
Take Over the Whole Cluster: Attacking Kubernetes via Excessive
Permissions of Third-party Applications

Nanzi Yang
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Wenbo Shen∗
Zhejiang University

ZJU-Hangzhou Global Scientific and
Technological Innovation Center

Hangzhou, China

Jinku Li∗
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Xunqi Liu
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Xin Guo
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Jianfeng Ma
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

ABSTRACT
As the dominant container orchestration system, Kubernetes is
widely used by many companies and cloud vendors. It runs third-
party add-ons and applications (termed third-party apps) on its
control plane to manage the whole cluster. The security of these
third-party apps is critical to the whole cluster but has not been
systematically studied so far.

Therefore, this paper analyzes the security of third-party apps
and reveals that third-party apps are granted excessive critical per-
missions, which can be exploited by an attacker to escape from
the worker node and take over the whole Kubernetes cluster. Even
worse, excessive permissions of different third-party apps can be
chained together to turn non-critical issues into severe attack vec-
tors. To systematically analyze the exploitability of excessive per-
missions, we design three strategies based on different attacking
paths. These three strategies can steal the cluster admin permission
with the DaemonSet of a third-party app directly, or via the same
app’s or another app’s critical component indirectly.

We investigate the security impact of excessive permission at-
tacks in real production environments. We analyze all third-party
apps in CNCF and show that 51 of 153 (33.3%) ones have poten-
tial security risks. We further scan Kubernetes services provided
by the top four cloud vendors. The results show that all of them
are vulnerable to excessive permission attacks. We report all our
findings to the corresponding teams and get eight new CVEs from
communities and a security bounty from Google.

CCS CONCEPTS
• Security and privacy → Distributed systems security.

∗Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623121

KEYWORDS
Kubernetes; Third-party Application; Excessive Permission

ACM Reference Format:
Nanzi Yang, Wenbo Shen, Jinku Li, Xunqi Liu, Xin Guo, and Jianfeng Ma.
2023. Take Over the Whole Cluster: Attacking Kubernetes via Excessive
Permissions of Third-party Applications. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3576915.3623121

1 INTRODUCTION
Kubernetes is a container orchestration system for automating
deployment, scaling, and management of containerized applica-
tions [6]. In recent years, it has been widely adopted by numerous
companies to manage their workloads [7] and used by cloud ven-
dors as their container orchestrators [18, 59, 61, 69]. According to
the CNCF (Cloud Native Computing Foundation), 89% of CNCF
end users are either using or evaluating Kubernetes [34], which
makes it a dominant player in the container orchestration market.
Sysdig report shows that Kubernetes has a commanding 75% share
of the container orchestrator market [68]. Therefore, Kubernetes
has become the de-facto standard for container orchestration.

A Kubernetes cluster usually consists of a control plane and
a data plane [8]. The control plane acts as the central controller
of the whole cluster and deploys the workload of cluster users to
worker nodes in the data plane. The control plane contains the
necessary components of Kubernetes, including kube-apiserver,
kube-scheduler, etcd, and controller-manager. Moreover, it also
runs add-ons or applications from third parties. Here we term these
third-party add-ons and applications running on Kubernetes control
plane as third-party apps. These third-party apps are used to extend
the control functionality of Kubernetes and are granted critical
permissions for cluster management. Therefore, their security is
critical to the whole cluster.

Unfortunately, the security of third-party apps has not been sys-
tematically studied before. Existing research on Kubernetes security
is mainly on the co-residency attacks [64], the DDoS attacks against
the auto-scaling [26], and misconfigurations [42, 62].

 

3048

https://doi.org/10.1145/3576915.3623121
https://doi.org/10.1145/3576915.3623121
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623121&domain=pdf&date_stamp=2023-11-21


CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

Therefore, in this paper, we analyze the security of third-party
apps and reveal a new attack surface called excessive permission at-
tack, which can be exploited to attack the whole Kubernetes cluster.
Our key observation is that many third-party apps are granted ad-
ditional critical permissions, called excessive permissions, which can
be abused to make multiple attacks in Kubernetes, named excessive
permission attacks. For example, by abusing excessive permissions,
an attacker can escape from the worker node and gain control over
the whole Kubernetes cluster, resulting in privilege escalation in
Kubernetes.

Even worse, our study demonstrates that excessive permissions
of different third-party apps can be chained together to turn non-
critical issues into severe attack vectors.

