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Abstract—To protect web users from malicious JavaScript
code, various malware detectors have been proposed, which
analyze and classify code as malicious or benign. State-of-the-
art detectors focus on JavaScript as the only target language.
However, WebAssembly provides attackers a new and so far
unexplored opportunity for evading malware detectors. This
paper presents Wobfuscator, the first technique for evading
static JavaScript malware detection by moving parts of the
computation into WebAssembly. The core of the technique is a
set of code transformations that translate carefully selected parts
of behavior implemented in JavaScript into WebAssembly. The
approach is opportunistic in the sense that it uses WebAssembly
where it helps to evade malware detection without compromising
the correctness of the code. Evaluating our approach with a
dataset of 43,499 malicious and 149,677 benign JavaScript files,
as well as six popular JavaScript libraries reveals that our
approach is effective at evading state-of-the-art, learning-based
static malware detectors; the obfuscation is semantic-preserving;
and our approach has small overhead, making it practical for
use in real-world programs. By pinpointing limitations of current
malware detectors, our work motivates future efforts on detecting
multi-language malware in the web.

I. INTRODUCTION

The omnipresence of the web makes client-side web ap-
plications an attractive target for attackers. As a result, var-
ious kinds of attacks target the browser, e.g., drive-by mal-
ware [48], [23], [43], malicious code deployed via script-based
browser augmentation markets [58], browser-based cryptomin-
ing without user consent [40], [52], [34], malicious browser
extensions [21], [65], and browser-based phishing [14]. A
recent report estimates that orchestrated phishing campaigns
alone create 1.7 to 2 million malicious payload URLs each
month [44]. Beyond such obviously malicious activities, many
websites employ techniques that are unwanted by users, such
as extensive browser fingerprinting [30] or tracking [25].

To protect users against executing malicious scripts in their
browser, JavaScript malware detectors warn about such scripts
before or while executing them. One line of work statically
analyzes scripts before they are executed [24], [50], [56], [28],
[27], e.g., by intercepting them already in the network, as
part of a browser, or as part of a separate anti-virus tool.
Another line of work dynamically analyzes scripts [36], e.g.,
by instrumenting the code or via a browser extension. To
reduce the runtime overhead imposed by dynamic analysis-
based malware detectors, static detectors often serve as a first

line of defense, e.g., by dynamically analyzing only those
scripts that are deemed dangerous by a static analysis.

To effectively attack users despite the presence of malware
detectors, attackers try to hide the maliciousness of scripts
via obfuscation and evasion techniques [53], [55]. Progress
by attackers and defenders leads to an arms race between
increasingly sophisticated obfuscation and evasion techniques
on one hand and increasingly effective malware detectors on
the other hand. Currently, the most effective malware detec-
tion techniques use learning-based classifiers to distinguish
malicious from benign scripts [24], [50], [28], [27]. These
approaches extract a set of features from a given JavaScript
file, e.g., n-grams of code tokens or AST-based features, or
feed the JavaScript code into a deep neural network [63] to
determine whether the file is likely to be malicious.

While the focus on JavaScript historically makes sense,
JavaScript is not the only language of the client-side web any-
more. WebAssembly [31] is another language that is widely
available in browsers. First announced in 2015, WebAssembly
is supported by all major browsers since November 2017,
and available in 94% of all global browser installations as of
August 20211. The language provides an efficient compilation
target for computation-intensive libraries written in languages
such as C and C++. In addition to the many positive uses
of WebAssembly, the language provides a new opportunity to
attackers for evading malware detectors – an opportunity that,
to the best of our knowledge, has not yet been explored.

This paper presents the first technique for evading JavaScript
malware detection by moving parts of the computation into
WebAssembly. We describe Wobfuscator, a code obfuscation
technique that transforms a given JavaScript file into a new
JavaScript file and a set of WebAssembly modules. By chang-
ing the malicious JavaScript code, our work aims at evading
static malware detectors. The rationale is that static detectors
may be used on their own or serve as a filter for which
scripts to analyze dynamically. That is, evading static malware
detectors gives a huge benefit to attackers.

Transforming parts of a JavaScript file into WebAssembly
is far from trivial. JavaScript is dynamically typed, has com-
plex objects, and provides direct access to browser APIs. In
contrast, WebAssembly is statically typed, has only four low-
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level, primitive data types, and it can access browser APIs only
indirectly by importing them from JavaScript. Because of these
fundamental differences, general JavaScript-to-WebAssembly
translation is practically impossible, which is reflected in the
fact that WebAssembly never has been touted as a replacement
for JavaScript but as a way to complement it [31].

The core technical contribution of this paper is a set of code
transformations that extract carefully selected parts of behavior
implemented in JavaScript for translation into WebAssembly.
The approach is opportunistic in the sense that it translates
JavaScript to WebAssembly where it helps to evade malware
detectors, without compromising the correctness of the code.
For example, we present a transformation that extracts function
calls into a WebAssembly module, obfuscating if and when a
script calls a particular function. Other transformations aim at
obfuscating string literals, control-flow statements, and array
initializations. Preconditions guard each transformation to en-
sure the original behavior is preserved, a property we consider
crucial for an attacker to use an obfuscation technique.

Our work relates to existing obfuscation techniques for
JavaScript. For example, Fass et al. fuse malicious code into
benign code while preserving the AST of the benign code [26].
For a more comprehensive overview of obfuscation techniques
and their prevalence, we refer readers to other work [66],
[55]. All of these approaches obfuscate code via transfor-
mations within the JavaScript language, whereas Wobfuscator
exploits the availability of WebAssembly to obfuscate code by
translating beyond JavaScript. A paper by Wang et al. shares
the general idea of obfuscating code written in one language
by translating parts of it into another language [60]. How-
ever, they describe partially translating C code into Prolog,
which does not address the unique challenges of obfuscating
JavaScript via partial translation to WebAssembly.

We evaluate Wobfuscator with a dataset of 43,499 malicious
and 149,677 benign JavaScript files, as well as six popular
JavaScript libraries. Our results show the following. First,
the approach is effective at evading state-of-the-art, learning-
based static malware detectors: Applying our transformations
reduces the recall of the four studied detectors [50], [24], [28],
[27] to 0.18, 0.63, 0.18, and 0.00, respectively. Second, the
obfuscation preserves the semantics of the transformed code:
Obfuscating six popular JavaScript libraries and running their
2,017 tests shows no observable changes in the behavior of the
tested code. Finally, we find that our tool only takes on average
8.9 seconds to apply all the transformations to a project (with
on average 4,152 lines of code) and adds on average 31.07%
of overhead during runtime. Overall, these results show that
Wobfuscator is practical for use in real-world programs.

In summary, this paper contributes the following:
• The first technique to use WebAssembly as a means for

obfuscating the behavior of malicious JavaScript code.
• A set of code transformations that translates carefully

selected JavaScript code locations into WebAssembly.
• A comprehensive evaluation showing that the approach

effectively evades state-of-the-art static malware detectors
while preserving the semantics of the original code.

Our experiment results are publicly available:
https://github.com/js2wasm-obfuscator/translator

II. BACKGROUND ON WEBASSEMBLY

We present a brief introduction of the core concepts and
syntax of WebAssembly. For space reasons, we refer the
reader to the original publication [31], official website [10],
or specification [64] for more elaborate explanations.

WebAssembly is a low-level byte code language. Web-
Assembly programs are distributed as binaries that are com-
pact to send over the network and quick to parse.

Each WebAssembly program is a single-file module, orga-
nized into several sections. Most importantly, the code section
contains all functions with their bodies. The global section
contains scalar global variables. The memory section declares
a linear, byte-addressable memory, of which parts can be
initialized with the data section.

WebAssembly instructions operate at a low level of abstrac-
tion, without, e.g., classes or complex objects. Instructions and
functions are statically typed, but there are only four primitive
types: 32- and 64-bit integer and floating-point values, respec-
tively. Instructions are executed on a virtual stack machine,
i.e., they pop their operands and push their results onto an
implicit evaluation stack. Instructions are simple and designed
to map closely to hardware instructions, e.g., a WebAssembly
i32.add instruction would be translated into an x86 addl.
Since there is no garbage collector and only primitive scalar
types, complex objects (strings, arrays, records, etc.) are stored
into program-organized linear memory, which is essentially a
growable array of untyped bytes.

WebAssembly does not have a standard library, and for
interaction with the “outside world”, WebAssembly modules
need to import functions from the host environment. In the
browser, that host environment is JavaScript, so any JavaScript
function can be called from WebAssembly. Non-primitive data
needs to be marshalled through the WebAssembly memory
however (which can be accessed from JavaScript as well). The
WebAssembly API in JavaScript provides functions to compile
and instantiate (that is, fulfill the imports of) WebAssembly
modules and call exported WebAssembly functions.

III. THREAT MODEL

Our work is about malicious or unwanted code delivered as
part of a client-side web application. A website may deliver
such code intentionally, e.g., because the domain is controlled
by the attacker, or unintentionally, e.g., via third-party scripts
or advertisements. We assume that the attacker controls the
malicious code on the server side, and hence, can freely
modify it. In particular, they can transform the source code,
split one file into multiple files, or merge multiple code files.

