
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Midas: Systematic Kernel TOCTTOU Protection
Atri Bhattacharyya, EPFL; Uros Tesic, Nvidia; Mathias Payer, EPFL

https://www.usenix.org/conference/usenixsecurity22/presentation/bhattacharyya

Midas: Systematic Kernel TOCTTOU Protection

Atri Bhattacharyya
EPFL

Uros Tesic ∗

Nvidia
Mathias Payer

EPFL

Abstract
Double-fetch bugs are a plague across all major operating sys-
tem kernels. They occur when data is fetched twice across the
user/kernel trust boundary while allowing concurrent mod-
ification. Such bugs enable an attacker to illegally access
memory, cause denial of service, or to escalate privileges. So
far, the only protection against double-fetch bugs is to detect
and fix them. However, they remain incredibly hard to find.
Similarly, they fundamentally prohibit efficient, kernel-based
stateful system call filtering. Thus, we propose Midas to miti-
gate double-fetch bugs. Midas creates on-demand snapshots
and copies of accessed data, enforcing our key invariant that
throughout a system call’s lifetime, every read to a userspace
object will return the same value.

Midas shows no noticeable drop in performance when eval-
uated on compute-bound workloads. On system call heavy
workloads, Midas incurs 0.2–14% performance overhead,
while protecting the kernel against any TOCTTOU attacks.
On average, Midas shows a 3.4% overhead on diverse work-
loads across two benchmark suites.

1 Introduction

The operating system (OS) kernel provides isolation between
processes and is a key trusted computing base. Each untrusted
userspace process runs under a dedicated user in its own ad-
dress space and must request resources (such as communi-
cation channels or changes to its address space) from the
trusted kernel. The userspace/kernel interface forms an ex-
plicit trust barrier; all data that crosses this boundary in either
direction must be carefully checked by the kernel. Userspace
processes attack the kernel by issuing system calls (syscalls)
that then trigger kernel bugs, elevating the privileges of the
process. A common class of kernel bugs are so-called double-
fetch bugs [35,38,40,44]. They occur when higher-privileged
code, such as the kernel, reads the same data from the lower-
privileged address space twice. Double-fetch bugs are a race

∗This work was done during the author’s time at EPFL.

condition between threads of different privileges. A time-of-
check to time-of-use (TOCTTOU) violation occurs when the
first read is used to check a condition while the second read
is used to modify state. An example of a double fetch bug is
when the kernel reads the length of a buffer from userspace,
allocates a kernel buffer, then reads the length a second time
to finally copy the data from userspace to the kernel. An at-
tacker may concurrently overwrite the length of the buffer
(with a larger number) after allocation, causing the memory
copy to overflow the kernel buffer. Double-fetch bugs are
a frequent problem in kernels and hypervisors [1–10]. Wat-
son [42] blames an unfixable TOCTTOU constellation as a
reason for the generic insecurity of syscall wrappers. Syscall
filtering wrappers require that data read from userspace for
the initial check remains the same when the kernel later uses
it for computation. Therefore, such filters can currently only
check arguments passed by value. Midas enables “deep ar-
gument inspection” for SecComp [12, 13] (i.e., checks argu-
ments passed by reference). Without Midas, such inspection
is impossible: these checks introduce double fetches, and
consequently TOCTTOU bugs.

To mitigate double-fetch bugs in the kernel, a system
must prohibit concurrent changes1to memory accessed by
the syscall. Attackers may find crafty ways to trigger such
concurrent writes, including: i) direct writes from userspace
(e.g., from concurrent threads), ii) kernel writes from syscalls
(e.g., from concurrent syscalls), iii) modifying address space
mappings, iv) concurrent write syscalls to a file that alters
mapped file pages, and v) storing arguments on device-backed
pages, leveraging devices to trigger concurrent writes. To pre-
vent attacks, all concurrent writes must be prohibited.

We base our defense on a single key invariant: through
a syscall’s lifetime, every read to a userspace object will re-
turn the same value. From this invariant we derive a security
property ensuring that every read during the execution of a
syscall is tracked. Subsequent reads from the same address
will always return the same value. For performance, multiple

1The attacker model includes both concurrent and parallel writes.

USENIX Association 31st USENIX Security Symposium 107

versions of an object may exist simultaneously, depending
on when the syscall was started and how many concurrent
syscalls are in flight. Orthogonally, we derive a correctness
property that ensures the sharing of the correct version among
inflight syscalls. All writes end up on the most recent ver-
sion of the objects, allowing forward progress. While we
implement this invariant in our Midas prototype for the Linux
kernel, this defense applies to any modern OS kernel.

Our evaluation of Midas demonstrates low performance
overhead. On workloads from the NAS Parallel Benchmarks
suite, Midas shows an average performance overhead of 3.7%.
Similarly, its performance overhead on more kernel-intensive
workloads from the Phoronix Test Suite is 3.4% (with negligi-
ble memory overhead). Our security evaluation demonstrates
how Midas successfully stops all attacks against vulnerable
syscalls. Our contributions are:

• Distillation of TOCTTOU attack vectors into an invari-
ant that protects the kernel against malicious concurrent
modifications,

• Midas, a design that prohibits and detects TOCTTOU
attacks against modern kernels, prohibiting their exploita-
tion, enabling developers to detect TOCTTOU bugs, and
providing the foundation for safe syscall interposition
and validation, and

• An efficient implementation of Midas for the Linux ker-
nel that exhibits low (3.4%) performance overhead.

2 Background

Midas orchestrates several mechanisms within the Linux
memory subsystem to provide its protection guarantees. Linux
uses architecturally defined per-address space page tables to
define mappings to pages. Midas protects these pages by
temporarily marking them read-only in the page tables. This
section provides background information necessary to reason
about why and how Midas protects syscalls from concurrent
writes.

2.1 Page Tables and Memory Protection

Virtually all modern architectures (e.g., x86, ARM, SPARC,
and RISC-V) implement separate virtual and physical address
spaces (AS) based on fixed-size regions called pages. Pro-
grams execute in their virtual address space while caches
and main memory are accessed using physical addresses. Ar-
chitectures rely on page tables orchestrated by the operating
system to translate between these address spaces and to pro-
tect such accesses. Page tables are arranged as radix trees,
where different bits of the virtual address are used as indices
into successive levels of the page table. At the leaf page ta-
ble, a unique pagetable entry (PTE) stores the translation and
protection information for a page.

A PTE in x86-64 is a 64-bit value holding, among others,
the following metadata: a Present bit (P) to mark the PTE’s
validity; Protection bits (NX, R/W, U/S) to restrict the type of
access and the privilege level of the accessing code; Software-
usable bits (SW1-SW4) that are ignored by the MMU and
used by the operating system to store metadata; and a Page
Frame Number (PFN) to identify the page’s physical address.

An access using a virtual address first reads the correspond-
ing PTE’s present bit to check its validity. Then, the access
checks whether the access is allowed from the executing
code’s privilege level by checking the U/S bit and whether the
read/write access is allowed by checking the R/W bit. When
all checks pass, the processor uses the PFN to find the data in
the caches or in memory. When a check fails, the processor
raises a protection fault/exception and moves control to an
OS-specified exception handler.

Reading PTEs from a multi-level page table is an expen-
sive operation, and modern processors cache PTEs in caches
known as Translation Lookaside Buffers (TLBs) to reduce
the cost of subsequent accesses. On most architectures, the
OS is responsible for keeping TLBs coherent with the page
table, necessitating entries to be flushed from TLBs when the
corresponding PTE is updated.

2.2 Linux Memory Subsystem

Linux implements various abstractions—including processes,
files, and shared memory—using the architecture’s page ta-
bles. All threads within a Linux process share a single address
space, and consequently use the same page table for trans-
lation and protection. Each page within the process’ virtual
address space may be mapped or unmapped. Mapped pages
have separate read/write/execute permissions. Programs typi-
cally have write-execute exclusion, meaning code pages can-
not be written to and data pages cannot be executed. These
permissions map directly to page-table bits. Pages in Linux
may also be copy-on-write (COW) pages, which are mapped
read-only in multiple address spaces, but duplicated when any
process writes to it, resulting in a separate copy.

Linux maintains userspace and kernel mappings to memory
in distinct parts of the virtual address space. The PTE entries
for kernel mappings, located in the top half of the address
space, have the U/S bit set. These kernel mappings are identi-
cal for all address spaces, and are kept consistent across the
corresponding page tables. In contrast, the PTE entries for
userpace mappings, located in the bottom half of the address
space, have the U/S bit reset. A userspace page has atleast one
userspace mapping and atleast one kernel mapping. Shared
userspace memory is implemented by mapping a page in more
than one address space.

Files in Linux occupy a separate namespace (rooted at /).
However, when files are read or written, parts of the file are
cached in the kernel’s page cache (which consists of pages
mapped in the kernel’s address space). Moreover, programs

108 31st USENIX Security Symposium USENIX Association

can explicitly map pages from a file, in which case the cor-
responding pages from the page cache are also mapped at
userspace addresses in the process’ page table. Mapped file
pages can therefore be accessed by the file-system driver us-
ing kernel addresses, and userspace programs using userspace
addresses. Userspace pages not backed by a file are called
anonymous pages.

2.3 Supervisor Memory Protection
Kernel accesses to userspace memory use userspace map-
pings, introducing the risk of the kernel confusing userspace
data structures for kernel data structures. An attacker can
exploit this behavior via bugs in the kernel. Essentially, the
attacker needs to set up either data structures or code within
its accessible memory, then exploit a kernel bug to make the
kernel use these data structures, or execute this code.