To systematically analyze the exploitability of third-party apps’
excessive permissions, we propose three strategies based on dif-
ferent attacking paths. First, the attacker on a worker node can
exploit excessive permissions of third-party apps’ DaemonSet [9]
to directly steal the cluster admin permission, thus it escalates its
privilege in Kubernetes. Second, an attacker can leverage the Dae-
monSet’s excessive permissions to hijack the same app’s critical
component and then use their excessive permissions to indirectly
steal the cluster admin permission. Third, an attacker can utilize the
excessive permissions from the DaemonSet of one third-party app
to hijack the critical components of another third-party app and
then use them to indirectly steal the cluster admin permission. As
a result, in all three strategies, an attacker who controls a worker
node can escalate to the cluster admin and take over the whole
cluster.

To fully investigate the security impact of excessive permission
attacks in real production environments, we develop a tool fol-
lowing our strategies and use it to scan third-party apps in CNCF
projects as well as third-party apps used in top four public clouds.
Specifically, we scan all the 153 projects in the CNCF project lists
and find that 51 (33.3%) of them have potential security risks. For
the top four public clouds, we select Google Kubernetes Engine
(GKE) [73], Amazon Elastic Kubernetes Service (Amazon EKS) [21],
Azure Kubernetes Service (AKS) [23], and Alibaba Cloud Container
Service for Kubernetes (Alibaba Cloud ACK) [32]. Our results show
that all of them are vulnerable to excessive permission attacks. In
particular, three third-party apps in Google GKE, three third-party
apps in Amazon EKS, two third-party apps in Azure AKS, and nine
third-party apps in Alibaba Cloud ACK have potential security
risks.

For the 51 vulnerable CNCF projects, we report the identified
issues to the related communities through the proper channels.
For the top four public clouds, we also report our findings to their
security teams. Our findings are confirmed and eight new CVEs have
been assigned to us. Moreover, Google has awarded us a bounty of
$1337.00 for our findings.

In summary, the major contributions of this paper are summa-
rized as follows.

New Attack Surface. We reveal that third-party apps are granted
excessive permissions, which can be abused to make attacks and
cause severe consequences (e.g., getting cluster admin permission
and taking over the whole cluster). We term these attacks as exces-
sive permission attacks.

Figure 1: The overview of Kubernetes architecture. “Random
component” means a randomly-deployed component.

Attacking Strategies. We analyze the attack paths systematically
by designing three attacking strategies. These three strategies can
steal the cluster admin permission from the DaemonSet of a third-
party app directly, or via the same app’s or another app’s critical
component indirectly.

Practicality Evaluation.We analyze all third-party apps in CNCF
and show that 51 of 153 (33.3%) ones have potential security risks.
We further scan Kubernetes services provided by the top four public
clouds. The results show that all of them are vulnerable to excessive
permission attacks.

Community Impact.We report all our findings to the correspond-
ing teams and get eight new CVEs from communities and a se-
curity bounty from Google. We also plan to open-source our tool
at https://github.com/XDU-SysSec/ExcessivePermissionAttack so
that it can help researchers and developers pinpoint the weak points
of their third-party apps.

The rest of this paper is structured as follows. We introduce the
necessary background knowledge in §2. We use a real example as a
motivation to illustrate the details of the excessive permission attack
in §3. We give out three strategies for making excessive permission
attacks via third-party apps in §4. We scan excessive permission
risks in CNCF projects and cloud vendors in §5. We discuss the
measurements to mitigate these issues in §6. We summarize the
related work in §7 and conclude our paper in §8.

2 BACKGROUND
In this section, we present the necessary background knowledge of
our work, including the Kubernetes architecture, third-party apps
of Kubernetes, and role-based access control.

2.1 Kubernetes Architecture
Kubernetes is a container orchestration system that provides a
framework for creating and managing containers at scale. The
overview of Kubernetes architecture is shown in Figure 1. Partic-
ularly, a Kubernetes cluster comprises a control plane and a data

 

3049



Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

plane. The control plane is responsible for managing and main-
taining the cluster, which contains the Kubernetes components
and third-party apps. The data plane is responsible for running
workloads of different users, and it contains all pods of different
users that are running on multiple worker nodes.