On the defense side, we assume a static malware detector
that scans the client-side code of a web application before it
executes in the browser. The mechanism the malware detector
uses to intercept and check the code is irrelevant to us. For
example, it may be implemented as a network proxy that scans
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Fig. 1. Overview of Wobfuscator.

files before they even reach the client’s machine, as an anti-
virus tool on the client machine, or as a browser extension.
Malware detection or mitigation techniques that go beyond
static analysis, e.g., based on analyzing the executing of client-
side code, are beyond the scope of this work.

The goal of the attacker is to bypass the malware detector.
To this end, the attacker may assume that the targeted browser
supports WebAssembly, which is the case for almost all of
today’s browsers. The attacker does not need to have access
to the malware detector or, in the case a machine learning-
based detector, to the data it is trained on.

IV. APPROACH

A. Overview and Challenges

Figure 1 gives an overview of Wobfuscator. The input is
a JavaScript file, which we parse into an AST. Next, the ap-
proach identifies potential translation sites, i.e., code locations
that (i) are relevant for detecting malicious code and (ii) can be
translated into WebAssembly in a semantics-preserving way.
Instead of aiming at a general JavaScript-to-WebAssembly
translation, the approach opportunistically targets only those
code locations that fulfill these two requirements.

To move behavior into WebAssembly, Wobfuscator gen-
erates WebAssembly code for each translation site and then
transforms the JavaScript AST to utilize the generated code.
The AST is transformed in three ways. First, at an instantiation
site, we add code to load the WebAssembly module into
the application. Second, at each of the selected translation
sites, we modify the code to access properties and functions
provided by the WebAssembly module(s). Third, at the root
node of the AST, we conditionally wrap the script into an
anonymous, async function, referred to as the async wrapper,
to support asynchronous keywords in the code. The remainder
of this section explains these transformations in detail. Finally,
the output of Wobfuscator is the transformed JavaScript code
along with one or more generated WebAssembly modules.

We encountered several challenges in designing transforma-
tions that move JavaScript behavior into WebAssembly mod-
ules. One key challenge is the fact that completely translating
general JavaScript code to WebAssembly is impossible due to
the limited set of features in WebAssembly. One example is
dynamically generated code, which is enabled in JavaScript
through the infamous eval function, but not supported in
WebAssembly. JavaScript supports rather complex rules, e.g.,
function scope for var-bound variables, hoisting of functions,
and closures. WebAssembly has only three storage locations:
global module variables, local variables for each function,

and raw byte memory. In addition, WebAssembly only has
limited control-flow instructions that do not fully replicate
all available JavaScript constructs, such as try/catch state-
ments, for-of loops, and Promises. Another challenge is the
limited data types that can be passed between WebAssembly
and JavaScript. In the initial version of WebAssembly, func-
tions can only accept and return numeric data types, which
cannot replicate the complex objects that JavaScript supports.
Finally, different browsers can impose file-size limits on the
WebAssembly modules used, so we must workaround this
limitation for our technique to be general.

Because of these and other differences, Wobfuscator is
based not on complete but opportunistic translation, i.e.,
transforming code where it helps to evade malware detectors,
without sacrificing correctness.

B. Transformations

The goal of our approach is to generate WebAssembly
modules that can reproduce the functional behavior of specific
JavaScript code snippets. To produce these modules, Wobfus-
cator is constructed on a core set of transformation rules:

Definition 1 (Transformation rule). A transformation rule is
a tuple (L, t, p) where:

• L represents a set of code locations where the transfor-
mation may apply,

• t is a transformation function that maps JavaScript at a
code location in L to rewritten JavaScript code and one
or more WebAssembly modules, and

• p is a precondition for applying t, expressed as a predicate
on a code location and its surrounding context.

We present seven transformation rules that target different
language features of JavaScript. The transformation rules fall
into three categories. First, we present rules to obfuscate data
that gets defined and used by a JavaScript file. These rules
target string literals (Section IV-B1) and array initialization
code (Section IV-B2). Second, we present rules to obfuscate
function calls. These rules hide suspicious function calls (Sec-
tion IV-B3) or any function call (Section IV-B4). Finally, we
present rules to obfuscate the control flow in the given code.
These rules target if statements (Section IV-B5), for loops
(Section IV-B6), and while loops (Section IV-B7). Table I
illustrates the transformation rules.

The transformation rules use several JavaScript primitives
to interact with WebAssembly:

• instanWasm(source, impObj) instantiates a Web-
Assembly module from source and returns the module.
The optional parameter impObj is an object containing
the functions to be imported into the created WebAssem-
bly module. We use two variants of this primitive which
instantiate the module synchronously and asynchronously
(Section IV-C).

• loadStrFromBuf(buffer, startIndex) creates a
string from the buffer starting from the byte offset
startIndex and ending at the first null byte (i.e., \00)
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TABLE I
TRANSFORMATION FUNCTIONS.

Rule JavaScript (Before) JavaScript (After) WebAssembly (After)

T1-StringLiteral 1 var s = "lit"; 1 // Instantiation Site
2 let m = instanWasm(source);
3 let buf = m.instance.exports.memory.buffer;
4 // Translation Site
5 let startInd = m.instance.exports.d1;
6 var s = loadStrFromBuf(buf, startInd);

1 (global $d1 (export "d1") (mut i32)
(i32.const 0))↪→

2 (memory (export "memory") 1)
3 (data $data0 (i32.const 0) "lit\00"))

T2-ArrayInitialization 1 var arr = new Array();
2 arr[i1] = num1;
3 arr[i2] = num2;

1 // Instantiation Site
2 let m = instanWasm(source);
3 let buf = m.instance.exports.memory.buffer;
4 // Translation Site
5 m.instance.exports.f();
6 var arr = loadArrFromBuf(buf, startInd, len);

1 (memory (export "memory") 1)
2 (func $f (export "f")
3 i32.const $i1
4 i32.const $num1
5 i32.store
6 i32.const $i2
7 i32.const $num2
8 i32.store)

T3-FunctionName 1 eval(str); 1 // Instantiation Site
2 let m = instanWasm(source);
3 let buf = m.instance.exports.memory.buffer;
4 // Translation Site
5 let startInd = m.instance.exports.d1;
6 window[loadStrFromBuf(buf, startInd)](str);

1 (global $d1 (export "d1") (mut i32)
(i32.const 0))↪→

2 (memory (export "memory") 1)
3 (data $data0 (i32.const 0)

"eval\00"))↪→

T4-CallExpression(a) 1 f(a); 1 // Translation Site
2 let impObj = {imports: {impFunc: () => f(a)}};
3 let m = instanWasm(source, impObj);
4 m.instance.exports.f0();

1 (func $f0 (export "f0")
2 call $impFunc) ;; JS import

T4-CallExpression(b) 1 let r = f(a); 1 // Translation Site
2 let impObj = {imports: {impFunc: f}};
3 let m = instanWasm(source, impObj);
4 let r = m.instance.exports.f0(a);

1 (func $f0 (export "f0") (param
externref) (result externref)↪→

2 local.get $p
3 call $impFunc) ;; JS import

T5-IfStatement 1 if(cond) {
2 stmt1; stmt2; ...
3 } else {
4 stmt3; stmt4; ...
5 }

1 // Translation Site
2 let impObj = {imports: {
3 imp1:() => {stmt1; stmt2; ...},
4 imp2:() => {stmt3; stmt4; ...}}};
5 let m = instanWasm(source, impObj);
6 m.instance.exports.f(cond ? 1 : 0);

1 (func $f (export "f0") (param $p)
2 local.get $p
3 if ;; label = @1
4 call $imp1 ;; JS import
5 else
6 call $imp2 ;; JS import
7 end)

T6-ForStatement 1 for(init;cond;incre) {
2 stmt1; stmt2; ...
3 }

1 // Translation Site
2 init;
3 let impObj = {
4 imports: {
5 cond:() => {return cond ? 1 : 0},
6 incre:() => {incre},
7 body:() => {stmt1; stmt2; ...}
8 }
9 };

10 let m = instanWasm(source, impObj);
11 m.instance.exports.f();

1 (func $f (export "f0")
2 block $L0
3 loop $L1
4 call $cond ;; JS import
5 i32.eqz
6 br_if $L0
7 call $body ;; JS import
8 call $incre ;; JS import
9 br $L1

10 end
11 end)

T7-WhileStatement 1 while(cond) {
2 stmt1; stmt2; ...
3 }

1 // Translation Site
2 let impObj = {
3 imports: {
4 cond:() => {return cond ? 1 : 0},
5 body:() => {stmt1; stmt2; ...}
6 }
7 };
8 let m = instanWasm(source, impObj);
9 m.instance.exports.f();

1 (func $f (export "f0") (param $p)
2 block $L0
3 loop $L1
4 call $cond ;; JS import
5 i32.eqz
6 br_if $L0
7 call $body ;; JS import
8 br $L1
9 end

10 end)

after startIndex, where buffer is the WebAssembly
module linear memory.

• loadArrFromBuf(buffer, startIndex, length)

creates an array from buffer of size length starting
from the byte offset startIndex, where buffer is the
WebAssembly linear memory.