Architectures and OSs have mitigated these vulnerabilities
by introducing supervisor memory protection. Under super-
visor memory protection, kernel read/write/execute access
to userspace memory raises a fault (depending on the state
of a per-core system register). On x86-64, these features are
known as Supervisor Memory Access Protection (SMAP,
for data accesses) and Supervisor Memory Execution Pro-
tection (SMEP, for code accesses). Bits in the CR4 register
track whether these protections are active, and the privileged
stac/clac instructions are used to quickly enable and disable
SMAP. In the OS, all accesses to userspace memory are made
explicit, using transfer functions to read from and write to
userspace memory. Any unintended access outside of these
functions causes a hardware fault, indicating a kernel bug or
an attack. Linux implements the copy_{from/to}_user func-
tions, which use the access control instructions to disable
SMAP before accessing userspace data, and then re-enable
SMAP afterwards. Transfer functions make kernel accesses
to userspace data explicit, allowing Midas to reliably track
and protect all kernel fetches from userspace memory.

2.4 Double-Fetch Bugs
Double-fetch bugs occur when a privileged environment (such
as the kernel) reads untrusted memory multiple times, return-
ing different values each time. Such a situation is depicted in
Figure 1, where the value of X in memory is changed by an at-
tacker between two reads by the target thread. Exploiting such
a bug requires a race condition i.e. accesses to memory in a
particular order across threads. A specific variety is the time-
of-check to time-of-use (TOCTTOU) bug which occurs when
the first fetch validates an object’s value and the second fetch
uses the same object’s value. TOCTTOU bugs are widely stud-
ied in file systems, where the API makes it possible to swap
the file after validating the access rights [20, 32, 33, 37, 43].
TOCTTOU bugs affect both kernel [23, 40] and dynamically-
loaded driver code [7, 14]. Wang et al. [40] showed that dou-

Target thread Attacker threadMemory state

Enter a syscall

Read(X) = 42

Read(X) = 0

X=42

X=0 Write(X, 0)

Exploit

X=0

Figure 1: Example of a double-fetch bug.

Userspace Kernel Device

Intra AS User mapping DMAExisting
mapping Cross AS Kernel mapping MMIO page

mmap mm_populate New
clone DMA/New

mapping
swap MMIO page

Table 1: Attack vector classification for TOCTTOU exploits.

ble fetches appear not only in kernels, but wherever there is
a trust boundary to cross (e.g., kernel—hypervisor [44] and
hardware—kernel boundaries [28]).

3 Threat Model

The attacker has access to a user account on the target ma-
chine. They can execute arbitrary userspace code, including
syscalls. Some of the system calls have double-fetch vulnera-
bilities which the attacker wishes to exploit (e.g., for privilege
escalation). The attacker may execute arbitrary sequences of
syscalls on multiple CPU cores in parallel, or concurrently on
the same core.

Midas mitigates any unintended corruption or informa-
tion leakage in the kernel or in other user processes that
arises through double-fetch bugs. Hardware attacks such
as Rowhammer [30] or side-channels [26], and file-system
TOCTTOU attacks [32, 33, 37, 43] are out of scope.

4 Attack Classification

Midas guards data processed during a syscall’s execution
against concurrent modification. We label the data fetched

USENIX Association 31st USENIX Security Symposium 109

twice as vulnerable data. In this section, we classify attacks
based on two criteria: the privilege level of the writer, and
whether the mapping used for writing exists at the time of the
first read. Table 1 summarizes our classification. Importantly,
this classification helps understand existing attacks and how
to protect against them, and where future attacks (bugs) may
arise. The device column corresponds to attacks where a
device (e.g., a network card, GPU, FPGA) is responsible for
modifying vulnerable data. Watson [42] describes a subset of
the following attack vectors.

Existing userspace mappings to a page can be used to
modify vulnerable data which the targeted syscall is reading.
Userspace can directly write to a mapped page, irrespective
of whether the mapping is in the same address space or not.
Alternatively, a concurrently executing syscall can also mod-
ify the vulnerable data in a confused-deputy attack. When the
attacker passes a pointer to the vulnerable data to the syscall
as a user buffer in which the syscall can return some data,
the kernel’s write to the buffer can modify vulnerable data.
For example, the read syscall takes an argument pointing to
a user buffer where the contents of a file will be copied to.
Another example is rt_sigaction, where the kernel writes to
a user buffer pointed to by the oldact argument. In both of
these attacks, the malicious write uses a userspace mapping.
A protection mechanism must account for all userspace map-
pings to pages containing vulnerable data at the time of the
targeted syscall’s first read.

Existing kernel mappings to a page also mapped in
userspace can be leveraged by an attacker in a confused-
deputy attack. Here, the attacker maps a file-backed page
from the page cache into a userspace process and then passes
as an argument in this page to the target syscall. The attacker
then triggers a concurrent write syscall to modify the vulnera-
ble data using kernel mappings for the page cache pages. The
kernel does not explicitly track kernel addresses mapping to
a page, but the file-system driver does explicitly find the page
before writing to it. A protection mechanism must instrument
file-system drivers to account for writes via kernel mappings
to vulnerable data.

The kernel might create new mappings to the vulnerable
data between the double fetches by the target syscall, by-
passing any protective permissions installed by the transfer
function in PTEs at the time of first read. An attacker can
call mmap and clone to create a new mapping to the vulnera-
ble data before writing to it. The page-table mapping might
not be created at the time of the malicious syscall, but lazily
when the attacker writes to the vulnerable data due to demand
paging. In a more involved variant, the attacker can use the
kernel as a confused deputy which touches the unmapped
page and maps it in, then writes to the vulnerable data. In
all of the above vectors, the function populating pages for a
process (mm_populate on Linux) is creating the new mapping.
A protection mechanism must instrument any syscalls and
other kernel mechanisms which can create new mappings.

Swapping may also create a new page-mapping. If the
attacker writes to a page that was previously swapped to disk,
but later swapped in to be read by the target syscall in a
different address space, the kernel might lazily reinstate the
attacker’s mapping to the page. The swapping mechanism
must be protected.

Midas protects against all of the previously-listed attack
vectors. In the absence of any other syscall which can create
new userspace mappings to vulnerable data, Midas’ protection
is complete against writes from both user and kernel code.

Finally, a device might modify vulnerable data if it is either
allowed to DMA (direct memory access) to the page, or if the
page is memory mapped (MMIO) and is actually backed by
the device. In the latter case, external factors can change the
vulnerable data. Existing discretionary access control rules
typically prevent users (except a superuser) from mapping
device-backed pages into their address spaces. Such users
are also disallowed from configuring DMA devices. Thus,
device modifications to vulnerable data fall outside our threat
model and are not protected by Midas. However, Midas can
be extended to protect against modifications by DMA devices
on processors supporting IOMMUs or similar methods for
access control [31]. As a superuser can modify kernel code
via kernel modules, protecting against attacks from this user
falls outside of our threat model.

5 Midas Design

Midas maintains a single, core, invariant: through a syscall’s
lifetime, every read to a userspace object will return the
same value. By construction, the invariant guarantees that
double-fetches in syscall code will read the same data, elim-
inating TOCTTOU bugs. Midas maintains the invariant by
tracking snapshots of objects when first accessed, lazily mak-
ing copies when the object is concurrently written and ac-
cessing the correct copy on subsequent reads. Copies are only
maintained during syscalls’ lifetimes, and are released as soon
as no syscall needs it. Consequently, each userspace object
has a single copy when no syscalls are running. The invariant
also means that only accesses to userspace objects by the
kernel need to be protected. Accesses to userspace objects
from userspace and kernel objects by kernel code remains
unaffected.

Midas’ implementation builds on the protection mecha-
nisms provided by existing virtual memory implementations.
On modern platforms, virtual memory protection is set up by
the OS at page granularity by setting bits in pagetable entries
(PTEs). These permission bits are checked by the hardware
on memory access, efficiently enforcing the permissions, and
raising a fault when they are violated. For performance, Mi-
das implements its invariant at page granularity, not object
granularity: when a syscall reads from userspace, every page
touched by that read is covered, not merely the bytes read.
Page-granularity protections are conservative compared to

110 31st USENIX Security Symposium USENIX Association

byte-granularity protection and Midas maintains its invari-
ant. As a side-effect of its implementation, Midas does not
distinguish accesses to different parts of a page (intra-page
false sharing). False sharing leads to unnecessary page du-
plications, incurring performance overhead on highly shared
pages, but does not affect correctness.

For an object spanning multiple pages, Midas’ design se-
quentially protects each page before reading from it. The
leading pages containing the object are protected before the
later pages, allowing an attacker to potentially modify the
later pages before the syscall first reads them. However, the
attacker is prevented from modifying any of these pages after
the syscall’s first read, ensuring that double fetches respect
the invariant. If the syscall code contains a TOCTTOU bug,
the modification will be visible to the first fetch itself (which
is used for checking for validity of the data) and will lead to
the data being rejected straightaway. Midas’ invariant there-
fore prevent exploitation of double-fetch vulnerabilities even
when the fetched objects span multiple pages. We elaborate
on this case with an example in Section 5.2.

A major requirement for Midas is to allow concurrent ac-
cess to pages by user/kernel code running in parallel with a
syscall which reads from the same pages. This requirement
prevents deadlocks and improves performance vis-a-vis a
naïve design which blocks all other tasks writing to pages
already read by a syscall until the syscall completes. The
naïve design can deadlock because it introduces dependen-
cies between tasks for forward progress, which we illustrate
in the following example of a system with two tasks (A and
B): i) Task A issues a blocking syscall which reads a user
page and blocks, then ii) Task B writes to the same user page
before issuing a syscall which resumes task A. In this case, if
Task A’s read to the page preceeds Task B’s write, Task B will
be blocked waiting for A to complete its syscall. Task A will
also remain blocked waiting for Task B’s syscall, introducing
a circular dependency, leading to deadlock. The naïve design
also introduces unnecessary delays in other cases, such as the
one described below, again with two tasks (C and D): i) Task
C reads from a page and sleeps for a long while, but does
not read from the page a second time, then ii) Task D writes
to the same page after task C has read from it, and blocks
until Task C completes and is unnecessarily delayed. A more
performant approach is to duplicate the concurrently accessed
page: the copy is kept for task C for future fetches, and task
D can write to the original and proceed without delays.