In the control plane, several Kubernetes components (includ-
ing kube-apiserver, kube-scheduler, etcd, and controller-manager)
maintain the cluster’s functionalities. For example, kube-apiserver
provides the cluster’s Restful API front end, through which contain-
ers can interact with multiple Kubernetes resources. In addition,
there are usually a number of third-party apps in the control plane
to extend the cluster’s functionalities and serve the entire cluster. A
typical third-party app contains two types of components accord-
ing to their different running locations, i.e., the DaemonSet and
one or more randomly-deployed components (random components
for short). Specifically, the DaemonSet is a set of pods and each of
them runs on a separate worker node. The random components of a
third-party app are sets of pods that run on worker nodes randomly,
which could be Kubernetes Deployments [10], StatefulSets [16], and
so on. As shown in Figure 1, there are multiple third-party apps
in a Kubernetes cluster. The DaemonSets of third-party apps are
running on each worker node (i.e., DaemonSet 1, ..., DaemonSet
n). While the random components of different apps are running on
worker nodes randomly (e.g., the random component 𝑖 is running
on the first worker node, and 𝑗 is running on the last worker node).

In the data plane, a pod is a group of one or more containers that
share storage and network resources, which is the basic unit created
and managed by Kubernetes. The worker nodes, which reside on
physical or virtual machines, are responsible for running containers
of different users. For security purposes, cloud vendors typically
recommend running different users’ containers on separate worker
nodes to prevent container breakouts [70], isolate workloads [20]
and tenants, and enforce access controls [24].

2.2 Third-party Apps of Kubernetes
Third-party apps of Kubernetes are a series of software that can
be installed and run in the Kubernetes cluster. They provide exter-
nal functionalities for interacting with underlying resources and
improve the effectiveness of the Kubernetes cluster.

There are lots of third-party apps in the real world, which are
maintained by different vendors and communities. Specifically,
there are 153 projects in the CNCF project lists, which are divided
into three groups, i.e., graduated, incubating, and sandbox. For ex-
ample, Rook1 is a graduated project (or app) to provide cloud-native
storage for Kubernetes. And Kubevirt2 is an incubating project
for managing virtualization workloads inside a Kubernetes clus-
ter. While Kubewarden3 is a sandbox project which offers a policy
engine for Kubernetes.

Besides, cloud vendors use a number of third-party apps in their
business environments. For example, Google GKE [73] uses third-
party apps for extending its features [71]. Amazon EKS has multiple
third-party apps for managing underlying AWS resources such
as networking, computing, and storage [19]. Azure AKS enables

1https://rook.io/
2https://kubevirt.io/
3https://www.kubewarden.io/

1 Name: kubevirt-operator
2 Labels: kubevirt.io=
3 Annotations: <none>
4 Role:
5 Kind: ClusterRole
6 Name: kubevirt-operator
7 Subjects:
8 Kind Name Namespace
9 ---- ---- ---------
10 ServiceAccount kubevirt-operator kubevirt
11

Figure 2: The kubevirt-operator ClusterRoleBinding. It binds
the kubevirt-operatorClusterRole to the kubevirt-operator ser-
vice account.

1 Name: kubevirt-operator
2 Labels: kubevirt.io=
3 Annotations: <none>
4 PolicyRule:
5 Resources Non-Resource URLs Resource Names Verbs
6 --------- ----------------- -------------- -----
7 ...
8 secrets [] [] [create list get watch]
9 ...

Figure 3: The kubevirt-operator ClusterRole. It has the “list”
verb of the “secrets” resource.

1 Name: kubevirt-handler
2 ...
3 PolicyRule:
4 Resources Non-Resource URLs Resource Names Verbs
5 --------- ----------------- -------------- -----
6 ...
7 nodes [] [] [patch list watch get]
8 ...

Figure 4: The kubevirt-handler ClusterRole. It has the “patch”
verb of the “nodes” resource.

several third-party apps to provide extra capabilities for Kubernetes
clusters [22]. And Alibaba Cloud ACK leverages third-party apps to
enable multi-host networking and other extra functionalities [33].

However, third-party apps of Kubernetes are usually developed
and maintained by different third-party software vendors. Among
these vendors, a number of themmay lack security experts to review
the source code of their apps. Thus, such apps possibly introduce
potential security risks, e.g., applying for excessive permissions
unnecessary for apps to work properly, which motivates us in this
work.

2.3 Role-based Access Control
Kubernetes enables role-based access control (RBAC) by default
to restrain the container’s access permissions to Kubernetes re-
sources [17]. In the RBACmechanism, permissions are grouped into
Roles and ClusterRoles [12], which can be granted to the pod’s ser-
vice account [15] through the RoleBinding and ClusterRoleBinding
operations. The permissions granted by ClusterRoleBinding apply
to the entire cluster, and the permissions granted by RoleBinding
are limited to a specific Kubernetes namespace [11]. When con-
tainers make resource access requests to the kube-apiserver, only
requests that comply with the RBAC permissions will be allowed.