1) Obfuscating String Literals: JavaScript malware fre-
quently uses encoded strings to hide malicious code [66].
These encoded strings can be critical for malware detec-
tors which learn the string patterns and their encoding
schemes [24], [54]. To evade the detection of encoded
strings, we define a transformation rule T1-StringLiteral
(LT1, tT1, pT1) where:
LT1. The code locations where transformation rule T1 may

apply are all AST nodes of Literal type with string values.
tT1. The transformation function is defined in row T1-

StringLiteral in Table I. To obfuscate a string literal “lit”,
tT1 generates a WebAssembly module that defines a memory

and exports it to JavaScript (line 2). The memory is used to
store the string literal “lit” at offset 0 (line 3). To reconstruct
this string in JavaScript, a variable $d1 containing the offset is
defined and exported (line 1). Each string is terminated with a
null byte (i.e., \00), so it can be reconstructed by reading the
linear memory from the starting index until the first null byte
is found. If multiple strings in the input JavaScript program are
to be transformed, they are all stored in a single WebAssembly
module. In this case, multiple variables can be defined for each
string stored (e.g., $d1, $d2, ...). The variable buf points to the
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memory exported by WebAssembly (line 3). At the translation
site, a variable startInd gets the starting index of the string
literal stored in linear memory (line 5). Finally, the string
“lit” is reconstructed using the primitive loadStrFromBuf

with arguments buf and startInd (line 6).
pT1. This transformation can be applied in locations where

JavaScript allows for replacing a string literal with a function
call. Specifically, this excludes: (i) string literals used in
import or require statements, as such strings should be
known when bundling modules together; (ii) string literals
used as property names in object expressions as return values
from function calls cannot be used as object keys.

2) Obfuscating Arrays: Malicious files often contain arrays
of numeric literals representing character codes used to recon-
struct malicious strings. To obfuscate these arrays, we exploit
the fact that the linear memory of WebAssembly modules
is implemented through an array buffer, which can naturally
map to a JavaScript numeric array, in transformation rule T2-
ArrayInitialization (LT2, tT2, pT2) where:
LT2. T2 may apply on NewExpression AST nodes (e.g., new

Array) or ArrayExpression AST nodes representing array
literal expressions (e.g., [1,2,3]). In addition, the transfor-
mation also condenses any following AssignmentExpression
nodes used to initialize the array values into a single JavaScript
function call (e.g., arr[1] = 42; arr[2] = 97;. . . ).
tT2. The transformation tT2 is defined in row T2-

ArrayInitialization in Table I. The original JavaScript code
creates an array arr and initializes the elements arr[i1] and
arr[i2] with numerical values num1 and num2, respectively.
After the transformation, tT2 produces a WebAssembly mod-
ule that creates a memory and exports it (line 1). A function
$f is defined which stores the numbers, num1 and num2, at the
specified offsets, i1 and i2, inside the linear memory (lines 2-
8). The transformed JavaScript code instantiates a WebAssem-
bly module (line 2) and creates a variable to read from the
exported memory (line 3). Similar to T1-StringLiterals, if there
are multiple array initializations to be transformed, only one
WebAssembly module is created at the instantiation site. At
the translation site, the export function f is called to write
num1 and num2 to the linear memory at offset i1 and i2 (line
5). Finally, loadArrFromBuf() returns a JavaScript Array
object containing the numerical values copied from the linear
memory buffer, and this array is assigned to arr (line 6).
This function requires the starting index of the array in linear
memory and the length of the array. Both of these values
are calculated by Wobfuscator and inserted into each call
to loadArrFromBuf(). We ensure that a JavaScript Array
object is returned as the original code using the array will need
to access the standard properties and methods of an Array.
pT2. This transformation can be applied to arrays initialized

with numeric literals. Since WebAssembly only has numeric
data types we only store numeric literals in memory using
the operators .const and .store. Specifically, we apply the
transformation only if the array initialization is one of the
following: (i) a new Array expression followed by assignment
statements inserting only numeric literals; (ii) a new Array

expression with numeric literal arguments; (iii) an ArrayEx-
pression only containing numeric literals.

3) Obfuscating Function Names: Several built-in
JavaScript functions, such as the notorious eval function, are
commonly exploited by attackers. As a result, detectors may
consider the names of these built-in functions suspicious and
use them as part of the signatures for malware detection [50],
[24], [17]. To evade detection, we remove suspicious function
names from the JavaScript code through a transformation rule
T3-FunctionName (LT3, pT3, tT3) where:
LT3. T3 may apply on CallExpression nodes or NewExpres-

sion nodes that contain specific identifier names.
tT3. The transformation function is defined in row T3-

FunctionName in Table I. To obfuscate the function name
eval, tT3 removes the function name from JavaScript and
stores it in WebAssembly linear memory. In the WebAssembly
code, a global variable $d1 is defined and exported with a
value of 0 (line 1), which is the starting index of the function
name “eval” stored in the linear memory. Next, a memory is
created and exported (line 2). To initialize the linear memory,
a data section is defined that contains “eval” at offset 0

(line 3). In the transformed JavaScript code, it instantiates
a WebAssembly module (line 2) and defines a variable to
access the linear memory (line 3). The variable startInd

is assigned the value of the exported d1 that contains the
starting index of “eval” in the linear memory (line 5). Finally,
loadStrFromBuf is used to create the string “eval”, and
eval is called from the window object with str, the same
argument used in the original eval() (line 6).
pT3. This transformation can be applied to call expressions

or new expressions referencing global functions accessible
through the window object. Specifically, we identify eight
global functions commonly used in malicious files and apply
the transformation only if the identifier is in the following list:
eval, escape, atob, btoa, WScript, unescape, escape,
Function, and ActiveXObject. While these functions are
not inherently malicious, many of the analyzed malware files
use these functions to decode and execute hidden code.

4) Obfuscating Calls: Aside from the suspicious functions,
we construct a transformation rule T4-CallExpression for
general JavaScript function calls. This transformation converts
function calls in JavaScript into a call of an exported Web-
Assembly function, which in turn performs a function call in
WebAssembly to an imported JavaScript function. Unlike T3-
FunctionName, which completely removes suspicious function
names from JavaScript, this transformation modifies the con-
text of the function being used in call sites that AST-based
malware detectors use when scanning for malicious code.

There is a trade-off in this transformation between com-
patibility with the WebAssembly Minimum Viable Product
(MVP) version and the amount of transformable function calls.
Thus, we create two variations of this transformation: T4-
CallExpression(a) is fully compatible with the WebAssem-
bly MVP (i.e., uses no language extensions) but can only
be applied on functions that do not return a value; T4-
CallExpression(b) transforms functions with return values but
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requires the WebAssembly Reference Types proposal [9].
Firefox and Chrome enable this proposal by default.

T4-CallExpression(a) is a transformation rule (LT4a, pT4a,
tT4a) where:
LT4a. LT4a are CallExpression nodes containing the iden-

tifier and arguments of a function call.
tT4a. tT4a is defined in row T4-CallExpression(a) in Table I.

To obfuscate a JavaScript function call f(a), tT4a moves the
function call into an anonymous function that is imported into
WebAssembly (line 2). At the original call site, a WebAssem-
bly export function f0 is called (line 4). In the WebAssembly
code, the function that wraps the JavaScript function call is
imported as $impFunc. The function $f0 is exported and
calls the imported function $impFunc (lines 1-2). Note that
the anonymous function used to wrap the original JavaScript
function always has the same type signature, i.e., a void
function with no parameters. Thus, the same WebAssembly
module can be compiled once and reused for every replaced
function call, changing only the import object containing the
appropriate JavaScript function.

pT4a. This transformation can be applied to locations where
the call expressions do not have a return value that is used in
an assignment or in another expression, as the primitive data
types of WebAssembly, i32, i64, f32, f64 cannot represent
all possible JavaScript function return values.

The generalized variant T4-CallExpression(b) is a transfor-
mation rule (LT4b, pT4b, tT4b) where:
LT4b. LT4b is the same as LT4a.
tT4b. tT4b is defined in row T4-CallExpression(b) in Table I.

The experimental WebAssembly Reference Types proposal [9]
adds a new WebAssembly value type, externref, that can be
used to pass references of arbitrary JavaScript values to and
from WebAssembly. With this new type, the transformation
only needs to import a reference to the transformed function.
Specifically, the transformed JavaScript code only imports
the function reference f into WebAssembly (line 2). In the
original call expression, the function f is replaced with a
WebAssembly export function f0 that takes in the argument
a of the original call and returns any value that the original
function outputs (line 4). In the WebAssembly code, the export
function $f0 takes in a parameter of type externref and
returns a value of type externref (line 1). Inside $f0, it
calls the imported function $impFunc with a value that is
the argument passed into $f0 (lines 2-3). The benefits of
this transformation over T4a include supporting more function
calls by including those with return values and moving more
behavior into WebAssembly than T4a.
pT4b. This variant of the call transformation can be applied

only if: (i) the callee function does not contain a reference
to this; (ii) the arguments of the call expression cannot
contain a reference to this; (iii) the data dependencies of the
variables referenced within the callee cannot contain this;
(iv) the callee function is not a method of a literal value; and
(v) the callee function is not the special functions bind or
super. Conditions (i)-(iv) must be met because the value of
this is changed when calling the function from within the

WebAssembly module, which can lead to incorrect behavior.
Condition (v) is needed as bind and super have restrictions
on how they are called, so these functions cannot be passed
as imports to the WebAssembly module.