Midas must maintain multiple versions of a page read by
a syscall to maintain its invariant in the face of concurrent
writes. Midas introduces snapshots and copies to keep track
of page versions. Snapshots are logical views of the page’s
contents at a particular time, while the actual contents are
stored in one of many copies. Each snapshot maps to a copy,
allowing the contents of the page at the time of creating the
snapshot to be read. If multiple snapshots are taken without in-
tervening writes to the page, these snapshots will map to a sin-

gle copy, reducing Midas’ space overheads and performance
overheads for creating copies. Midas maintains a snapshot of
every page when first read by a syscall. On a double fetch by
the same syscall, the copy mapped to the snapshot is accessed,
ensuring that the data read is the same as the first time. The
latest copy of the page is used for all writes, by the syscall as
well as from concurrently running tasks, updating the page as
seen from userspace. Midas’ design draws parallels to multi-
version concurrency control methods for databases based on
snapshot isolation [45]. Transactions read from a snapshot of
the database state from when they started, and writes update
the up-to-date state of the database. Essentially, Midas is a
multi-versioning system for pages where syscalls read from
immutable versions to prevent TOCTTOU bugs and syscalls
and userspace both write to a single mutable version holding
the latest state of the page.

5.1 Page State Machine

To track multiple versions of the contents of a page when be-
ing concurrently accessed by numerous tasks, from userspace
or during a syscall, Midas implicitly maintains a per-user page
state machine. For a page, its corresponding state machine
i) tracks snapshots for currently executing syscalls which have
read it, ii) tracks copies of the page, and iii) maintains the map-
ping between snapshots and copies necessary for providing
the correct contents to subsequent reads.

Figure 2 shows the state machine for a single page. At
every state, the page has two associated sets: i) the copies
set C = {CL,C0, . . .} holds multiple copies of the page over
time, and ii) the snapshots set S = {L,S0,S1, . . .} tracks logi-
cal versions of the page, each corresponding to one executing
syscall and each mapping to a copy. Reads from kernel code
in a syscall use the snapshot’s corresponding copy. Writes
from user/kernel code and reads from userspace access the
latest copy CL, which is mapped in processes’ address spaces.
All other copies are read-only (no matter what the original
page protection is), and are used for providing snapshots to
syscalls. Read-only pages only use states 0 and 1, and writes
lead to segmentation faults (as they do on non-Midas systems).
Knowing which state the page is in allows Midas to differen-
tiate between faults due to Midas protecting pages and faults
due to actual permissions violations in userspace programs
or the kernel. The latest copy CL of read-only pages remains
read-only in both protected states (1 and 3). In the following
paragraphs, we describe how the state machine for a single,
writable user page transitions between its states, what triggers
each transition, and what changes are made to the copies and
snapshot sets on a transition. In Figure 3, we illustrate how
the state machine protects the syscall from Figure 1.

State 0. A page starts as (unprotected,
unduplicated). In this state, there is a single copy
CL and a single “snapshot” L. The snapshot L refers to the
latest version of the page which changes over time, and is

USENIX Association 31st USENIX Security Symposium 111

C0(r) C0(r)

unprotected
unduplicated

protected
unduplicated

new
syscall read

syscall end

unprotected
duplicated

u/s write

protected
duplicated

u read, u/s write u/s read

release snapshots/copies

CL(w)

States

C = {CL}

CL(r)

C = {CL}

CL(w)

C = {C0, CL}Copies (C)

Snapshots (S)

CL(r)

C = {C0, CL}

u/s read

0 1 2 3

L{ } {S0,S1,S2,L}{S0,S1,L}{S0,S1,L}

syscall
read

u/s
write

u read, u/s write,
old syscall read

Figure 2: State diagram for a page in Midas. Reads/writes from userspace/syscall code are marked (u)/(s) respectively. Shading is
used to represent the mapping from snapshots to copies.

the only mutable snapshot. All processes where this page is
mapped have unrestricted userspace read and write access,
and unrestricted kernel write access. The remaining operation,
a read from kernel code, triggers a transition to State 1. In
Figure 3, the snapshot L initially contains the value 42.

State 1. The page in State 0 transitions to the (protected,
unduplicated) state as soon as a syscall reads from it. Mi-
das first marks the page’s latest copy CL read-only in all
processes, trapping writes to the page but allowing concurrent
userspace reads to continue. A new snapshot, S0 linked to this
syscall is allocated for this page. For the rest of its lifetime,
this syscall will only read this page from this snapshot. Both
snapshots S0 and L refer to the same copy CL (shown by the
blue cross-thatch in Figure 2). Prior to any writes to this page,
any other syscalls which also read the page get their own
snapshots (e.g., S1) all pointing to the single copy CL. The
page’s read-only status causes the hardware to fault on any
write, notifying Midas to transition the page to State 2. In
Figure 3, the page transitions to State 1 when the syscall first
reads it, and adds a snapshot S0.

State 2. A page in State 1 transitions to the (unprotected,
duplicated) state on any write from user or kernel code.
Midas duplicates the old contents of the page from copy CL,
creating a read-only copy C0 (shown by green shading in
Figure 2). Snapshots except L (i.e. S0 and S1) previously
mapping to CL are mapped to the copy C0. The write then
modifies the latest copy CL, which is made writable again.
Note how, in this state, any read using the snapshots S0 or
S1 reads from the unmodified copy C0 while writes directly
affect CL. Certain syscalls such as rt_sigaction both read

and write from the same user page. A write by rt_sigaction

to the page it has previously read will update the page’s latest
copy CL, but not the duplicate copy C0. Midas’ write policy
ensures that the copy CL always holds the latest contents of the
page, up-to-date with all the writes to the page, from both user
and kernel code. Further, Midas does not need to merge writes
from userspace and syscall code on a syscall’s completion,
since both directly modify the same copy CL. All other copies
Ci are immutable. When the attacker writes to the page in
Figure 3, the page moves to State 2, linking the snapshot S0
to a copy holding the original value 42. The writes from both
the attacker and the syscall itself both affect the copy CL, but
the read from the syscall accesses the snapshot S0 and reads
the same value as the first time.

State 3. A separate syscall subsequently reading the page
in State 2 transitions it to the (protected, duplicated)
state. The new snapshot, S2, points to the latest copy CL. State
3 is similar to State 1, except that there are different copies
of the page used for reading by different syscalls. The syscall
for which S0 was allocated will read from the copy C0, while
the syscall for which S2 was allocated will read from copy CL.
On a write, the page transitions to State 2 and is duplicated
again, creating another copy C1: snapshot S2 maps to C1 while
snapshots S1 and S0 continue to map to C0.

Releasing snapshots. Midas uses snapshots to enable a
syscall to read the same data from a page during its lifetime
and releases snapshots when syscalls complete. Releasing a
snapshot is possibly accompanied by a state transition and the
release of the mapped copy. If Si mapped to the latest copy
CL, Midas cannot free the copy since userspace is using it. In

112 31st USENIX Security Symposium USENIX Association

Enter a syscall

Read(X) = 42

Read(X) = 42

X=42

X=42

X=0X=42

X=0X=42

CL

L
CL

L, S0

CLC0

LS0
CLC0

LS0

Write(X, 0)

Write(X, 10) X=10

CLC0

LS0

End syscall X=10

CL

L

Target thread Attacker threadMemory state
State 0

State 1

State 2

State 0

X=42

Figure 3: Diagram illustrating Midas preventing exploitation
of a double fetch of object X.

this case, the page must be in State 1 or 3, and CL is read-only.
After removing Si, if L is the sole remaining snapshot mapped
to CL, Midas makes the page writable, moving to State 0 or
2 from State 1 or 3 respectively. If Si is mapped to any other
duplicate Ci, Midas frees the copy along with the snapshot if
Si is the last remaining snapshot mapped to Ci. If the page was
in State 2, CL was writable and unmapped by any snapshot, so
Midas changes the page to State 0. This transition is shown
in Figure 3, where the snapshot S0 and the copy C0 are both
discarded. If the page was in State 3, CL was read-only and
mapped by some other snapshot, so Midas moves the page to
State 1. Recall that all snapshots Si except L are immutable.
Any data written by the syscalls directly affect L. Therefore,
dropping a snapshot Si is trivial and does not require writes
from the syscall to be merged into the latest copy.

5.2 Discussion

Correctness of syscalls directly updating snapshot L. Mi-
das’ design lets all writes, including those from syscalls, to
directly update the latest copy of the page CL and this property
maintains correctness of system execution. We now show that
there is a valid, safe execution trace of a system not protected

System Call Exemption reason

futex Relies on concurrent write
execve Remaps address space
write Invulnerable, improves performance

Table 2: System calls uninstrumented by Midas.

by Midas which generates the same sequence of writes to the
page, and therefore generates the same contents of the page
when the syscall ends. We define a safe trace as one that has
no writes to vulnerable data between double fetches by the
kernel, and therefore does not trigger any existing TOCTTOU
bugs. By showing that the final contents of memory after a
Midas syscall has a corresponding execution without Midas
(which we assume to be correct) leading to the same contents,
we can conclude that the execution of the Midas syscall is also
correct. For this proof, we assume that no syscall reads the
same object after writing to it (r-w-r pattern). Such syscalls
do not exist in the Linux kernel, and are discussed below.
Therefore, our syscalls write to an object after completing all
of their reads of that object.

Consider a page holding a single-byte object O0, and the
sequence of operations to this byte during a Midas syscall be
Ops = {Op0,Op1, . . .}. Each operation is a tuple (r/w,k/u)
specifying whether the operation was a read or a write, and
whether the operation was due to a user or kernel instruction.
Suppose there was no attempt to exploit a TOCTTOU bug,
i.e., between any two read operations by the same syscall,
there was no write to this object. In this case, Midas reads
the same value from its snapshot of the object as is present
on the latest version. The same sequence of operations on a
non-Midas system would be valid and safe, since the object
value does not change between the kernel’s double fetch and
the syscall reads the same value on this system.