 

3050

https://rook.io/
https://kubevirt.io/
https://www.kubewarden.io/


CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

For example, the third-party app Kubevirt has a random com-
ponent named virt-operator, which has a service account called
kubevirt-operator. As shown in Figure 2, the kubevirt-operator

service account has a ClusterRoleBinding called kubevirt-operator

(line 1), which binds the kubevirt-operator ClusterRole (line 6)
to the kubevirt-operator service account of the kubevirt names-
pace (line 10). As shown in Figure 3, the kubevirt-operator Clus-
terRole (line 1) has a “list” verb of the “secrets” resource (line 8),
which enables the virt-operator component of the app to list all
the secrets in the entire cluster. This permission is excessive for
the virt-operator component, as it only needs to retrieve several
specific secrets inside the kubevirt namespace (e.g., kubevirt-ca,
kubevirt-export-ca, etc.), but not all the secrets in the whole cluster.
Secrets are objects that contain sensitive data such as passwords,
tokens (e.g., the cluster admin token), or keys [13]. Note that mul-
tiple service account tokens, including the cluster admin token
if created, are stored as “secrets” resources inside the Kubernetes
cluster. Retrieving all secrets allows the attacker to acquire all user
tokens across the whole cluster. In other words, the virt-operator

component of the app can leverage this excessive permission to
obtain the cluster admin token, which provides superuser access to
the Kubernetes cluster.

Besides the random component virt-operator, Kubevirt has
a DaemonSet called virt-handler, which has a set of pods run-
ning on each node. The service account of virt-handler is bonded
with a ClusterRole named kubevirt-handler via ClusterRoleBind-
ing. As shown in Figure 4, this ClusterRole has a “patch” verb of
the “nodes” resource, which is able to update field(s) of the “nodes”
resource using strategic merge. This permission is excessive for
the virt-handler DaemonSet, as it makes the virt-handler on a
single node modify all the worker nodes in the entire cluster. As a
result, the virt-handler running on a worker node can abuse this
excessive permission to patch (or modify) all other nodes in the
cluster and force the virt-operator to run on its own node.

In a real scenario, a malicious user can chain these excessive
permissions together to build attack vectors. More specifically, an
attacker can first abuse the excessive permission of virt-handler
to force the virt-operator to run on its own node. After that, the
attacker can exploit the excessive permission of virt-operator to
steal the cluster admin token. As a result, the attacker gains full
control over the whole cluster, which is similar to obtaining root
user privileges in Linux/Unix. We present more details in §3.2.

3 MOTIVATION

In this section, we first describe the threat model and assumptions
of our work. Then we present the motivation of this paper and use
a real example to illustrate the details.

3.1 Threat Model and Assumptions

In this paper, we assume that an attacker controls one worker node
of Kubernetes (a.k.a, attacker-controlled worker node), and aims
to take over the whole cluster. Note that in a real scenario, if an
attacker has access to the applications in the cluster, the attacker
can: (1) compromise the applications running inside the container,
(2) perform a container escape to compromise a worker node, and

(3) take control of the whole cluster. Our paper concentrates on
the third step. This assumption is based on several factors. First,
application compromising and container escapes are prevalent in
real-world scenarios [29, 49, 51, 55, 58]. A malicious user who has
access to applications inside a container can first leverage vulnera-
bilities of applications to compromise the container [29, 55]. After
that, the attacker is able to exploit multiple existing vulnerabilities
to break out the container and compromise a worker node [65].
Second, in a Kubernetes scenario, what happens after compromis-
ing a node is unknown. More specifically, a container escape only
compromises a single node without affecting the workloads on
other nodes. Third, there is a commonly held belief that worker
nodes provide strong isolation [20, 24, 70]. For example, Google
GKE suggests isolating workloads in separate nodes to reduce the
risk of privilege escalation [70]. Amazon EKS recommends isolating
tenant workloads to specific nodes to increase isolation in the soft
multi-tenancy model [20]. Azure AKS proposes to use dedicated
nodes for isolating teams and workloads [24]. In contrast, our re-
search shows that the excessive permissions of third-party apps
can be abused to break the isolation of worker nodes and take over
the whole cluster, showing the cases that which the common belief
does not hold.