5) Obfuscating If Statements: By leveraging the control-
flow instructions in WebAssembly, the behavior of if-else
statements in JavaScript can be moved to WebAssembly,
removing the syntactic information while preserving the se-
mantics. To this end, we present transformation rule T5-
IfStatement (LT5, pT5, tT5) where:
LT5. The transformation rule applies to IfStatement nodes.
tT5. The transformation is defined in row T5-IfStatement

in Table I. At the translation site, tT5 wraps the code within
the if- and else-blocks in two anonymous functions that
are imported into the WebAssembly module (lines 2-4). A
WebAssembly export function f is called and the result of the
test condition of the original if-statement is converted to a
(zero or one) integer that is passed as the argument to f (line
6). Within the WebAssembly module, the two functions wrap-
ping the code within the if- and else-blocks are imported as
$imp1 and $imp2 (lines 4,6). The exported function $f takes
in an integer parameter which will be either zero or one to act
as a Boolean (lines 1-7). $f contains if-else instructions that
are decided by the function parameter p. If p is non-zero, the
if instruction calls $imp1 that contains the code originally in
the if-block. Similarly, if p is zero, then the else instruction
calls $imp2 containing the code originally in the else-block.
By leveraging the if-else instructions in WebAssembly, the
original semantics are preserved while the use of the control-
flow statement is hidden from the JavaScript syntax.
pT5. The if statements can be transformed if the code

blocks do not include the keywords break, continue,
return, yield, or throw. These keywords are not compati-
ble with moving the inner code blocks into functions.

6) Obfuscating For Loops: To obfuscate for loops, we
define transformation rule T6-ForStatement (LT6, pT6, tT6):
LT6. The transformation locations where this rule applies

are ForStatement nodes, which represent C-style for loops.
tT6. The transformation is defined in row T6-ForStatement

in Table I. At the translation site, tT6 wraps the loop condition,
increment and body in three JavaScript functions that will be
imported to the WebAssembly module (lines 3-8). The loop
counter initialization can be hoisted out of the loop scope
safely (line 2). Finally, a WebAssembly export function f is
called which emulates the JavaScript for loop (line 11). In
the WebAssembly module, the three JavaScript functions that
are used to wrap the loop condition, increment, and body are
imported as $cond, $body, and $incre, respectively (lines
4, 7, 8). The export function $f contains a block of code
with label $L0, which encloses a loop block with label $L1
(lines 2-3). Inside the loop, $cond is called (line 4) which
evaluates the test condition of the JavaScript for loop and the
result is checked using i32.eqz (line 5). If the test condition
is false, the instruction br_if $L0 branches out to the end
of block $L0, terminating the loop (line 6). Otherwise, if the
test condition is true, functions $body and $incre are called
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to execute the statements within the loop body and the update
expression (lines 7-8). The br $L1 is used to branch to label
$L1, which continues iteration (line 9).

pT6. The precondition is the same as pT5.
7) Obfuscating While Loops: Analogous to the above,

we obfuscate while loops with a transformation rule T7-
WhileStatement (LT7, pT7, tT7) where:
LT7. The rule applies to WhileStatement nodes.
tT7. The transformation, defined in row T7-WhileStatement

in Table I, is similar to tT6. The only differences are that in
tT7, there is no loop increment nor loop counter initialization.
A while loop can be created by only wrapping the loop
condition and the loop body into anonymous functions and
importing them to WebAssembly (lines 4, 7). The function $f

is defined and exported, which emulates the JavaScript while
loop by calling the import functions within the loop block.
pT7. The precondition is the same as pT5 and pT6.

C. Synchronous and Asynchronous WebAssembly Instantiation

For each transformation rule in Section IV-B (aside from
T4-CallExpression(b)), we develop two variants differing
in whether they instantiate the WebAssembly module syn-
chronously or asynchronously, i.e., the implementation of the
instanWasm() primitive.

1 let m = new WebAssembly.Module(
2 new Uint8Array(decodeBase64('...')));
3 return new WebAssembly.Instance(m, impObj);

Fig. 2. Synchronous WebAssembly instantiation.

The synchronous variants implement the primitive by using
the WebAssembly.Module and WebAssembly.Instance

constructor functions. Figure 2 shows the code, where in line
1, variable m is set to the compiled WebAssembly.Module ob-
ject. The WebAssembly.Module constructor accepts a typed
array containing the module bytes. Hence, we encode the
module bytes into a base64 string, which is decoded to a
typed Uint8Array at runtime (line 2). On line 3, the module
object m, along with the import object, is then passed into the
WebAssembly.Instance constructor. The returned instance
object can be utilized by the transformation functions.

Since this is standard, synchronous code, there are
no restrictions on how to integrate instantiation into
the original JavaScript application. However, because the
WebAssembly.Module constructor can block the JavaScript
main thread, browser vendors discourage this method.
Chromium in particular even limits the input module to at
most 4KB in size [6] and throws an exception otherwise.

To get around this limitation, each synchronous trans-
formation can emit one or more WebAssembly mod-
ules. Specifically, transformations T3-FunctionName, T4-
CallExpression(a), T5-IfStatement, T6-ForStatement, and T7-
WhileStatement only emit one WebAssembly module per file
transformed. T1-StringLiteral, T2-ArrayInitialization, and T4-
CallExpression(b) can emit one or more modules since the
data stored within the modules can grow larger than 4KB.
When a single WebAssembly module grows too large, e.g.,

because it contains many string literals in its data section, we
split it into multiple modules to keep each under 4KB. For
string literals larger than 4KB, the string literal is split across
multiple modules and joined in the string reconstruction phase.

1 async function someFunction(){
2 // Transformation site: ...
3 await (async () => {
4 let mod = await WebAssembly.instantiateStreaming(
5 fetch("generated_module.wasm"), impObj);
6 //Transformation function code...
7 })()
8 }

Fig. 3. Instantiation of the asynchronous variant.

We also support asynchronous instantiation of the Web-
Assembly modules, which is the method that browser
providers recommend. Asynchronous instantiation has several
benefits, including unrestricted module size and the ability
to put the generated WebAssembly modules in separate files.
These benefits allow each transformation to only emit a single
WebAssembly module.

For these variants, the instanWasm() primitive is imple-
mented via the WebAssembly.instantiateStreaming()

function, as shown in Figure 3 (line 4). This API spawns
compilation on a separate thread, thus not blocking the main
thread of execution. Since this API returns a Promise, we need
to add the await keyword to allow the Promise to resolve
before continuing. Line 6 represents a placeholder for the
transformation code of T1-T7. The await keyword can only
be employed in asynchronous functions, so we wrap the in-
stantiation in an async anonymous function (line 3). Similarly,
since the anonymous function is an async function, its invo-
cation must also have the await keyword added (line 3). The
enclosing function, someFunction, now contains the await

keyword, so the function definition must have the async

keyword added (line 1). Elsewhere in the code, any function
calls to someFunction would also require adding the await

keyword. As this example shows, inserting the async/await
keywords to a translation site causes these keywords to be
propagated to functions and call sites throughout the file.

This keyword propagation makes the asynchronous transfor-
mations non-trivial to design and implement. Specifically, we
encountered three code locations that are difficult to propagate
the async/await keywords to. First, anonymous functions
used as parameters in other function calls, e.g., .map, are
difficult to handle. Depending on the return type of the
anonymous function, the await keyword may need to be
added within the called function’s definition or to the function
invocation. Second, class constructors cannot be made async,
so a check must be done to detect if a constructor is in the
call chain of any function. Third, if a transformed function is
exported from a module, any other files using the function as
an import must be checked for functions and function calls to
add async and await to.

All of the transformation rules have both synchronous
and asynchronous variants except for T4-CallExpression(b).
T4-CallExpression(b) relies on an experimental WebAssem-
bly proposal that imposes complex preconditions. Adding

7



the asynchronous restrictions to this may break the orig-
inal semantics and lead to incorrect transformations. T4-
CallExpression(b) exposes more translation sites than T4-
CallExpression(a), increasing the number of edge cases that
can be encountered. We leave this combination as future work.

D. Applying Transformations

We now present the overall algorithm for applying these
transformations to a given JavaScript AST. The input to the
algorithm is a list of transformation rules and the AST of
the original JavaScript file. The algorithm consists of three
steps: (a) Identifying AST nodes where transformations should
be applied, i.e., translation sites; (b) rewriting the AST by
modifying the subtrees rooted at the translation sites; and (c)
adding code to the AST root to instantiate the generated Web-
Assembly modules. The algorithm outputs the transformed
AST corresponding to the obfuscated JavaScript code.

a) Identifying AST Nodes as Translation Sites: To iden-
tify translation sites, we perform a pre-order traversal of the
AST starting at the root node. For each visited node n,
the algorithm iterates through the list of transformation rules
and checks which rules are applicable. A transformation rule
(L, t, p) is applicable if the node n is in the set L of code
locations and if the precondition p holds for n. A set of
translation site nodes is produced for each transformation rule.

b) Rewriting AST Subtrees: After identifying all transla-
tion site nodes, the next step is to rewrite the subtrees rooted at
these nodes. The algorithm applies transformations based on
the size of the syntactic structures they target. Specifically,
we iterate through the transformation rules in this order,
applying each rule to all applicable subtrees before moving
on to the next rule: T1-StringLiteral, T2-ArrayInitialization,
T3-FunctionName, T4-CallExpression, T5-IfStatement, T6-
ForStatement, T7-WhileStatement. This ordering ensures that
transformations targeting finer-grained syntactic structures,
such as string and array literals, are performed prior to trans-
formations targeting coarser-grained structures, such as loops.
If more coarse-grained transformation were applied first, the
change could prevent more fine-grained transformations from
being applied. For each rule (L, t, p), the algorithm visits all
translation site nodes and applies the transformation function
t, which modifies the AST in-place and yields a WebAssembly
module used in the rewritten code. The output of this step is
the rewritten AST and a set W of WebAssembly modules.

c) Adding WebAssembly Instantiation Code: The final
step is adding code to instantiate the WebAssembly modules
W . To this end, the algorithm inserts statements at the begin-
ning of the script, i.e., at the root of the AST. For modules
that are instantiated synchronously, we encode each module
in W as a base64 string and add statements that decode
and instantiate the modules. For asynchronously instantiated
modules, we serialize the modules to separate files and issue
corresponding fetch requests in the code. For asynchronous
translations, the algorithm additionally adds the async wrapper
(described in Section IV-A) around the root of the AST to
support asynchronous keywords in the remainder of the code.