Assume there was an attempt to exploit a TOCTTOU bug:
a write Op1 exists between two syscall reads Op0 and Op2.
Midas protects the syscall ensuring that Op2 does not see the
effect of Op1 by reading from a snapshot instead of the latest
copy CL. Since our syscalls are assumed to not contain any
r-w-r pattern, any writes by the syscall happen after Op2. Let
us assume that the syscall’s write is Op3. We can generate a
valid, safe execution on a non-Midas system by moving the
attacker’s write to after the last read by the syscall, i.e., Ops =
{Op0,Op2,Op1,Op3}. The syscall in this system reads the
same value both times, and hence has the same execution
as that in the Midas case. The value of the object when the
syscall completes is that written by Op3 in both cases (or that
written by Op1 when the syscall does not have a final write).
Since the syscall has the same execution and the final value of
the object is the same, the execution of the Midas system is the
same as that of the non-Midas system. In general, any trace
of operations on a Midas system can be translated to a valid,

USENIX Association 31st USENIX Security Symposium 113

safe trace on a non-Midas system by moving malicious writes
to an object to just after the last double fetch of that object.
Multiple syscalls in Midas can therefore write to the same
object without affecting correctness, because an equivalent,
valid, safe non-Midas trace exists where all of the writes have
been postponed, in the same order to after the double fetch
reads.

Exemptions. Syscalls such as futex rely on user data
changing between double fetches to implement their func-
tionality and cannot be protected by Midas. These syscalls
are listed in Table 2. The futex syscall implements a fast syn-
chronization mechanism for userspace and relies on atomic
writes from concurrent userspace threads to update a con-
dition the syscall is waiting for. Subjecting a futex syscall
to Midas’ invariant will prevent it from ever waking up the
waiting task. Such syscalls cannot be protected by Midas, and
we implement an exemption list to prevent transitions in the
state machines of pages read by these syscalls. The code for
exempted syscalls must be manually inspected for double-
fetch vulnerabilities. Crucially, exempting these syscalls from
Midas’ protection does not affect the security of other syscalls
containing double fetches. Any writes from these syscalls are
subject to the same rules described in the state machine, and
cannot break Midas’ invariant. Midas can also implement
finer-grained exemptions based on syscall parameters. Those
were not necessary for Linux.

Syscalls with read-write-read patterns. A (hypothetical)
syscall that reads from an object, writes to it, and then reads
back the updated object cannot be protected using Midas.
Midas’ invariant will ensure that the second read is identical
to the first, and does not reflect the intermediate write. Such
syscalls must remain exempt from Midas’ instrumentation.
During extensive tests, we did not find any other syscall which
exhibits this behavior in the Linux kernel.

Syscalls with false sharing. Another hypothetical type of
syscall could struggle with Midas’ instrumentation due to
false sharing. Suppose a page contains two objects, O0 and
O1, and a syscall sequentially reads O0 then O1. Due to Midas’
invariant being enforced at page granularity and false sharing
of the page between these objects, Midas guarantees that the
value of object O1 read is the same as what was contained
when it first read object O0. A syscall requiring the value of
O1 to change between these two points in time would not
work with Midas’ protections. Such a hypothetical syscall,
requiring concurrent modifications to its arguments, could
exist to support some synchronization mechanism similar
to a futex and can be safely exempt from Midas’ invariant.
During extensive tests, we did not find any other syscall which
exhibits this behavior in the Linux kernel.

Example: Objects spanning multiple pages. Figure 4
shows Midas protecting a syscall which has a double fetch
for an object spanning multiple pages. Here, the two pages
containing the object X are accessed as X[0] and X[1]. The
attacker tries to attack the syscall by changing the value of

Target thread Attacker threadMemory state

Enter a syscall 42
43X

Read(X[0]) = 42

Read(X[1]) = 0

0
42X Write(X[1], 0)

10
0X

Write(X[1], 20)20

Read(X[0]) = 42

Read(X[1]) = 0

10
0X 20

42

42 Write(X[0], 10)

Read(X[1]) = 20

Figure 4: Diagram illustrating Midas preventing exploitation
of a double fetch of an object X spanning two pages.

the second page: i) between the syscall’s first reads of X[0]
and X[1], and ii) between the first and second fetches of X.
Midas ensures both fetches return X=(42,0). Critically, any
existing TOCTTOU bugs are not triggered since both fetches
read the same, possibly invalid, value of the object. Note how
the situation is identical to one where the malicious write to
X[1] happens before the syscall starts.

Preventing deadlocks by design. Midas’ design is free of
deadlocks, and exempts syscalls which require violation of its
invariant from triggering particular state-machine transitions.
Userspace reads always succeed, using the latest copy CL of
the accessed page. Writes from userspace and kernel code
succeed directly if the page is in State 0 or 2, and trigger
a fault otherwise. Handling these faults involves creating a
new copy of the page and setting the page writable. Reading
from kernel code involves creating a new snapshot and setting
the page read-only. None of the aforementioned operations
relies on other operations on the same page to complete and
all are finite time. None of the operations on a page rely
on operations on other pages. A single, per-page lock can
serialize operations on that page and assure forward progress.

Detecting double fetches. Midas’ state machine for pages
enables the precise detection of double fetch bugs, turning
it into an effective sanitizer and developer debugging tool in
addition to being an efficient mitigation. When a syscall first
reads from a user page, it creates a snapshot of that page. On
future reads, the snapshot is used in order to maintain the
invariant. While reading from a page, implementations must
check if a snapshot exists for the syscall: if yes, the snapshot
is used for the read, otherwise a new snapshot is created and
then used for the read. The existence of a snapshot means

114 31st USENIX Security Symposium USENIX Association

the syscall had previously read from this page and had then
created this snapshot, implying a double fetch. Unfortunately,
this approach is prone to false positives due to false sharing.
The two reads might read from the same page, but access en-
tirely disjoint bytes. Midas currently reports double fetches at
page granularity. A precise sanitizer could maintain a bitmask
of accessed bytes to prune false positives.

6 Midas Implementation

Our Midas prototype implements the state machine described
in Section 5 on Linux version 5.11, targeting the x86-64 ar-
chitecture. A page protected by Midas transitions between
states on either a kernel read to user memory, or when user or
kernel code writes to protected, read-only memory (see Fig-
ure 2). Midas can be implemented on any operating system
kernel that i) systematically uses transfer functions for reading
from userspace, and ii) on any architecture which implements
hardware-controlled access control to memory through page
tables. The first requirement enables Midas to implement
transitions on kernel reads from user memory. The Linux
kernel uses the raw_copy_from_user interface which we in-
strument for our prototype. The second requirement causes
the hardware to raise a fault on writes to Midas-protected
pages, directing execution on the processor to a pre-defined
exception handler in the OS. Our prototype instruments Linux’
fault handler in the function handle_pte_fault to implement
the write-triggered transmissions from states 2 and 4. Overall,
our prototype adds around 1,100 lines of code and modifies
17. Our design allows the changes to be mostly limited to the
memory subsystem, and in general does not require individ-
ual syscalls to be modified. Only one syscall (clone) required
code modification.

6.1 Tracking Page State

Midas needs to track the state for every userspace page, in-
cluding its snapshot and copy sets. Figure 5 shows the data
structures used to track a page’s state in our prototype. Linux
maintains a struct page object for every frame of physical
memory. We augment struct page with a list holding the
snapshots for this page, excluding the latest snapshot L. Each
snapshot has a pointer to its copy. In the figure, the snap-
shots S1 and S0 share the copy C0. We are aware of the strong
aversion of the Linux kernel developer community towards
increasing the size of struct page. An alternate implemen-
tation can use a hashmap to map from a page’s frame num-
ber to its snapshots list or reuse existing data members (e.g.,
struct list_head lru which can be used as a generic list by
page owners).

Each pagetable entry for a user page in different address
spaces maps the copy CL, enabling userspace to directly ac-
cess the page with reads (and writes for writable pages). We

Address Space

Address Space

struct page

PTE

snapshots list S0

CL C0

S2 S1
copy

struct task_struct

protected
pages list ...

reverse-map
(rmap)

Virtual
Address

PTE NX PSW1-SW4U/
S

R/
W

PAGE FRAME
NUMBER

Virtual
Address

NX PSW1-SW4U/
S

R/
W

PAGE FRAME
NUMBER

Figure 5: Bookkeeping information for a page.

use one software-controlled bit (SW3) in the pagetable en-
tries to track the protection status of the page, and another
(SW2)2 to track the original protections for the page. SW3
is set whenever the page is in one of the two protected states
(1 and 3). On a write-triggered protection fault, SW3 can be
read to efficiently determine if the fault was due to Midas’
protection mechanisms, triggering a state change, or due to
buggy software accessing a page with illegal permissions,
triggering a signal to the task. Other architectures might have
fewer software-usable bits in the page table, and implemen-
tations of Midas would require storing the protection status
of pages in a separate data structure. The duplication status
of the page is implicitly encoded in the snapshots: the page
is duplicated when any of its snapshots holds a pointer to a
copy other than CL.

Changing a page’s protection state requires PTE updates
in all address spaces where the page is mapped. The page’s
struct page structure includes a reverse-map listing for all
of these pages, and the corresponding virtual address in each.
Our prototype uses this mapping to change PTE permissions
across all address spaces for a page.

2The SW2 bit is alternatively used by the experimental Software Dirty
Pages feature of Linux, and cannot be run alongside Midas in our prototype.

USENIX Association 31st USENIX Security Symposium 115

Y N
Snapshot

exists?

raw_copy_from_user

Read from
snapshot

Create snapshot
pointing to CL

Find snapshot

Add page to those
read by this syscall

NY

Page
protected?

Protect page
in PTEs

Figure 6: Flowchart for a syscall using the transfer function
raw_copy_from_user for reading from userspace.