On the restriction side, the third-party apps are deployed follow-
ing their official documents. In addition, other Kubernetes restric-
tions work properly to harden the cluster following the Kubernetes
best practices [14]. Specifically, these restrictions include control-
ling accesses to the Kubernetes APIs, controlling accesses to the
Kubelet, controlling the capabilities of a workload or user at run-
time, and protecting cluster components from being compromised.

In the following, we use a real example to show that even if the
aforementioned restrictions are in place, an attacker who controls
one worker node can still abuse the excessive permissions of third-
party apps to take over the whole cluster, which poses a high impact
on the cluster’s confidentiality, integrity, and availability.

3.2 Motivating Example: Excessive Permission
Attack via Kubevirt

Kubevirt2 is a Kubernetes third-party app that manages virtual ma-
chines inside a Kubernetes cluster, and it is widely adopted by mul-
tiple companies (e.g., ARM, Nvidia, and RedHat) [45]. Specifically,
Kubervirt has two components. One component is the virt-handler,
which is the DaemonSet [9] that runs a pod on each worker node.
The other component is the virt-operator, which is a random com-
ponent running as a Kubernetes Deployment [10] on worker nodes
randomly.

Attack Definition. The excessive permissions refer to those per-
missions unrelated to the app’s normal functionalities. In other
words, these permissions are granted to the app’s components even
though they are unnecessary for the proper functioning of the app.
An attacker can abuse these excessive permissions to launch attacks,
which we call excessive permission attacks.

For example, in Kubevirt, the virt-handler is a DaemonSet with
excessive permissions that can be exploited to update the prop-
erties of all worker nodes, and we call such DaemonSet critical

 

3051



Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

DaemonSet. The virt-operator is a random component with ex-
cessive permissions that can be used to obtain all secrets inside
the entire cluster, including the cluster admin’s secret if created,
and we call such component critical component. By combining the
excessive permissions of the critical DaemonSet and the critical
component, we are able to launch an excessive permission attack
that results in privilege escalation to take over the whole cluster.

It is worth pointing out that any permissions granted to the
app beyond what is essential for its normal functionalities can
be considered excessive. In other words, the concept of excessive
permissions can vary depending on the runtime semantics of a
specific application. Furthermore, the consequences of excessive
permission misuse can raise issues beyond taking over the whole
cluster. For instance, third-party apps are able to acquire unrelated
permissions from the current app, which may also lead to other
various issues.

AttackVectorAnalysis.The excessive permission attack via Kube-
virt is shown in Figure 5. Specifically, to launch an attack, it requires
two steps. First, the attacker abuses the critical DaemonSet (i.e.,
virt-handler) to force the critical component (i.e., virt-operator)
to run on the attacker-controlled worker node. Particularly, the ser-
vice account of virt-handler is kubevirt-handler, which has a Clus-
terRole named kubevirt-handler via the kubevirt-handler Cluster-
RoleBinding. The kubevirt-handler ClusterRole has a “patch” verb
of the “nodes” resource, which is able to patch (or modify) all the
worker nodes in the entire cluster. Thus, the attacker can abuse the
“patch” excessive permission to patch all other worker nodes with
“node.kubernetes.io/unschedulable: NoExecute” taint. Note that the
taint is a property of worker nodes that allows a worker node to
repel a set of pods. As a result, by patching all other worker nodes
with this taint, the virt-operator component will be evicted from
all other worker nodes and forced to run on the attacker-controlled
worker node (❶ in Figure 5).

Second, the attacker can abuse the excessive permission of the
critical component (i.e., virt-operator) to make a privilege escala-
tion. As described in §2.3, the service account of the virt-operator

is kubevirt-operator, which has a kubevirt-operator ClusterRole
via kubevirt-operator ClusterRoleBinding. The kubevirt-operator
ClusterRole has the “list” verb of the “secrets” resource. Thus, the
attacker can use the service account token of virt-operator to ob-
tain all secrets in the whole cluster, including the cluster admin’s
secret (❷ in Figure 5). This attack leads to a privilege escalation
that takes over the whole cluster.

Note that in the above process, a typical third-party app like
Kubevirt has a critical DaemonSet and a critical component with
excessive permissions, and these permissions are not needed by the
app to exhibit its normal functionalities. Thus, if an attacker controls
a worker node, he/she can abuse these excessive permissions to
steal the cluster admin permission and take over the whole cluster,
which results in a privilege escalation.

We report this vulnerability to the Kubevirt community. They
confirm the issue and fix it by adding the resource name to restrain
what secrets can be accessed by the kubevirt-operator service ac-
count. Further, a new CVE (i.e., CVE-2023-26484) has been assigned
to us.