V. IMPLEMENTATION

We implement Wobfuscator with Node.js (v14.17.2) and
TypeScript. The tool relies on the Esprima (v4.0.1) [3] and
Espree (v7.3.1) [2] packages to parse the JavaScript files and
on Escodegen (2.0.0) [1] to convert the transformed AST back
into a JavaScript file. The Wabt.js (1.0.23) [8] package is used
to generate the WebAssembly modules used in the obfuscation.

The data from our evaluation is available at
https://github.com/js2wasm-obfuscator/translator. We make
the implementation of Wobfuscator available upon request. We
believe this strategy minimizes the threat of nefarious usage
while also aiding researchers in independently reproducing
our results, in confirming the identified weaknesses of existing
malware detectors, and in serving as a foundation for future
research on improving malware detectors.

VI. EVALUATION

We evaluate Wobfuscator and its ability to obfuscate mali-
cious JavaScript using opportunistic translation to WebAssem-
bly along the following main research questions:
• RQ1 – Effectiveness: How effective is the approach at

evading state-of-the-art JavaScript malware detectors and
which transformations are most effective? How does our
approach compare with other state-of-the-art obfuscators?

• RQ2 – Correctness: Do our code transformations preserve
the semantics of the transformed code?

• RQ3 – Efficiency: How much runtime and code size
overhead do the transformations impose, and how long does
applying the transformations take?
To investigate these questions, we perform a comprehensive

analysis on the effectiveness of our transformations in evading
detection. We evaluate state-of-the-art detection tools against
Wobfuscator on a large dataset of malicious and benign
files. We evaluate the obfuscation advantage produced by
Wobfuscator by comparing our approach against state-of-the-
art open-source obfuscation tools. Lastly, we use the extensive
test suites of widely used and mature npm modules to verify
the correctness of our tool and demonstrate the runtime and
code size overhead are acceptable for real-world usage.

A. Experimental Setup

1) Datasets: Due to different requirements, we use dif-
ferent datasets of JavaScript programs for different research
questions. To answer RQ1, we need to train and apply state-of-
the-art JavaScript malware detectors to large sets of real-world
benign and malicious JavaScript code. Table II summarizes
the datasets we use. The benign code consists of 149,677 files
from the JS150k dataset [49]. The malicious code consists
of 43,499 samples, with 2,674 samples from VirusTotal [7],
39,450 samples from the Hynek Petrak JavaScript malware
collection [47], and 1,375 samples from the GeeksOnSecurity
malicious JavaScript dataset [11]. These datasets are broken
down further by the malware categories that they contain, such
as trojans, ransomware, droppers. We list the breakdown of the
malicious datasets in the first four columns of Table IX.
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TABLE II
DATASETS FOR EVALUATING EFFECTIVENESS (RQ1).

Datasets # Samples (Files)
Benign JS150k 149,677
Malicious VirusTotal 2,674

Hynek Petrak 39,450
GeeksOnSecurity 1,375
Total Malicious 43,499

Answering RQ2 and RQ3 requires executing code before
and after applying our transformations. We use a dataset of
popular and large JavaScript projects on NPM with their test
suites. To identify suitable projects, we select from the most
depended-upon NPM modules [12] six modules that contain
extensive test suites (first column of Table V).

2) JavaScript Malware Detectors: We evaluate our obfus-
cation technique against four state-of-the-art, static, learning-
based JavaScript malware detectors. To train them, we split
the benign and malicious datasets into training, validation,
and test sets containing 70%, 15%, and 15% of the samples,
respectively. We follow the steps provided by each project to
train the detection models with the desired configuration.

Cujo [50] is a hybrid JavaScript malware detector that de-
tects drive-by download attacks. It performs a lexical analysis
of JavaScript files run on a website as well as a dynamic
analysis by monitoring abstracted runtime behaviors. For our
evaluation, we use the static detection part, based on a reim-
plementation of Cujo provided by Fass et al. [18].

Zozzle [24] is a mostly-static in-browser detection tool that
uses syntactic information, such as identifier names and code
locations, obtained from a JavaScript AST to identify mali-
cious code. These features are input to a Bayesian classifier
to label the samples as benign or malicious. We rely on a
reimplementation of Zozzle provided by Fass et al. [19].

JaSt [28] is a static detector of malicious JavaScript that
uses syntactic information from the AST to produce n-grams
of sequential nodes to identify patterns indicative of malicious
behavior. We use the implementation made available on the
project’s GitHub page [16].

JStap [27] is a static malware detector that leverages syntax,
control-flow, and data-flow information by creating an AST, a
Control Flow Graph (CFG), and a Program Dependency Graph
(PDG), depending on the configuration. The tool extracts fea-
tures either by constructing n-grams of nodes or by combining
the AST node type with its corresponding identifier/literal
value. In our evaluation, we focus on the PDG code abstraction
with both the n-grams and values feature extraction modes. We
use the implementation available on GitHub [17].

3) JavaScript Obfuscation Tools: We compare Wobfusca-
tor against four open-source state-of-the-art JavaScript ob-
fuscation tools. JavaScript Obfuscator [4] is a JavaScript
obfuscation tool that supports multiple obfuscation techniques
including variable renaming, dead code injection, and control-
flow flattening. Gnirts [15] focuses on mangling string literals
within JavaScript files. Jfogs [70] is an obfuscation tool that
focuses on removing function call identifiers and parameters
from call sites. JSObfu [5] is an obfuscator that supports

converting function identifiers and string literals into expres-
sions that evaluate to constants. This obfuscator also supports
character escaping, whitespace removal, and more.

All the experiments on a desktop containing an Intel Core i7
CPU@3.20GHz w/ 32 GB of memory running Ubuntu 20.04.

B. Effectiveness in Evading Detection (RQ1)

1) Effectiveness of Our Approach: To evaluate the effec-
tiveness of Wobfuscator at evading static malicious JavaScript
detectors, we compare the detectors’ performance on the
original input programs against their performance after our
obfuscation has been applied. Since the detectors classify
each program as benign or malicious, the usual metrics of
binary classifiers apply: precision and recall. Precision is
the number of true positives (correctly identified malicious
programs) divided by the number of all raised alarms (correct
or not), and recall is the number of true positives divided
by the number of all malicious programs in the dataset.
That is Prec= TP

TP+FP , Rec= TP
TP+FN . A good malware detector

should offer both high precision and high recall. Low precision
indicates a high number of false positives, which would cause
the system to block and break benign scripts and commonly
used websites. Such a tool would not be adopted by actual
users. Low recall means few of the actual malicious programs
are detected, limiting the usefulness of the detector. The main
goal of our obfuscation is to reduce the recall of detectors.

Some detectors fail to parse some of the original and trans-
formed code samples due to outdated or incomplete support
of the JavaScript language. Since this is an implementation-
specific detail of these detectors rather than a result of their
detection methodology, we choose to exclude these samples
from the count rather than mark them as false negatives. As a
result, the denominators of the recall results differ depending
on the detector and the applied transformations.

Results: Table III shows the recall of the detectors described
in Section VI-A2 (columns) when run on code obfuscated by
our transformations (rows). The first row gives each detector’s
recall without our obfuscation, which serves as a baseline.
The middle part of the table shows results from applying
only one kind of transformation at a time. For example, the
second row shows that applying our synchronous transforma-
tion technique T1-StringLiteral on the test set of malicious
samples, Cujo achieves a recall of 0.61, i.e., a significant
reduction compared to the baseline of 0.98. The results show
that different translation techniques are more effective against
some detectors rather than others. For each detector, the
lowest recall score is bold-faced to reveal the best-performing
individual transformation technique. For example, we find that
T1-StringLiteral performs best for Cujo, Zozzle, and JStap
in values mode, T4-CallExpression(a) performs best for JaSt,
and T4-CallExpression(b) performs best for JStap in n-grams
mode. Since each transformation rule is effective at reducing
the recall for at least one detector, all transformation rules are
integral to the effectiveness of our approach.

We explain the reasons why some detection tools disfavor
certain transformation rules over others. Cujo performs a
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TABLE III
RECALL OF MALWARE DETECTORS ON CODE OBFUSCATED BY WOBFUSCATOR. LOWEST RECALL IN BOLD.