6.2 Kernel Reads from User Memory

Syscalls reading from user memory the first time triggers
the allocation of a new snapshot. If the page is not protected
(states 1 and 3), the read also triggers a state change where
the kernel protects the page in all address space that it is
mapped in. Figure 6 shows the flowchart of the steps im-
plemented by the kernel function raw_copy_from_user for
reading from user memory. This function also uses the ker-
nel’s mark_page_accessed interface to move the page to the
“Active” state for the kernel’s swapping mechanism, making
the page ineligible for being swapped out. We also implement
get_user and unsafe_get_user (used by the kernel for small
reads) as a call to raw_copy_from_user.

Exemptions. Our prototype Midas kernel exempts a cou-
ple of functions from Midas’ invariant (in addition to those
described in Section 5.2), and these functions are therefore not
instrumented to follow the aforementioned steps while access-
ing userspace memory. First, raw_copy_from_user_inatomic
is a special transfer function used by the kernel to read user
memory in special situations such as a kernel oops3 where
the kernel reads user memory to provide a backtrace. In this
severe situation, the kernel’s goal is to collect debug infor-
mation before its imminent termination and no TOCTTOU
protection is needed. Second, we also exempt the write sys-
tem call’s reads from user memory from instrumentation. The

3A kernel oops is triggered when the kernel detects a problem while run-
ning which can affect its proper functioning, such as corrupted data structures.
A more severe version, a kernel panic, causes the kernel to stop executing,
expecting data loss or damage if it does.

Y NPTE is
NULL?

NY
File-backed

page? N
Y

Page
present?

Allocate
anonymous

page

Allocate
page

from file

Swap-in
page N

Y

COW
page?

YN

Midas
protected?

N

Midas
protected?

Y N

Midas
protected?

Duplicate
page

Move
snapshots to
correct page

Create page
copy,

state transition

Done

PTE
protection

fault

FAULT

Done
YN

Midas
protected?

Done

Figure 7: Flowchart for handling a page fault. Shaded opera-
tions are unmodified.

A B A A

B
CL

C
O

W

C
O

W B B
C0

SA SB SA SB SBSA

Before COW
duplication

After COW
duplication

After COW duplication
+ Midas state change

C
O

W

Figure 8: Flowchart for handling a page fault to a COW page.

write syscall takes three arguments: a file descriptor passed
as a register, a pointer to a user buffer and a count of bytes
to be written to the file. While the write to the file’s pages
is sensitive, and Midas takes care to ensure that it follows
the page state machine, the read from userspace is not. The
syscall reads from userspace only once, and its data is only
used for copying into the file. An attacker who modifies the
user buffer concurrently with the syscall only manages to
change the contents written to file, which it could have done
anyway since it has access to this buffer. A kernel developer
can similarly exempt other syscall which they can prove to be
secure from double-fetch bugs.

6.3 Handling Faults

The memory management unit generates a fault when ker-
nel or user code accesses a page without having the correct
permission in the corresponding PTE. Midas marks writable
pages read-only to protect them in states 1 and 3, allowing the
kernel to detect writes to these pages. A common OS mech-
anism, copy-on-write (COW) pages, also uses permissions
in the PTE to detect when COW pages need to be copied.

116 31st USENIX Security Symposium USENIX Association

The PTE’s present bit are used to store pointers to file-backed
pages when they are swapped to disk. Figure 7 shows the
flowchart implemented by handle_pte_fault to handle faults
for userspace addresses.

The page-fault handler first checks if the PTE is NULL, and
if so knows that it must allocate a page. If the required page
is anonymous, the page can be allocated as usual. Otherwise,
for file-backed pages, the handler has to check if the page
is already in a protected state (states 1 and 3) by reading
the SW3 bit of the PTE and if so, transitions to the required
state and allocates a new copy. Pages in states 0 and 2 can be
directly mapped, and subsequently accessed.

For non-NULL PTEs, the handler checks if the PTE indi-
cates that the page is present. Non-present pages need to be
swapped in. After finding the page, Midas then checks if the
page was previously swapped in by any other task and is now
in a protected state. For protected pages, Midas implements
the required state change based on whether the faulting access
was a read or a write.

In the remaining case, faults for a present page indicate a
permission fault (for example, a write to a read-only page).
If the page is not a COW page, the handler then checks if
the page is in a protected state by checking the SW3 bit. If
the page was protected, a new copy is allocated and the page
transitions to the following state. For non-protected pages,
however, the fault implies a real access violation, sending a
signal to the process.

COW pages represent separate virtual pages from different
address spaces mapped to the same physical page. An exam-
ple of a COW page protected by Midas is shown in Figure 8,
where logically-separate pages A and B are actually mapped
to the COW page. COW pages cannot be in states 2 or 3,
since they cannot have multiple Midas copies. COW pages in
state 0 can be dealt with by the kernel’s standard duplication
method (not Midas’ duplication). For a COW page in state
1, its list of snapshots can correspond to reads from syscalls
for threads in different address spaces. In Figure 8, we show
snapshots SA and SB corresponding to syscalls for threads in
different address spaces (containing A and B respectively).
These snapshots correspond to different logical pages, but
are all squashed into the snapshots list of the single COW
page. Therefore, after the kernel duplicates the COW page
(new page B created, in Figure 8), Midas moves the snapshots
for the faulting process (SB) to the new page. Here, Midas
also updates the protected page list in the affected syscalls’
task_structs so that these structures correctly refer to the
new page. Finally, the new page is transitioned to its next
state to allow for the write to occur, creating a new copy (C0)
for the snapshot SB to read from.

We ensure that Midas’ modifications to the fault handler
correctly handle concurrent faults and do not cause additional
nested faults. During concurrent faults for the same page,
only one thread changes the page’s state whereas the other
directly uses the new state. The kernel’s split page-table lock

is reused to serialize state changes. We also ensure that the
only additional accesses to user memory within the handler
(used for duplication) happen when the page is assured to
be in memory and correctly mapped. All nested faults are
therefore caused by existing kernel code and do not interact
with Midas’ modifications.

6.4 Syscall Completion
On syscall completion, Midas cleans up snapshots allocated
for the syscall by instrumenting the end of do_syscall_64.
Midas goes through the list of all the pages for which the
executing syscall has a snapshot, and frees those snapshots.
For snapshots which were the last to point to a copy, that copy
is also freed.

6.5 File System Writes
Midas instruments file-system writes to protect the kernel
from modifications via kernel mappings. When a write

syscall writes to a file, it actually writes to copies of pages of
the file stored in memory within a page cache. In the spirit of
abstraction, the kernel does not directly write to these pages,
but calls the relevant file-system (FS) driver instead. The FS
driver will access the page using kernel mappings when writ-
ing to pages in the page cache. Since Midas only protects
userspace mappings for protected pages, writes by FS drivers
will not raise a fault. To comprehensively protect the page, any
implementation needs to instrument FS drivers’ write func-
tions. Fortunately, FS drivers provided with the kernel follow
a simple recipe: for pages not in the page cache, the driver
executes FS-specific code to read the page into the page cache
and then call a generic function (generic_file_write_iter)
to actually write the data into the page. Instrumenting this
generic function, therefore, protects the kernel for a wide
range of common file-systems (including ext4, nfs and ntfs). 4

The added instrumentation checks whether the target page is
protected, and if so, transitions it to the next state and creates
a copy of the page before writing to the latest copy.

Our current prototype does not, however, protect out-of-
tree drivers which are not distributed with the kernel if they do
not use the generic_file_write_iter function. A user with
superuser privileges can load a insecure module implement-
ing a FS driver which does not implement Midas checks. A
malicious superuser is, however, outside our threat model.

6.6 New Mappings to Protected Pages
Our Midas prototype preserves the state machine for user
pages across operations which create new mappings to a page

4A more comprehensive list of kernel-provided FS drivers protected via
generic_file_write_iter includes v9fs, ADFS, AFFS, AFS, BFS,
CIFS, eCryptfs, extFAT, ext2, F2FS, FAT, FUSE, HFS, HFS+, hostfs, HPFS,
JFS, JFFS2, Minix, NILFS2, OMFS, OrangeFS, ramfs, ReiserFS, SystemV,
UBIFS, UDF, UFS, VboxSF, shmem.

USENIX Association 31st USENIX Security Symposium 117

to prevent attacks which rely on mappings being created be-
tween double fetches. The mmap syscall is responsible for creat-
ing new virtual memory mappings for processes, and requires
instrumentation. When mmap is called with the MAP_POPULATE

flag, or on the first access to the page, the mm_populate func-
tion is responsible for actually mapping the correct page in
the page table. In our prototype, we check if the page being
mapped is protected, and if so, correctly protect the new map-
ping too. Another syscall, clone, duplicates a process’ address
space when called without the CLONE_VM flag, creating new
mappings to pages. We instrument clone to ensure that new
mappings for protected pages are also correctly protected.

6.7 Discussion

Optimizations on capable hardware. To protect a page in
an address space, a Midas implementation needs to change
the permissions in the page table for that page. Modern CPUs
cache virtual memory translations in per-core Translation
Lookaside Buffers (TLBs) which need to be (partially) flushed
on page-table updates (TLB shootdown). On most CPUs, the
core updating permissions will perform a global shootdown to
ensure that other TLBs for cores executing in the same address
space are also updated. Implemented with inter-processor
interrupts, global shootdowns are expensive. In our evaluation,
21% of the runtime of the load generator bombardier used
for stressing the Nginx server was spent performing TLB
shootdowns when running on the Midas kernel.

A more efficient solution would be to have special hard-
ware support for invalidating TLB entries globally, not just
on the executing core. The AMD64 architecture manual [16]
lists such an instruction (INVLPGB), though it is yet to be im-
plemented in any commercially available x86 processors. The
ARM v8-A architecture manual [27] lists similar instruc-
tions TLBI ASIDE1IS and TLBI ASIDE1OS which invalidate
all PTEs of a page within a cluster of cores but not for cores
in other clusters (Inner Shareable Domain) and cores across
clusters (Outer Shareable Domain) respectively.

Alternate architectures [18, 22] with a single, system-wide
translation table would also benefit Midas by having a single
page table to update instead of multiple page tables for each
address space a page is mapped in.