Figure 5: Excessive permission attack via Kubevirt. The
virt-operator component is forced to run on the attacker-
controlled worker node and it lists all secrets inside the en-
tire cluster.

4 EXCESSIVE PERMISSION ATTACKING
STRATEGY

To systematically identify ways to launch excessive permission
attacks via third-party apps, we design three strategies based on
different exploiting paths of excessive permissions, as shown in Fig-
ure 6. Particularly, there are two types of components that have
excessive permissions from a third-party app, i.e., critical Daemon-
Set and critical component, which run on worker nodes. Further-
more, one or more third-party apps run in the same cluster. Our
main attacking strategy is that an attacker can abuse the excessive
permissions of the critical DaemonSets to steal the cluster admin
permission directly, or chain excessive permissions of critical Dae-
monsets with excessive permissions of critical components from
the same or another third-party app to obtain the cluster admin
permission indirectly.

The attacking strategies to make excessive permission attacks
via third-party apps are shown in Figure 6. Specifically, an attacker
can abuse the excessive permissions of the critical DaemonSet from
one third-party app to steal the cluster admin permission directly
(strategy ❶). As well, an attacker can hijack the critical component
from the same app (strategy ❷) or another app (strategy ❸) to force
the (critical) component to run on the attacker-controlled worker
node, and then he/she combines the excessive permissions of the
critical DaemonSet and the critical component to steal the cluster
admin permission. For each strategy, we present an example of
carrying out the attacks.

4.1 Obtaining the Cluster Admin Permission
Directly

Our first strategy (i.e., the strategy ❶ as shown in Figure 6) is to
leverage the third-party app’s critical DaemonSet to steal the cluster
admin permission. Specifically, the attacker-controlled worker node
has pods of DaemonSets for multiple third-party apps. If one critical
DaemonSet has excessive permissions that can obtain the cluster
admin permission (e.g., the “get” verb of the “secrets” resource),
then the attacker can abuse the critical DaemonSet’s service account
to steal the cluster admin permission directly, which results in a
privilege escalation.

 

3052



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

Figure 6: The attacking strategies to make excessive permission attacks via third-party apps.

For example, CubeFS4 is a third-party app that has a critical Dae-
monSet cfs-csi-node. This critical DaemonSet’s service account
cfs-csi-service-account has a cfs-csi-cluster-role ClusterRole
via the cfs-csi-cluster-role-bindingClusterRoleBinding, and this
ClusterRole has the “get” verb of the “secrets” resource. Hence, an
attacker-controlledworker node can use the excessive permission of
the cfs-csi-node to obtain the cluster admin secret directly, which
leads to a privilege escalation. We provide further details in §5.3.

4.2 Hijacking Critical Components of the Same
App

Our second strategy (i.e., the strategy ❷ as shown in Figure 6) is
to leverage the third-party app’s critical DaemonSet to hijack one
certain critical component of the app, and then use the critical
component to get the cluster admin permission. Specifically, the
attacker can abuse critical DaemonSet’s excessive permissions to
force the critical component of the same app to run on its own
worker node. After that, it leverages the excessive permissions
of the critical component to steal the cluster’s admin permission
indirectly, which makes an excessive permission attack.

For example, as described in §3, Kubevirt’s critical Daemon-
Set (i.e., virt-handler) is able to force its critical component (i.e.,
virt-operator) to run on the attacker-controlled worker node. Af-
ter that, the critical component’s service account can be leveraged
to get the cluster admin’s token, thus it causes a privilege esca-
lation. Besides Kubevirt, other third-party apps also have critical
DaemonSets and critical components which can be combined to
make similar attacks. We present more attacks in §5.3.

4.3 Hijacking Critical Components of Other
Apps

In real-world scenarios, multiple third-party apps often run simul-
taneously in the same Kubernetes cluster. As the strategy ❸ shown
in Figure 6, if excessive permissions of one third-party app are not
sufficient to launch an attack, the attacker can hijack another app’s
critical component to force it to run on the attacker-controlled

4https://cubefs.io/

worker node, and then he/she chains the excessive permissions of
different third-party apps together to perform a real attack.

For example, as described in §3, Kubevirt fixes its problem by
restraining the secrets that can be accessed by the virt-operator.
However, the critical DaemonSet of Kubevirt, i.e., virt-handler,
can still patch other worker nodes in the cluster. If another third-
party app’s critical component has “get/list” verbs of the “secrets”
resource, the attacker can force the app’s critical component to run
on the attacker-controlled worker node and exploit its excessive
permissions to steal the cluster admin’s secret, which results in a
privilege escalation. We provide more attacks in §5.3.