Technique Cujo Zozzle JaSt JStap (NGrams) JStap (Values)

Baseline: No transformation 0.98 (5,548/5,649) 0.66 (3,598/5,453) 0.99 (5,076/5,108) 0.99 (4,483/4,524) 0.98 (4,439/4,524)

Individual transformations:

Sync, T1-StringLiteral 0.61 (1,623/2,644) 0.62 (3,387/5,453) 0.66 (3,393/5,108) 0.36 (1,539/4,257) 0.43 (1,839/4,257)
Sync, T2-ArrayInitialization 0.94 (4,050/4,292) 0.66 (3,593/5,450) 0.85 (4,360/5,105) 0.86 (3,890/4,505) 0.89 (4,009/4,505)
Sync, T3-FunctionName 0.67 (2,780/4,159) 0.65 (3,550/5,453) 0.69 (3,512/5,108) 0.57 (2,747/4,810) 0.72 (3,463/4,810)
Sync, T4-CallExpression(a) 0.71 (3,040/4,285) 0.64 (3,507/5,453) 0.38 (1,943/5,108) 0.37 (1,723/4,633) 0.78 (3,613/4,633)
Sync, T4-CallExpression(b) 0.58 (2,385/4,115) 0.63 (3,424/5,453) 0.44 (2,253/5,108) 0.23 (1,058/4,586) 0.73 (3,369/4,586)
Sync, T5-IfStatement 0.82 (3,513/4,301) 0.64 (3,505/5,453) 0.89 (4,535/5,108) 0.83 (3,717/4,501) 0.93 (4,178/4,501)
Sync, T6-ForStatement 0.90 (3,877/4,299) 0.66 (3,578/5,453) 0.92 (4,720/5,108) 0.87 (3,872/4,465) 0.98 (4,360/4,465)
Sync, T7-WhileStatement 0.90 (3,904/4,321) 0.66 (3,598/5,453) 0.96 (4,882/5,108) 0.98 (4,410/4,502) 0.98 (4,412/4,502)

Combined transformations:

All sync (using T4(a)) 0.18 (416/2,255) 0.63 (3,450/5,450) 0.22 (1,104/5,105) 0.00 (1/4,235) 0.18 (766/4,235)
All sync (using T4(b)) 0.19 (415/2,205) 0.63 (3,428/5,450) 0.18 (931/5,105) 0.00 (0/4,243) 0.08 (350/4,243)
All async 0.28 (1,490/5,297) 0.65 (3,524/5,453) 0.20 (1,085/5,453) 0.00 (4/4,612) 0.22 (959/4,267)
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0.99 0.99 0.98

0.18
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0.00
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0.00
0.20
0.40
0.60
0.80
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(NGrams)

JStap
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Baseline All sync (using T4(a))

Fig. 4. Baseline recall vs. obfuscated recall.

lexical analysis on malware files, so it learns the suspicious
features of strings that are indicative of malware. Since T1-
StringLiteral removes these identifiers from the file, Cujo is
not able to find suspicious tokens in the file. Zozzle identifies
malicious combinations of syntax features and the context
they are used in. Since T1-StringLiteral removes the usage
of malicious strings, such as shell code and dynamic code,
malicious files that have the majority of their code leveraging
these strings will have indicative features removed from their
AST, allowing them to evade Zozzle. JaSt uses n-grams
of AST syntax nodes (with a length of four by default)
to detect malicious patterns. T4-CallExpression(a) replaces a
single CallExpression node with multiple nodes handling the
WebAssembly module instantiation. Since this translation adds
more nodes than the length of sliding window, it can throw off
the detection of known malicious n-gram patterns. JStap in its
n-grams mode generates a program dependency graph (PDG)
by adding edges representing data flow to the AST of an input
file. Since T4-CallExpression(b) (and other transformations)
route data flow through the generated WebAssembly module,
it hinders the n-gram features that JStap can extract when
performing its data flow analysis. JStap in its values mode
is most affected by the T1-StringLiteral transformation since,
in this mode, it relies on literals when selecting features to
extract. T1-StringLiteral removes some literals.

The lower part of Table III shows results from applying
all transformation rules at once. We report results for three
transformation combinations. “All sync (using T4(a))” and
“All sync (using T4(b))” mean all synchronous transformations
with T4(a) being used and with T4(b) being used, respectively.
“All async” means all transformations in Table I (aside from

T4(b)) in their asynchronous variant. We find that combining
all transformation rules greatly reduces the recall of the
detectors. In particular, with the “All sync (using T4(a))” set
of transformations, Cujo, Zozzle, JaSt, JStap (NGrams), and
JStap (Values) have a recall of 0.18, 0.63, 0.22, 0.00, and 0.18,
respectively. Because of its performance and compatibility
with the WebAssembly MVP language, we select “All sync
(using T4(a))” to be the default configuration for Wobfuscator.
Figure 4 visualizes the results for “All sync (using T4(a))”.

The main goal of our work is to reduce the recall of
detectors, but we also measure their precision. The precision
values for the transformations are listed in Table VII. For
most applied transformations, the precision remains between
0.9 and 1.0. However, certain transformations can greatly
impact the precision on some detectors, e.g., “All sync (using
T4(a))” reduces JStap (NGrams) precision to 0.5. This shows
that while reducing the precision is not its main objective,
Wobfuscator can reduce the precision of certain detectors.

2) Comparison with Other Obfuscators: To demon-
strate how Wobfuscator compares against currently available
JavaScript obfuscators, we evaluate four obfuscation tools
on the same dataset used in Section VI-B1. We collect the
precision and recall values obtained by the five malware
detection tools when evaluated on a dataset obfuscated by each
tool. Similar to Section VI-B1, some detectors fail to parse
certain obfuscated files, leading to different denominators in
the values within the same detector column.

Results: Table IV shows the recall values of the detection
tools (columns) when run on code obfuscated by each of the
four obfuscation tools described in Section VI-A3 (rows). The
last row shows the best recall values obtained by Wobfuscator.

The results show that Wobfuscator outperforms current
obfuscators when compared on the recall reduction of malware
detectors. The only exception occurs when Jfogs is evaluated
against JaSt. In this case, Jfogs’ recall rate of 0.00 outperforms
Wobfuscator’s recall rate of 0.18. Jfogs’ obfuscation primarily
replaces identifiers and literals with new intermediate vari-
ables, so Wobfuscator could be used to compliment Jfogs.
For example, Jfogs moves string literals into variables, but
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TABLE IV
RECALL OF MALWARE DETECTORS ON CODE OBFUSCATED BY WOBFUSCATOR AND OTHER OBFUSCATORS.

Obfuscator Cujo Zozzle JaSt JStap (NGrams) JStap (Values)

JavaScript Obfuscator 1.00 (4,406/4,415) 0.70 (3,807/5,453) 0.81 (4,153/5,108) 0.43 (2,005/4,717) 0.62 (2,947/4,717)
Gnirts 0.98 (5,548/5,649) 0.66 (3,598/5,453) 0.99 (5,076/5,108) 0.99 (4,483/4,524) 0.98 (4,439/4,524)
Jfogs 0.77 (3,515/4,562) 0.66 (3,584/5,453) 0.00 (26/5,453) 0.00 (16/5,025) 0.56 (2,826/5,025)
JSObfu 1.00 (4,994/5,008) 0.84 (4,467/5,324) 0.29 (1,456/4,979) 0.01 (20/3,667) 0.66 (2,420/3,667)
Wobfuscator (best recall) 0.18 (416/2,255) 0.62 (3,387/5,453) 0.18 (931/5,105) 0.00 (4/4,612) 0.08 (350/4,243)

it does not alter or remove the strings from the file. Using
the T1-StringLiteral transformation, the string literals can be
completely removed from the JavaScript file, reducing the
syntactic information available to the detectors.

3) Breakdown of Results by Malware Type: The malicious
datasets contain several different categories of malware, in-
cluding cryptominers, trojans, and droppers. We provide a
breakdown on the malware categories contained within our
dataset. VirusTotal provides the malware type reported by the
AV scanners. We reduce the number of malware categories
presented by merging similar groups together, e.g., merging
JS:Trojan.Gnaeus and JS:Trojan.Agent into a Trojan category.
For GeeksOnSecurity, we use the directory names to identify
which samples are exploits kits and which are JavaScript
droppers. The Hynek Petrak dataset does not provide metadata
on the samples, so we scan the files with ClamAV to obtain
the malware categories. To demonstrate the effectiveness of
Wobfuscator in obfuscating a diverse set of malware samples,
we measure the reduction in the recall of malware detectors for
different malware categories in the dataset. For space reasons,
we list only the minimum recall rates observed within the
malware categories among all of the transformations.

Results: Columns 5-9 of Table IX present the recall values
obtained by the malware detectors (columns) when samples
from each malware category (rows) are obfuscated. In addition
to the recall rate, each cell lists the number of files correctly
marked as malicious by the detector over the number of ma-
licious files the detector tested within that category. Columns
marked with ‘-’ signify that the detectors are unable to parse
any of the test files within the malware category. For the
Phishing malware category, no samples appear in our test
dataset, so no recall values are available. The results on the five
largest malware groups (Downloader, Misc., Trojan, Malware,
and Exploit) show that Wobfuscator can significantly reduce
recall rates across diverse malware categories.