Porting to other OSs. Midas can provide TOCTTOU pro-
tection on other operating systems by tracking the states of
each page and implementing state transitions as required.
OSs track page state in per-page state structures, such as
vm_state_t for BSD-based OSs (*BSD) such as FreeBSD
and XNU. An implementation on these OSs must instrument
the read transfer function(copyin for *BSD) to transition to
states 1 and 3. The OS’ fault handler (vm_fault on *BSD) will
trap on writes to protected pages, and needs to be modified to
implement the required page duplication and state change.

The remaining OS modifications for Midas support de-
pends on the OS’ features. If an OS allows userspace to map

1 //First fetch
2 if(get_user(count ,&argp ->dest_count))
3 {...}
4 //Using first fetch
5 size = offsetof(..., info[count]);
6 //Secong fetch
7 same = memdup_user(argp , size);
8 + //Added check for bug
9 + if(same->dest_count != count)

10 + printk("Bug triggered");
11 + // Fix: copy over original count
12 + same->dest_count = count;
13 //Using second fetch
14 ret = vfs_dedupe_file_range(file ,same);

Listing 1: CVE-2016-6516: Vulnerable double fetch in
ioctl_file_dedupe_range. Lines in green show the fix and
testing code.

file pages, filesystem code to write to these page needs to be
modified. Other syscalls which create/modify mappings to
userspace pages will also have to be instrumented to ensure
that the new mapping respects the page’s state. Such modifi-
cations are OS-specific, making it difficult to recommend a
generic methodology.

7 Evaluation

In this section, we emperically verify Midas’ ability to mit-
igate a known double fetch vulnerability, and quantify Mi-
das’ overhead on workloads with different characteristics
including both compute-bound applications which rarely use
syscalls and a mix of syscall-heavy applications which heavily
rely on the kernel’s performance.

7.1 Mitigation of CVE-2016-6516

CVE-2016-6516 is a known vulnerability in kernels prior
to version 4.7 in a file-system ioctl. The vulnerable code
is shown in Listing 1 and is triggered when the value of the
dest_count object differs between the two fetches (in lines
2 and 7). memdup_user uses the value from the first fetch for
allocating a buffer and copying in an array of descriptors
from the user in line 7. memdup_user also contains the sec-
ond fetch of dest_count which is later used in the function
vfs_dedupe_file_range. An attacker who increases the size
of dest_count between the two fetches will cause the ker-
nel to access the copied array out-of-bounds, causing a heap
buffer overflow.

For verifying Midas’ defense, we introduce a non-faulting
assertion check into the function (lines 9–10) and run a

118 31st USENIX Security Symposium USENIX Association

known exploit.5 The condition checks whether the fetched
value of the user object (dest_count) had changed, indicating
a successful attack, and prints a message. Finally, we
re-introduce the fix for the bug (line 12), fixing the value of
dest_count in same to that from the first fetch. In this setup,
we can detect when the conditions for triggering the bug are
met, but also revert to a correct state allowing the kernel to
safely continue. The exploit was able to successfully trigger
the bug on the baseline kernel every time over 10 runs. With
Midas enabled, the exploit was never triggered, i.e., both
fetches returned the same value on every call.

7.2 Performance evaluation

We evaluate Midas on i) microbenchmarks targeting specific
common syscalls, ii) workloads from two benchmark suites:
the NAS Parallel Benchmark (NPB) [17] and select work-
loads from the Phoronix Test Suite (PTS) [15], and iii) the
webserver Nginx. NPB includes compute-intensive multipro-
cessing workloads with a low, but non-negligible syscall rate.
NPB therefore demonstrates the ability of Midas to scale to
systems where pages are protected across numerous address
spaces. PTS includes a variety of benchmarks, both com-
pute bound and I/O bound representative of both desktop and
server workloads. PTS includes syscall-heavy applications
with varying degrees of parallelism. The Nginx webserver
is capable of both high request service rates and scalability
with multiple worker processes. We do not include the SPEC
CPU2017 benchmarks as they are heavily compute bound and
designed to isolate userspace performance without syscalls,
and are impervious to kernel performance. SPEC benchmarks
would unfairly bias performance in favor of Midas.

The testbench for the evaluation consists of a desktop
machine with an 8-core Intel i7-9700 processor and 16GB
DRAM running Ubuntu 20.04 LTS. This configuration and
CPU is commonly used on desktop machines and worksta-
tions. To eliminate the effect of dynamic frequency and volt-
age scaling (DVFS), we set the processor to run at constant
frequency of 3.0GHz which is this model’s base frequency. In
the baseline configuration, we run the testbench with the main-
line kernel v5.11 available from Ubuntu’s package repository.
The Midas configuration runs our prototype Midas kernel also
based on kernel v5.11. For particular benchmarks, we also run
the Midas+write configuration which also runs our prototype
Midas kernel but instruments all syscalls including write.

Microbenchmarks. We test Midas on microbenchmarks
from OSBench [11]. The programs use libc interfaces such
as fopen, pthread_create, fork and malloc for creating files,
threads, processes and for memory allocation respectively.
Table 3 lists the prominent syscall usage for these workloads.
Figure 9 shows Midas’ performance (time per operation) on
OSBench relative to the baseline kernel, with overheads rang-

5https://github.com/wpengfei/CVE-2016-6516-exploit/tree/
master/Scott%20Bauer

Microbenchmark Top syscalls used

File creation openat, fstat, write, close
Thread/Process creation mmap, clone, exit, wait
Program launch mmap, execvereadlink, openat
Mem alloc brk

Table 3: Prominent syscalls used by OSBench microbench-
marks.

ing from zero to 5.3%.
NAS Parallel Benchmarks. NAS Parallel Benchmarks

(NPB) [17] is a benchmark introduced by NASA. NPB con-
sists of several parallel programs using different communica-
tion patterns and is available for two frameworks for parallel
programming: OpenMP and MPI. OpenMP [19] is a compiler
extension that splits a program’s execution to multiple threads.
All threads still use the same address space, keeping the over-
head minimal. MPI [36] implements parallel execution by
launching multiple processes which communicate by message
passing. The two technology stacks have different frequency
of syscalls due to different communication methods. Com-
munication through kernel syscalls for either stack will incur
overhead due to Midas’ protection. Additional global TLB
shootdowns (for snapshot synchronization) added by Midas
will also affect the performance of such parallel benchmarks.

We run NPB benchmarks of class A on our testbench, ex-
ecuting 4 threads or processes in parallel. The benchmarks’
runtime varies between 10 seconds and 8 minutes, and are
all long enough for the kernel to reach equilibrium. Certain
benchmarks require a parallelism number which is a perfect
square. On our 8-core CPU, having 4 compute-bound thread-
s/processes instead of 16 allows all threads to run without time
sharing. Figure 9 shows Midas’ performance for both MPI
and OpenMP, normalized to the performance of the baseline
system with the same parallelization framework. On average,
Midas achieved 96.3% of the baseline system’s performance
on both frameworks. Midas’ performance for the ep (Embar-
rassingly Parallel) benchmark is closest to that of the baseline,
since it has low communication overheads. Midas shows low
overhead (3.7%) for compute-intensive, parallel workloads.

Phoronix Test Suite. The Phoronix Test Suite (PTS) [15]
includes a large set (> 500) of open-source benchmarks, of
which we have chosen a range of benchmarks suitable for eval-
uating both desktop and server performance. We bias the selec-
tion to benchmarks that require (heavy) kernel activity to test
the overhead of Midas’ instrumentation. A sole benchmark,
OpenSSL, is included to represent single-threaded, compute-
bound workloads for which kernel performance is less rele-
vant. The benchmarks are also varied, ranging from single-
threaded (Pybench) to multi-threaded, multi-process work-
loads (Apache). At the extreme, we have an IPC benchmark
transferring tiny, 128-byte buffers between processes which

USENIX Association 31st USENIX Security Symposium 119

https://github.com/wpengfei/CVE-2016-6516-exploit/tree/master/Scott%20Bauer
https://github.com/wpengfei/CVE-2016-6516-exploit/tree/master/Scott%20Bauer

Fil
e

cr
ea

te
Th

re
ad

cr
ea

te
La

un
ch

pr
og

ra
m

Pr
oc

es
s

cr
ea

te
M

em
or

y
al

lo
c

Microbenchmark

0

20

40

60

80

100

Re
la

tiv
e

pe
rfo

rm
an

ce
 (%

)
Average = 97.1%

10
0.

0

 9
5.

3

 9
4.

7

 9
8.

6

 9
7.

1

bt cg ep ft is lu m
g sp

NPB workload

Average = 96.3%

 9
5.

5

 9
6.

4

10
0.

1

 9
6.

6

 9
5.

4

 9
6.

4

 9
5.

0

 9
5.

0

 9
8.

2

 9
4.

8

 9
8.

7

 9
6.

2

 9
6.

1

 9
7.

3

 9
5.

0

 9
4.

7

MPI
OMP

op
en

ss
l

py
be

nc
h gi
t

lin
ux

Re
di

s-
G

Re
di

s-
S

ap
ac

he
ng

in
x

IP
C

PTS workload

Average = 96.6%

10
0.

0

 9
9.

9

 9
9.

6

 9
6.

5

10
0.

0

10
0.

0

 9
0.

2

 8
6.

7 9
6.

6

Figure 9: Midas’ performance on microbenchmarks, NPB and PTS benchmarks relative to the baseline kernel.

spends all of its time in syscalls and whose performance is
entirely dependent on kernel IPC performance.