5 PRACTICAL EXCESSIVE PERMISSION
ATTACKS

In this section, we first present our approach to identifying attack
vectors. Then we use real cases to validate the identified attack
vectors and give out detailed steps for making excessive permission
attacks with third-party apps. We measure all the third-party apps
from the CNCF projects in our local environment, and it indicates
that 51 of 153 (33.3%) CNCF projects have vulnerabilities. We mea-
sure third-party apps used by the Kubernetes services from the top
four cloud vendors, including Google GKE, Amazon EKS, Azure
AKS, and Alibaba Cloud ACK, and all of them have vulnerabilities
in their third-party apps. The results show that our attack surface
is practical and has severe consequences.

5.1 Identifying Attack Vectors
We implement our attacking strategies into a semi-automatic ap-
proach to identify attack vectors systematically, which consists of
three steps: (1) installing each third-party app manually, (2) identi-
fying critical applications automatically, and (3) launching attacks
manually.

For the first step, we install each third-party app in a Kubernetes
cluster manually. For the second step, we develop a script to scan
and identify critical apps automatically. This script is implemented
based on our strategies discussed in §4. Note that we regard an app
as critical if the app has a critical DaemonSet or critical component.
To make the collection, we identify critical DaemonSet by checking

 

3053

https://cubefs.io/


Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Experiment environments setup. “Distribution” means the version of Kubernetes in different environments, “VM”
means the hardware configurations (including the number of CPU cores and the space of memory) for virtual machines,
“Containerd” means the version of contained runtime, and “Dataset selection” means the selection source of third-party apps.

Environments Distributions Topology VM OS Containerd Datset selection

Local v1.25.4 1 control plane,
2 worker nodes 4 cores, 8GB Ubuntu 20.04 1.6.8 CNCF project lists

Google GKE v1.24.9-gke.3200 3 worker nodes 2 cores, 4GB Container-Optimized 1.6.20 GKE startup UI

Amazon EKS v1.24.10-eks-48e63af 3 worker nodes 2 cores, 4GB Amazon Linux 2 (AL2_x86_64) 1.6.19 EKS startup UIv1.23.16-eks-48e63af
Azure AKS v1.24.9 2 worker nodes 4 cores, 16GB AKSUbuntu 18.04 1.6.18 AKS startup UI

Alibaba Cloud
ACK v1.24.6-aliyun.1 3 control planes,

3 worker nodes 4 cores, 8GB Alibaba Cloud Linux 2.1903 1.5.13 ACK startup UI

if the DaemonSet of a third-party app has excessive permissions to
steal the cluster admin permission directly, or if it can force other
components to run on the attacker-controlled worker node. Further,
we identify critical components by looking for components with
excessive permissions that can be used to steal the cluster admin
permission. For the third step, we manually launch real attacks
with these identified third-party apps in the cluster and find real
vulnerabilities.

For example, for the attack presented in §3.2, we install the
Kubevirt app in our local cluster and run the script tool. As a result,
we find that the virt-handler DaemonSet of the app has a “patch”
verb for the “nodes” resource, and the virt-operator component
has a “get/list” verb for the “secrets” resource. Thus, following the
strategy ❷ as shown in Figure 6, we launch an excessive permission
attack with the Kubevirt app, and it results in a privilege escalation.
We then report this vulnerability to the Kubevirt community and
they assign us a new CVE.

In summary, as for our manual efforts, it takes two weeks to
design and develop our script. Subsequently, for each app, it takes
about one hour to install and set up environments, followed by
about three hours to manually trigger the attacks. We invest two
months in completing all experiments presented in this paper.

5.2 Setting up Third-party Apps
Ethical Considerations. For the cloud environments, we intend
to evaluate the attacks without causing real-world impact. The
excessive permission attacks can result in privilege escalations and
generate cluster-level implications in Kubernetes, which makes
it unethical to conduct such attacks in multi-tenant cloud-vendor
environments. Therefore, we choose to evaluate our attacks on
dedicated Kubernetes clusters provided by cloud vendors such as
Google GKE [73], Amazon EKS [21], Azure AKS [23], and Alibaba
Cloud ACK [32]. As we are the only tenant in such clusters, we
can conduct our attacks without compromising the security and
privacy of other tenants.
Third-party apps setup of the local environment. In our local
environment, we select the CNCF projects [37, 38] as the dataset
of third-party apps to evaluate the impact of excessive permission
attacks. As described in §2.2, there are three types of CNCF projects.
Specifically, at the time of writing this paper, there are 20 grad-
uated, 38 incubating, and 95 sandbox projects, respectively. We