C. Correctness of the Transformations (RQ2)
The transformations we apply change the syntactic structure

of the program. Naturally, such changes could affect program
semantics, potentially making the obfuscated program behave
differently from the original program and thus breaking func-
tional correctness. This gives rise to two questions, which are
in tension with each other: First, do we preserve functional
correctness of the input program, i.e., are our code trans-
formations semantics-preserving? Second, how often are the
transformations applied? To validate that the correctness of
the program is preserved, we leverage the comprehensive test
suites of existing widely used JavaScript projects. We apply

the transformations to the tested code and then validate if the
transformed code still passes its tests. Addressing the second
question, a trivial solution to correctness would be to transform
only a very small set of code locations, preserving semantics
at the expense of obfuscating less code. Thus, we also evaluate
how often each transformation rule is applied.

The validation setup differs between the synchronous and
asynchronous variants of the transformations. In the syn-
chronous case, we can simply apply the transformations to
any existing code. To validate the correctness of the asyn-
chronous transformations, the projects must be modified to
support asynchronous execution as described in Section IV-C.
Since automatically turning arbitrary JavaScript code into
asynchronous code is non-trivial, we instead focus on an NPM
project, node-fetch, that is already asynchronous, so applying
the asynchronous transformations is simplified. We use this
project to validate the asynchronous variants and use the other
five projects to validate the synchronous variants.

Results: The results for the test suite runs are shown in
Table V. This table lists the tested project, its version, and the
number of translation sites where rules T1–T7 are applied to.
The last two columns list the total number of tests in the test
suite, and the number of tests that are impacted by at least
one transformation. All tests in each project pass successfully,
showing that our obfuscations are semantics-preserving.

Columns 4-11 of Table V show the number of transformed
code locations that meet the preconditions of the transforma-
tion out of the total number of available code locations relevant
to the transformation, regardless of whether they satisfy the
preconditions. The last two columns of Table V show that
of the 2,017 unit tests in the five test suites, 1,844 of them
(91.42%) rely on a function that is impacted by at least one
transformation rule. The results show that our transformation
rules are applicable to code locations used in the real-world.

D. Efficiency in Terms of Runtime and Code Size (RQ3)
The Wobfuscator transformations we propose re-implement

native JavaScript functionalities in WebAssembly modules,
such as calling a function, performing a while loop, initializing
an array, etc. As a result, there will be an impact on the perfor-
mance of the translated programs. To quantify the performance
impact of our transformations, we use the test suites of the
six modules described in Section VI-C. In addition, the code
size increase caused by the transformations is also analyzed,
counting both added JavaScript and WebAssembly code.

1) Translation Runtime: First, we measure the time taken
for performing the transformations on the project files. The
times are measured with the time command available in
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TABLE V
CORRECTNESS VALIDATION RESULTS.

Project Version LoC T1 T2 T3 T4(a) T4(b) T5 T6 T7 Total # of Tests # of Tests Impacted

Validation of synchronous transformations:

Lodash 5.0.0 21,178 193/801 160/208 0/0 87/467 299/467 47/187 0/0 38/61 408 322
Chalk 4.1.0 319 64/68 0/23 2/2 21/108 26/108 4/25 1/1 2/2 54 54
Commander 7.2.0 1,153 155/163 0/28 0/0 130/394 87/394 91/153 4/4 2/3 632 592
Debug 4.3.2 505 141/149 2/8 0/0 20/95 43/95 16/29 2/5 0/0 14 13
Async 3.2.0 787 30/57 0/21 0/0 89/209 108/209 31/86 5/6 5/8 675 659

Validation of asynchronous transformations:

Node-Fetch 3.0.0beta.10 970 174/212 1/17 0/0 49/264 - 26/94 0/0 0/0 234 204

Total - 4,152 757/1,450 163/305 2/2 396/1,537 654/1,537 189/480 12/16 47/74 2,017 1,844

TABLE VI
EFFICIENCY OF TRANSFORMATIONS.

Project Translation time Execution time Code size (bytes)

LoC Time Original Overhead Original Overhead

Synchronous Validation

Lodash 21,178 29.58s 3.51s +25.81% 135,402 +139.84%
Chalk 319 0.81s 4.03s +7.01% 14,935 +166.70%
Commander 1,153 0.51s 3.97s +49.95% 74,269 +146.96%
Debug 505 1.14s 0.61s +3.24% 21,395 +154.70%
Async 787 5.42s 16.83s +2079.21% 28,925 +363.52%

Asynchronous Validation

Node-Fetch 970 16.03s 4.11s +14.76% 51,960 127.16%

Average 4,152 8.92s 5.68s +31.07% 54,481 +170.42%

Linux, averaged over ten repetitions. We compute the total
transformation time of a project by summing the times to con-
vert each JavaScript file used in the project. The transformation
time results are presented in Table VI. The table shows that
for the largest project, Lodash with 21,178 lines of code, the
average time to apply all of the synchronous transformations is
29.58 seconds. For the smallest project, Chalk with 319 lines
of code, the average time to apply the transformations is only
0.81 seconds. In addition, we find that among all the projects in
Table VI, the average time to apply all of the transformations
is only 8.92 seconds. These low transformation times show
that Wobfuscator is practical for JavaScript obfuscation.

2) Execution Time Overhead: The execution overhead time
is the increase in runtime to complete the execution of the test
suites of the transformed projects. We use the time command
to measure the runtime of the project test suite before and
after the transformations are applied, reporting averages over
ten repeated measurements. The execution time results are
presented in Table VI. Our transformations add a performance
overhead that ranges from an increase of 3.24% to an increase
of 2,079%. While the highest overhead number is large, it
is important to note that this large runtime originates from
one test within the async project that concurrently applies an
asynchronous function to a collection of 1,048,576 elements.
In most cases, it is unlikely that malware samples will follow
such an execution pattern that incurs this large overhead. On
average, Wobfuscator adds a performance overhead of 31.07%.

3) Code Size Overhead: The code size overhead is the
increase in code size between the original file and transformed
output among all code files within a project. Table VI lists the
percentage of growth in code size compared with the original

size. On average, applying all of the transformations among
the project, the code size increased by 170.42%. Overall, the
code size overhead is acceptable for practical applications.

VII. DISCUSSION

This section discusses the limitations and possible mitiga-
tions to defend against WebAssembly-based obfuscation.

A. Limitations

Wobfuscator targets malware detectors based on static
analysis, and despite its effectiveness in bypassing them, is
unlikely to be equally effective for dynamic analysis-based
detectors. The transformations move some behavior into Web-
Assembly while leaving the ultimate runtime behavior intact.
That is, a dynamic detector that, e.g., observes browser API
calls made by a website will observe the same behavior
with and without our obfuscation. However, in practice static
detectors are much easier to deploy (e.g., as network proxies
or browser extensions), whereas observing dynamic behavior
is more complex to set up and expensive at runtime.

Another limitation is that the approach applies transforma-
tions only to some of the given code. If a code location does
not fulfill the preconditions for a specific transformation, then
it cannot be transformed. Conservatively guarding transfor-
mations is crucial to ensure that our approach preserves the
semantics of the given code, but also limits its applicability.

Finally, our obfuscation relies on WebAssembly being avail-
able in the browser. With WebAssembly support in 94% of all
installed browsers, this limitation is likely to be acceptable
in practice. To ensure that the obfuscated malware runs as
expected, an attacker could check for WebAssembly support
and load the obfuscated code only if the language is supported.

B. Mitigations

We discuss three mitigation strategies aimed at detecting
malware despite our obfuscation. The first is dynamic analysis-
based malware detection. Because our approach preserves
the original JavaScript behavior, many runtime characteristics
that dynamic detectors focus on [53] are not affected by the
obfuscation. WebAssembly code invokes web APIs through
JavaScript, which means the call will be visible to any runtime
analysis that wraps the API functions or intercepts them within
the browser. However, dynamic malware detectors often im-
pose a non-negligible runtime overhead and may miss malware
that hides its malicious behavior in specific configurations.
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The second mitigation strategy is based on the defender
knowing the details of our obfuscation. Since the WebAssem-
bly usage in the obfuscated code, e.g., loading many small
modules, may be abnormal, it is possible to define heuristic
rules to detect that Wobfuscator was applied. In a similar
vein, one could include code obfuscated with our technique
in the training data used to learn a malware classifier. The
main drawback of these mitigations is that obfuscation does
not imply maliciousness. There are legitimate reasons for
obfuscating code, e.g., protecting intellectual property. Hence,
classifying all code obfuscated by our technique, or any other
obfuscation technique, as malicious is likely to cause an
unacceptably high number of false positives.

Finally, the third mitigation strategy is to jointly analyze
JavaScript and WebAssembly. For detectors based on tradi-
tional program analysis, both static or dynamic, a joint analysis
would reason about how data and control flows between the
two languages. Likewise, learning-based detectors, such as
those used in our evaluation, could feed code in both languages
into their models. We are not aware of any existing malware
detector with support for WebAssembly but hope that our work
will raise awareness that a joint analysis would be useful.

VIII. RELATED WORK

Obfuscation Studies and Techniques: Obfuscation tech-
niques have been observed in various programming languages
and software domains for both malicious and benign purposes.
Previous works categorize obfuscation techniques applied on
malicious code [69] while others compare the effectiveness of
different obfuscation techniques [22], [32], [61]. Some studies
have analyzed the usage of obfuscation techniques specifically
in JavaScript code by investigating the obfuscation techniques
used in real-world malicious and benign files [66], [55].