We plot Midas’ performance relative to the baseline kernel
on these benchmarks in Figure 9, roughly ordering workloads
in increasing order of syscall dependence from left to right.
For benchmarks for which PTS reports runtime, we compute
the inverse of the runtime as performance. Benchmarks with
low syscall frequency such as OpenSSL, Pybench and Git
have correspondingly low dependence on kernel performance.
Accordingly, these benchmarks see a negligible overhead
when running on our prototype kernel. The benchmark titled
“Linux” represents compilation of the Linux kernel. While
compilation is mostly compute bound, compiling the Linux
kernel requires accessing a large number of source files, re-
sulting in the creation of a large number of compiler processes
each of which read and create files. Midas experiences a small,
but non-negligible overhead of 3.5% on this workload. Redis
requires syscalls for receiving and replying to requests, but
processes its transaction entirely in-memory. Our evaluation
prototype achieves practically identical results as the baseline,
highlighting the final prototype’s competitive performance.
The webservers, Apache and Nginx require network and file-
system I/O, and rely heavily on syscall performance. We see
that Nginx, which is a higher-performance webserver, sees a
larger overhead. IPC, which implements 128 byte transfers
between two processes over a TCP connection, is almost en-
tirely bound by kernel performance and sees a performance
overhead of 3.4% on Midas.

Our prototype Midas kernel benefits significantly from ex-
empting particular, proven-safe syscalls from instrumentation.
While we exclude write-like syscalls from Midas because
they are not vulnerable to double-fetch bugs, we also evalu-

ated the performance cost of an unoptimized implementation
(Midas+write) which also instruments these syscalls. To high-
light the worst-case performance of the unoptimized imple-
mentation, we evaluate the performance of the IPC benchmark
on Midas+write due to its high frequency of write syscalls.
With Midas+write, the performance of the IPC benchmark
falls to 12.6% of the baseline, a further degradation of 84%
compared to Midas, showing that developer effort towards
properly exempting frequently called safe syscalls from Midas
protections is crucial towards for implementations to maintain
competitive performance compared to the baseline.

Memory overhead. Our prototype incurs memory over-
head due to metadata, tracking page snapshots and copies.
At any instant, the memory overhead mainly depends on the
number of executing syscalls (limited by the core count) and
the number of page copies for these syscalls. On average,
for every 1000 syscalls issued by the PTS benchmarks, our
prototype created 236 snapshots (32B each) and 54 copies
(4KB each). We can see that the occurrence of copies is low,
resulting in negligible memory overhead.

7.3 Overhead breakdown

In this section, we explore the sources of Midas’ overhead
by analyzing perf traces for three workloads: thread creation
from OSBench, linux compilation from PTS and Nginx. We
aim to classify overheads into the various kernel function
we instrumented: i) user copy in transfer function, ii) page
duplication on page fault, iii) metadata cleanup on syscall
end, and iv) filesystem operations.

To estimate the time spent in each function, we create
FlameGraphs for each workload [21] using samples of pro-

120 31st USENIX Security Symposium USENIX Association

thread create build linux nginx0

2

4

6

8

10

12

14

16
Ov

er
he

ad
 (i

n
%

)

Other
File read
File write
Cleanup
Page faults
Usercopy

Figure 10: Classification of overheads for various benchmarks
due to Midas.

cessor state, including the call stack, collected over 30 second
periods by perf record. After identifying one binary for the
workload from the FlameGraph, we estimate the overhead for
a function as the difference in execution time attributed to that
function between the baseline and Midas systems. The total
overhead is estimated from the throughput figures obtained
from Section 7.2.

Figure 10 shows the breakdown of overheads for three
workloads. As expected, metadata tracking and duplication
causes most overheads for the user copy and fault handling
functions respectively. The results for the Linux build break-
down differs from the other workloads in the large portion of
the unaccounted overhead (labelled “Other”). This anomaly
stems for the fact that Linux’s compilation runs a large num-
ber (1000s) of processes, of which the compiler accounts for
less than 50% of the total execution time. The reported break-
down accounts for overheads on the compiler, but not all the
other processes.

Both page faults and user copies cause state changes for
a page, and thereby change the page’s access permissions in
the PTE. The resulting TLB flush accounts for 0.3%, 0% and
1.1% overhead for thread creation, compilation, and Nginx
respectively. The load generator bombardier used for load-
ing Nginx, however, sees a much larger overhead for TLB
flushing, accounting for 21% of its execution time.

7.4 Case study: Nginx
To better understand Midas’ behavior under varying syscall
rates and different core configurations, we study Nginx’s (ver-
sion 1.18) throughput while varying payload sizes and differ-

102 103 104

50

100

Re
qu

es
ts

 p
er

 se
co

nd
(k

rp
s)

baseline 1-core
midas 1-core

baseline 8-core
midas 8-core

102 103 104

Payload length (B)

200

400

600

800

Th
ro

ug
hp

ut
(M

bp
s)

Figure 11: Request rates and throughput served by the Nginx
server for static pages.

ent worker counts. Each worker is single threaded and uses
one core. The server is loaded with requests from a separate
machine running a load generater (bombardier) with 100 con-
current connections (chosen to maximize throughput) over a
1Gbps link. The clients send http requests for files ranging
between 20B and 10000B.

In Figure 11, we plot the request rate and throughput for
Nginx servers running with one and eight workers. For all
configurations, we can see that the rate of requests served
remains almost constant while increasing payload size until
the network link reaches saturation. Under a saturated net-
work, the request rates for Midas match that of the baseline
system. With a single worker, Midas’ overheads cause a con-
sistent 13–14% overhead on the request rate for small packet
sizes. However, we see that Midas has practically no overhead
when serving requests with 8 workers even when packet sizes
are too small to saturate the network link. In this case, both
Midas and the baseline system are limited by the scalability
of the Linux networking stack.

8 Related Work

Early work on double-fetch bugs relied primarily on manual
code analysis to identify bugs in kernel code [38, 48] or in
syscall wrappers [42]. Realizing the limited scalability of this
approach, particularly when applied to large codebases such
as the Linux kernel, subsequent work focussed on automated
techniques based on static or dynamic analysis techniques,
and on leveraging hardware features to mitigate such bugs.

USENIX Association 31st USENIX Security Symposium 121

Static analysis. Static analysis proposals use code analysis
to find and fix double fetch vulnerabilities. DFTinker [29]
improves the coverage of pattern matching rules for de-
tecting double fetches in code as initially proposed by
Wang et al. [39]. Deadline [46] and DFTracker [41] further
generalize the analysis by leveraging symbolic execution.

However, static analysis is severely limited by its require-
ment for source code, which eliminates possibility of protect-
ing of analyzing binary-only modules for which code is not
available. In contrast, Midas can also protect such modules
since well-behaving module use the kernel transfer functions
to access user memory. Symbolic execution solves the gen-
erality problem of pattern-matching approaches but has its
limitations (path explosion, function pointers, modelling nu-
merous library functions, etc.). Deadline [46] specifically
requires the additional assumption that pointer syscall argu-
ment do not alias, an assumption that can wilfully be violated
by our adversarial model.

Additionally, the protection allowed by static analysis meth-
ods are limited: only the bugs which are detected can be fixed,
and static analyses are necessarily incomplete. In contrast, Mi-
das mitigates all TOCTTOU vulnerabilities. Further, specific
cases of double fetches, such as in syscall wrappers cannot be
fixed in code, and require a versioning system such as Midas
in order to enable deep argument inspection.

Dynamic Analysis. Dynamic analysis techniques leverage
runtime information and values to detect double fetches, and
are notable in their ability to find bugs in binaries.

To enable the search for various classes of bugs, Google
Project Zero’s Bochspwn project [23] introduced a compre-
hensive emulator for x86 with callbacks to allow tracing of
kernel operations, including memory accesses. When paired
with a syscall fuzzer, Bochspwn successfully detected and
reported double fetches from these access logs, but suffered
from a high rate of false positives. Another major shortcoming
of Bochspwn was its low execution throughput of 40-80MIPS
which limited its ability to explore code paths. Xenpwn [44]
extended Bochspwn’s trace-driven approach to fuzz hyper-
visors for double-fetch bugs. Xenpwn found three double
fetches in the Xen hypervisor, but no critical vulnerabilities
in KVM.

DECAF [34] inverts Midas’ adversarial model, leveraging
concurrent access to syscall parameters from userspace to
detect kernel accesses via a cache side-channel. DECAF is
strongly reliant on CPU-specific behavior, which is sensitive
to CPU parameters, subject to changes from generation to
generation (or even from core to core) and prone to noise and
false sharing. Following the discovery of transient-execution
attacks [25], proposals such as InvisiSpec [24,47] have tried to
prevent information leakage via cache side-channels. Future
generations might entirely close this channel, or introduce
constraints that limits this information flow.

Dynamic analysis techniques can only detect vulnerabili-
ties on executed code paths, and therefore typically rely on a

fuzzer to extensively cover kernel code. However, fuzzers are
inherently incomplete, limiting the ability of dynamic analysis
to find bugs.

Mitigations. Previous attempts [29,34] to eliminate double
fetch vulnerabilities rely on Intel TSX, a hardware transac-
tional memory implementation, to detect malicious writes to
data read by the kernel. A defense based on TSX improves
upon Midas by reducing the scope for false sharing from a
page size to a cache size. However, TSX suffers from major
limitations which restrict its useability for general kernel im-
plementations. Of note, TSX requires that the data working
set for the critical section experiences no L1 cache evictions,
even due to contention from a simultaneously-multithreaded
(hyperthreading) core. Further, TSX is limited to processors
from a specific manufacturer (Intel), leaving the vast majority
of computing devices (mobile, IoT, AMD processors) unpro-
tected.

9 Conclusion

Midas mitigates double-fetch bugs in system calls and pro-
tects the operating system kernel by enforcing the invariant:
through a syscall’s lifetime, every read to a userspace object
will return the same value. Our Midas implementation creates
on-demand snapshots and copies of pages that are read and
merges any writes through the execution of the system call.
Our mitigation protects the core kernel, as well as drivers
by carefully instrumenting functions that interact with the
process address space. While our implementation focuses on
Linux for x86-64, our concept is generic and empowers other
kernels to protect themselves against notoriously hard-to-find
and easy-to-exploit double fetch bugs.

