information Hiding Technique Using Re-
randomization. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, 1239-1256.

[42] Zhe Wang, Chenggang Wu, Yingian Zhang, Bowen Tang, Pen-Chung Yew,

Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, and Zhiping Shi. 2021.

Making Information Hiding Effective Again. IEEE Transactions on Dependable

and Secure Computing (2021).

Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song.

2015. VTint: Protecting Virtual Function Tables’ Integrity.. In NDSS.

Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, Tongxin Li, Yu Ding, and

Chengyu Song. 2016. VTrust: Regaining Trust on Virtual Calls.. In NDSS.

[26

[27

[29

[30

[31

o
8

[33

[34

[35

[36

[37

[39

[40

S
&

[44

A OTHER EVALUATIONS ON WRSS

A.0.1 The analysis of WRSS’s latency. To prove the latency affect
of cache hit and cache miss comes from the store buffer, we de-
signed an additional experiment to measure the latency of the write
operation that indeed writes into the cache (i.e., globally visible).
In the experiment, we inserted the MFENCE instruction after each

Mengyao Xie et al.
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(a) Latency that followed by MFENCE (b) Latency that followed by CPUID

Fig. 13: The latency of writing data that is a multiple of 8 bytes by the
MOVD and WRSSQ followed by MFENCE or CPUID instruction (average of
1 million repetitions). M indicates cache miss, and H indicates cache
hit. The target address of the write operation is cache-line aligned.

write operation (i.e., MOVQ and WRSSQ). MFENCE ensures the write
operation is globally visible [15]. Fig. 13(a) shows the experimental
results. We can see that the latency difference is less than 20 CPU
cycles, which is much lower than our common sense that the cache
miss takes about >100 CPU cycles. We guessed MFENCE has some in-
ternal optimizations that guarantees all preceding memory accesses
are global visible without waiting for actually write to the cache. To
prove this, we performed an extra experiment that replaces MFENCE
with the serialization instruction CPUID. CPUID forces the processor
to complete all modifications to flags, registers, and memory by
previous instructions and to drain all buffered writes to memory
before the next instruction is fetched and executed [15]. The exper-
imental results are given in Fig. 13 (b) and shown that the latency
difference between the cache miss and the cache hit is about 150
CPU cycles. We can also see that the latency impact of MOVQ and
WRSSQ is the same regardless of the cache hit or not. We can con-
clude that compared to MOV, the additional latency of WRSS comes
from the hardware component of WRSS not the cache system and
they all use the store buffer to avoid blocking the pipeline.

A.0.2 The Impact of WRSS on the CPU Pipeline. The latency of
PKMOV and WRSS is the key to the efficiency of the isolation schemes.
Furthermore, the impact on the CPU pipeline is as important as
the latency. The WRPKRU instruction used in the MPK-based iso-
lation scheme will not be executed speculatively, and it is only
a memory access serialization instruction, it does not affect non-
memory access instructions such as INC [15]. Although WRSS is not
a memory access serialization instruction, it is a memory access in-
struction which is constrained by the X86 weaker Total Store Order
(TSO) memory consistency model. In the TSO model, among the
four possible Read and Write orders, i.e. Read—Write, Read—Read,
Write— Write, and Write—Read, the processor will not guarantee
the order of Write—Read if they access different memory locations.
It allows Read to be execute before the Write if they access different
memory locations. Hence, the load instruction that following WRSS,
which access different location, can be executed ahead. In summary,
WRSS is not a memory access serialization instruction, but it follows
the X86 weaker TSO model that the subsequent load instruction
can be executed ahead if they access different locations.
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