There is little work proposing new obfuscation attacks
for JavaScript code. Fass et al. [26] construct HideNoSeek
which rewrites the ASTs of malicious programs into the AST
of known benign programs to avoid detection. The authors
evaluate HideNoSeek on 91,020 samples against VirusTotal,
Yara, JaSt, Zozzle and Cujo. The obfuscation technique is able
to achieve a 99.98% false negative rate against the detectors.

Malware Detection: An active area in academic research
produces static analysis techniques designed to identify mali-
cious behavior even in the presence of obfuscated code.

One class of static detection tools use lexical and syntactic
information derived from JavaScript files in order to identify
features that indicate malicious code [50], [24], [16], [20],
[54]. Techniques build on this syntactic information by in-
corporating control-flow and data-flow analysis [27] or by
adding dynamic analysis to confirm the presence of mal-
ware [67], [59]. Other static detection techniques analyze the
JavaScript source code through machine-learning and deep-
learning approaches [63], [46]. Wobfuscator can impact the
detection rates of these detectors since it reduces the syntactic
information available. In addition, some behavior is moved to
WebAssembly modules, which are ignored by these detectors.

Other malware detection techniques dynamically analyze
programs to identify malicious behaviors. Some techniques
focus on collecting runtime statistics to construct models that
identify malware [23], [53], [68]. Other techniques leverage
symbolic execution [39] or forced execution [38] to trigger
malware hidden behind complex input sequences. Wobfuscator
is unlikely to reduce the detection rate against these detectors
as we do not significantly change the runtime behavior.

Obfuscation Detection: Some existing work only focuses
on detecting obfuscation rather than obfuscated malware.
NOFUS [35] and JSOD [13] use syntactic and contextual
information as features for a machine learning classifier to
detect obfuscation. Sarker et al. [53] develop a hybrid approach
by instrumenting browser APIs and determining whether the
traced API call corresponds to a static code location.

WebAssembly and WebAssembly Security: Haas et al. [31]
explain the motivation and benefits of introducing a new byte
code language to the Web. Several works investigate security
aspects of WebAssembly, e.g., unsolicited cryptomining in the
browser [40], [45], [52] and how to detect and defend against
it [37], [51], [62]. Lehmann et al. show that source-level
memory vulnerabilities may propagate to WebAssembly bina-
ries [41], a problem that affects many real-world binaries [33].
However, neither of those works use WebAssembly to hide
arbitrary JavaScript behavior from inspection. Future joint
malicious code detectors for JavaScript and WebAssembly
could build upon the Wasabi framework [42] or taint tracking
frameworks for WebAssembly [29], [57].

IX. CONCLUSION

Much work has focused on identifying JavaScript malware
using static analysis. However, these techniques ignore recent
web standards available to attackers, namely WebAssembly. To
bypass static detectors, we present Wobfuscator, an obfusca-
tion approach built on a set of seven transformation rules that
opportunistically translate specific parts of JavaScript code into
functionally identical WebAssembly modules. We evaluate our
transformations against four state-of-the-art static JavaScript
malware detectors and show that our approach effectively
reduces the recall on real malware samples. We show that
our technique outperforms other obfuscation tools only based
on JavaScript. Finally, we use the test suites of six NPM
packages to validate the correctness of our transformations
and show their low performance overhead. Our results show
that current static detectors are ineffective against techniques
that implement cross-language code obfuscation, motivating
future work on addressing this challenge.
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APPENDIX

TABLE VII
PRECISION OF MALWARE DETECTORS ON CODE OBFUSCATED BY WOBFUSCATOR.

Technique Cujo Zozzle JaSt JStap (NGrams) JStap (Values)

Individual transformations:

Baseline (no transformation) 0.95 (5,548/5,832) 0.97 (3,598/3,694) 1.00 (5,076/5,080) 1.00 (4,483/4,484) 1.00 (4,439/4,440)
Sync, T1-StringLiteral 0.85 (1,623/1,907) 0.97 (3,387/3,483) 1.00 (3,393/3,397) 1.00 (1,539/1,540) 1.00 (1,839/1,840)
Sync, T2-ArrayInitialization 0.93 (4,050/4,334) 0.97 (3,593/3,689) 1.00 (4,360/4,364) 1.00 (3,890/3,891) 1.00 (4,009/4,010)
Sync, T3-FunctionName 0.91 (2,780/3,064) 0.97 (3,550/3,646) 1.00 (3,512/3,516) 1.00 (2,747/2,748) 1.00 (3,463/3,464)
Sync, T4-CallExpression(a) 0.91 (3,040/3,324) 0.97 (3,507/3,603) 1.00 (1,943/1,947) 1.00 (1,723/1,724) 1.00 (3,613/3,614)
Sync, T4-CallExpression(b) 0.89 (2,385/2,669) 0.97 (3,424/3,520) 1.00 (2,253/2,257) 1.00 (1,058/1,059) 1.00 (3,369/3,370)
Sync, T5-IfStatement 0.93 (3,513/3,797) 0.97 (3,505/3,601) 1.00 (4,535/4,539) 1.00 (3,717/3,718) 1.00 (4,178/4,179)
Sync, T6-ForStatement 0.93 (3,877/4,161) 0.97 (3,578/3,674) 1.00 (4,720/4,724) 1.00 (3,872/3,873) 1.00 (4,360/4,361)
Sync, T7-WhileStatement 0.93 (3,904/4,188) 0.97 (3,598/3,694) 1.00 (4,882/4,886) 1.00 (4,410/4,411) 1.00 (4,412/4,413)

Combined transformations:

All sync (using T4(a)) 0.59 (416/700) 0.97 (3,450/3,546) 1.00 (1,104/1,108) 0.50 (1/2) 1.00 (766/767)
All sync (using T4(b)) 0.59 (415/699) 0.97 (3,428/3,524) 1.00 (931/935) 0.00 (0/1) 1.00 (350/351)
All async 0.84 (1,490/1,774) 0.97 (3,524/3,620) 1.00 (1,085/1,089) 0.80 (4/5) 1.00 (959/960)

TABLE VIII
PRECISION OF MALWARE DETECTORS ON CODE OBFUSCATED BY OTHER OBFUSCATORS.

Obfuscator Cujo Zozzle JaSt JStap (NGrams) JStap (Values)

javascript-obfuscator 0.94 (4,406/4,690) 0.98 (3,807/3,903) 1.00 (4,153/4,157) 1.00 (2,005/2,006) 1.00 (2,947/2,948)
Gnirts 0.95 (5,548/5,832) 0.97 (3,598/3,694) 1.00 (5,076/5,080) 1.00 (4,483/4,484) 1.00 (4,439/4,440)
jfogs 0.93 (3,515/3,799) 0.97 (3,584/3,680) 0.87 (26/30) 0.94 (16/17) 1.00 (2,826/2,827)
JSObfu 0.95 (4,994/5,278) 0.98 (4,467/4,563) 1.00 (1,456/1,460) 0.95 (20/21) 1.00 (2,420/2,421)

TABLE IX
MALWARE CATEGORY BREAKDOWN OF DATASETS AND DETECTOR RECALL RATES.

Malware Type Dataset Breakdown Malware Detector Recall

VirusTotal GeeksOnSecurity HynekPetrak Cujo Zozzle JaSt JStap (N-grams) JStap (Values)

Downloader 14 0 21619 0.10(102/988) 0.67(1772/2629) 0.11(279/2629) 0.00(0/2440) 0.00(2/1787)
Misc 167 21 13527 0.35(257/731) 0.64(1100/1732) 0.36(625/1732) 0.00(0/1082) 0.06(60/1082)
Trojan 1618 0 2058 0.00(0/201) 0.61(305/499) 0.00(0/499) 0.00(0/453) 0.06(25/453)
Malware 0 0 1546 0.00(0/109) 0.29(66/231) 0.22(51/231) 0.00(0/180) 0.02(3/125)
Exploit 6 1029 0 0.00(0/151) 0.00(0/151) 0.00(0/151) 0.00(0/151) 0.00(0/151)
Ransomware 12 0 700 0.00(0/56) 0.05(3/59) 0.00(0/3) 0.00(0/56) -
Cryptominer 665 0 0 1.00(1/1) 0.99(68/69) 0.00(0/69) 0.00(0/1) 0.00(0/1)
Dropper 0 323 0 0.00(0/17) 0.50(26/45) 0.11(5/45) 0.00(0/45) 0.00(0/45)
Hijacker 112 0 0 0.00(0/12) 0.94(17/18) 0.00(0/18) 0.00(0/12) 0.00(0/11)
Riskware 21 0 0 1.00(1/1) 1.00(5/5) 0.00(0/5) - -
Redirector 15 0 0 0.00(0/3) 0.25(1/4) 0.00(0/4) 0.00(0/3) 0.00(0/3)
Clicker 25 0 0 - 1.00(4/4) 0.00(0/4) - -
Iframe 24 0 0 - 1.00(4/4) 0.00(0/4) 1.00(1/1) 1.00(1/1)
Clickjack 13 0 0 - 1.00(1/1) 0.00(0/1) - -
Phishing 3 0 0 - - - - -
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