The performance evaluation of our prototype implementa-
tion is promising. Compute-bound benchmarks have negligi-
ble overhead and even syscall-intensive benchmarks exhibit
low overhead. On one hand, Midas mitigates all double fetch
bugs in the kernel and gives developers a tool to locate such
bugs. On the other hand, Midas sets the foundation for effi-
cient, stateful system call filtering and validation. We have
released the source code of our prototype as open-source at
https://hexhive.epfl.ch/midas/.

Acknowledgements

The authors thank Marcel Busch and the anonymous review-
ers for their careful feedback and support during the writing
of this paper. This project was partially supported by Euro-
pean Research Council (ERC) grant No. 850868, DARPA
HR001119S0089-AMP-FP-034, and ONR award N00014-
18-1-2674. Any findings are those of the authors and do not
necessarily reflect the views of our sponsors.

122 31st USENIX Security Symposium USENIX Association

https://hexhive.epfl.ch/midas/

References

[1] Cve-2013-1332. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-1332.

[2] Cve-2015-8550. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-8550.

[3] Cve-2016-10433. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-10433.

[4] Cve-2016-10435. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-10435.

[5] Cve-2016-10439. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-10439.

[6] Cve-2016-8438. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-8438.

[7] Cve-2018-12633. https://bugzilla.redhat.com/
show_bug.cgi?id=CVE-2018-12633.

[8] Cve-2019-20610. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2019-20610.

[9] Cve-2019-5519. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-5519.

[10] Cve-2020-12652. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-12652.

[11] OSBench. https://github.com/mbitsnbites/
osbench/.

[12] SecComp. https://www.kernel.org/doc/html/
latest/userspace-api/seccomp_filter.html.

[13] Seccomp and deep argument inspection. https://lwn.
net/Articles/822256/.

[14] Cve-2018-12633 fix. https://
github.com/torvalds/linux/commit/
bd23a7269834dc7c1f93e83535d16ebc44b75eba,
Aug 2020.

[15] Phoronix test suite. https://www.
phoronix-test-suite.com/, 8 2020.

[16] Advanced Micro Devices (AMD). AMD64 Architecture
Programmer’s Manual Volume 3: General-Purpose and
System Instructions. https://www.amd.com/system/
files/TechDocs/24594.pdf.

[17] David H Bailey, Eric Barszcz, John T Barton, David S
Browning, Robert L Carter, Leonardo Dagum, Rod A Fa-
toohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. The nas parallel benchmarks. The
International Journal of Supercomputing Applications,
5(3):63–73, 1991.

[18] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley,
and Edward D. Lazowska. Sharing and protection in
a single-address-space operating system. ACM Trans.
Comput. Syst., 12(4):271–307, 1994.

[19] Leonardo Dagum and Ramesh Menon. Openmp: an
industry standard api for shared-memory programming.
IEEE computational science and engineering, 5(1):46–
55, 1998.

[20] Tal Garfinkel. Traps and pitfalls: Practical problems in
system call interposition based security tools. In Pro-
ceedings of the Network and Distributed System Security
Symposium, NDSS 2003, San Diego, California, USA.
The Internet Society, 2003.

[21] Brendan Gregg. The flame graph. Commun. ACM,
59(6):48–57, 2016.

[22] Siddharth Gupta, Atri Bhattacharyya, Yunho Oh, Ab-
hishek Bhattacharjee, Babak Falsafi, and Mathias Payer.
Rebooting virtual memory with midgard. In Proceed-
ings of the 48th Annual International Symposium on
Computer Architecture, ISCA 2021.

[23] GC Mateusz Jurczyk and Gynvael Coldwind. Bochspwn:
Identifying 0-days via system-wide memory access pat-
tern analysis. Black Hat USA Briefings (Black Hat USA),
2013.

[24] Khaled N. Khasawneh, Esmaeil Mohammadian Ko-
ruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry Pono-
marev, and Nael B. Abu-Ghazaleh. Safespec: Banishing
the spectre of a meltdown with leakage-free speculation.
In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC 2019, Las Vegas, NV, USA, June
02-06, 2019, page 60. ACM, 2019.

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre
attacks: Exploiting speculative execution. 2018.

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[27] ARM Ltd. ARM Architecture Reference Manual
(ARMv8, for ARMv8-Aarchitecture profile). 2013.

[28] Kai Lu, Peng-Fei Wang, Gen Li, and Xu Zhou. Un-
trusted hardware causes double-fetch problems in the
I/O memory. Journal of Computer Science and Technol-
ogy, 33(3):587–602, 2018.

USENIX Association 31st USENIX Security Symposium 123

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1332
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1332
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8550
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8550
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10433
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10433
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8438
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8438
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2018-12633
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2018-12633
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20610
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20610
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5519
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5519
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12652
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12652
https://github.com/mbitsnbites/osbench/
https://github.com/mbitsnbites/osbench/
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://lwn.net/Articles/822256/
https://lwn.net/Articles/822256/
https://github.com/torvalds/linux/commit/bd23a7269834dc7c1f93e83535d16ebc44b75eba
https://github.com/torvalds/linux/commit/bd23a7269834dc7c1f93e83535d16ebc44b75eba
https://github.com/torvalds/linux/commit/bd23a7269834dc7c1f93e83535d16ebc44b75eba
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf

[29] Yingqi Luo, Pengfei Wang, Xu Zhou, and Kai Lu.
Dftinker: Detecting and fixing double-fetch bugs in an
automated way. In Sriram Chellappan, Wei Cheng, and
Wei Li, editors, Wireless Algorithms, Systems, and Ap-
plications - 13th International Conference, WASA 2018,
Tianjin, China, June 20-22, 2018, Proceedings, volume
10874 of Lecture Notes in Computer Science, pages 780–
785. Springer, 2018.

[30] Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2019.

[31] Lena E. Olson, Jason Power, Mark D. Hill, and David A.
Wood. Border control: sandboxing accelerators. In
Milos Prvulovic, editor, Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, MICRO 2015,
Waikiki, HI, USA, December 5-9, 2015, pages 470–481.
ACM, 2015.

[32] Mathias Payer and Thomas R Gross. Protecting appli-
cations against TOCTTOU races by user-space caching
of file metadata. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Envi-
ronments, pages 215–226, 2012.

[33] Calton Pu and Jinpeng Wei. A Methodical Defense
against TOCTTOU Attacks: The EDGI Approach. In
Proceedings of the 2006 International Symposium on
Secure Software Engineering, 2006.

[34] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémen-
tine Maurice, Thomas Schuster, Anders Fogh, and Ste-
fan Mangard. Automated detection, exploitation, and
elimination of double-fetch bugs using modern CPU
features. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors,
Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security, AsiaCCS 2018, In-
cheon, Republic of Korea, June 04-08, 2018, pages 587–
600. ACM, 2018.

[35] Fermin J. Serna. Ms08-061 : The case
of the kernel mode double-fetch. https:
//msrc-blog.microsoft.com/2008/10/14/
ms08-061-the-case-of-the-kernel-mode-double-fetch/,
Oct 2008.

[36] Marc Snir, William Gropp, Steve Otto, Steven Huss-
Lederman, Jack Dongarra, and David Walker. MPI–the
Complete Reference: the MPI core, volume 1. MIT
press, 1998.

[37] Dan Tsafrir, Tomer Hertz, David A Wagner, and Dilma
Da Silva. Portably Solving File TOCTTOU Races with

Hardness Amplification. In FAST, volume 8, pages 1–18,
2008.

[38] twiz and sgrakkyu. From ring 0 to uid 0. CCC, 2007.

[39] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve
Dodier-Lazaro. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the linux kernel. In 26th {USENIX} Security Sympo-
sium ({USENIX} Security 17), pages 1–16, 2017.

[40] Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. A survey
of the double-fetch vulnerabilities. Concurrency and
Computation: Practice and Experience, 30(6):e4345,
2018.

[41] Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. Dftracker:
detecting double-fetch bugs by multi-taint parallel track-
ing. Frontiers of Computer Science, 13(2):247–263,
2019.

[42] Robert NM Watson. Exploiting Concurrency Vulnera-
bilities in System Call Wrappers. WOOT, 7:1–8, 2007.

[43] Jinpeng Wei and Calton Pu. Modeling and preventing
TOCTTOU vulnerabilities in Unix-style file systems.
computers & security, 29(8):815–830, 2010.

[44] Felix Wilhelm. Xenpwn: Breaking paravirtualized de-
vices. Black Hat USA, 2016.

[45] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and An-
drew Pavlo. An empirical evaluation of in-memory
multi-version concurrency control. Proc. VLDB Endow.,
10(7):781–792, 2017.

[46] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in OS kernels. In 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, pages
661–678. IEEE Computer Society, 2018.

[47] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher W. Fletcher, and Josep Torrellas.
Invisispec: Making speculative execution invisible in the
cache hierarchy (corrigendum). In Proceedings of the
52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA,
October 12-16, 2019, page 1076. ACM, 2019.

[48] Junfeng Yang, Ang Cui, Salvatore J. Stolfo, and Simha
Sethumadhavan. Concurrency attacks. In Hans-Juergen
Boehm and Luis Ceze, editors, 4th USENIX Workshop
on Hot Topics in Parallelism, HotPar’12, Berkeley, CA,
USA, June 7-8, 2012. USENIX Association, 2012.

124 31st USENIX Security Symposium USENIX Association

https://msrc-blog.microsoft.com/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://msrc-blog.microsoft.com/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://msrc-blog.microsoft.com/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/

	Introduction
	Background
	Page Tables and Memory Protection
	Linux Memory Subsystem
	Supervisor Memory Protection
	Double-Fetch Bugs

	Threat Model
	Attack Classification
	Midas Design
	Page State Machine
	Discussion

	Midas Implementation
	Tracking Page State
	Kernel Reads from User Memory
	Handling Faults
	Syscall Completion
	File System Writes
	New Mappings to Protected Pages
	Discussion

	Evaluation
	Mitigation of CVE-2016-6516
	Performance evaluation
	Overhead breakdown
	Case study: Nginx

	Related Work
	Conclusion