install these projects following their official documents. The other
configurations are summarized in Table 1.
Third-party apps setup of Google GKE. In Google GKE, we only
select those third-party apps which can be enabled in the GKE clus-
ter startup UI to evaluate the impact of excessive permission attacks.
We select these apps instead of ones from the GKE marketplace [72]
or other resources because the apps from the start-up UI have a
higher probability of usage. Thus, identifying the vulnerabilities
of these applications holds greater practical significance for cloud
vendors.

In summary, the GKE enables 14 third-party apps, including the
Config Connector, Managed Service for Prometheus, Dataplane
V2, Filestore CSI Driver, Logging, HTTP load balancing, Workload
Identity, Cloud Monitoring, Kube-DNS, Cloud DNS, NodeLocal
DNSCache, Compute Engine Persistent Disk CSI Driver, Calico
Network policy, and Anthos. We summarize other installation con-
figurations in Table 1.
Third-party apps setup of Amazon EKS. In Amazon EKS [21],
for a similar reason, we also only select those third-party appswhich
can be enabled in the EKS startup UI. In total, the EKS enables 13
third-party apps, including Amazon VPC CNI, CoreDNS, Kube-
proxy, Amazon EBS CNI driver, ADOT, Amazon GuardDuty agent,
Kubecost, Dynatrace Container Agent, Teleport OSS, Tetrate Istio
Distro (TID), Upbound Universal Crossplane (UXP), Datree, and
Kpow for Apache Kafka. Note that the TID can only be enabled
in the EKS version up to 1.24, and the UXP can only be enabled in
the EKS version up to 1.23. So we run an EKS cluster with version
1.23 to install and analyze the UXP. For TID and other third-party
apps, we enable them in an EKS cluster with version 1.24. Other
installation configurations are summarized in Table 1.
Third-party apps setup of Azure AKS. In Azure AKS [23], we
only select those third-party apps which can be enabled in the AKS
cluster startup UI. In total, AKS enables 7 third-party apps, including
Network configuration Kubenet, Network configuration Azure CNI,
Network policy Calico, Network policy Azure, Container Logs,
Azure Policy, and Secret store CSI driver.the other setups are also
summarized in Table 1.
Third-party apps setup of Alibaba Cloud ACK. The Alibaba
Cloud ACK also uses third-party apps to extend the cluster’s capa-
bilities (e.g., network connection, resource monitoring, etc.). Sim-
ilar to the former three vendors, we only select those third-party
apps through the ACK cluster startup UI. As a result, ACK enables

 

3054



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

Table 2: Result summary of CNCF projects. “No.” means the
number of identified projects.

Project type Strategy❶ No. Strategy❷ No. Strategy ❸ No. Identified/Total
Graduated 1 - 1 2/20
Incubating 2 1 13 16/38
Sandbox 2 5 26 33/95
Summary 5 6 40 51/153

13 third-party apps, i.e., Prometheus Monitoring, node-problem-
detector, CSI Volume Plugin, Flannel, Terway, Log Service, NodeLo-
cal DNSCache, CloudMonitor Agent, Nginx Ingress, MSE Ingress,
ALB Ingress, Cluster Inspect, and the Dynamically Provision Vol-
umes. The other startup configurations are listed in Table 1.
Usages of third-party apps. Note that third-party apps which
assign us CVEs are widely adopted or supported by multiple compa-
nies. More specifically, Kubevirt has multiple adopters such as ARM,
Nvidia, and RedHat [45]. CubeFS is used by multiple companies
such as JD.com, NetEase, OPPO [54]. OpenKruise is adopted by mul-
tiple companies such as Alibaba Group, Ant Group, LinkedIn, and
so on [54]. Fluid is adopted by multiple companies such as Alibaba
Cloud, Tencent Cloud, Baidu AI Cloud, and so on [36]. Kubewarden
is adopted by SUSE, Firesight Mining Software Corporation, and so
on [46]. Open Cluster Management is supported by Alibaba Cloud,
Ant Group, Redhat, and so on7. Clusternet is modified and adopted
by Tencent Cloud [30, 31]. OpenFeature is adopted by multiple
organizations such as Dynatrace, Ebay, Proofpoint, and so on [53].

Additionally, all other third-party apps in our experiments are
sourced from CNCF project lists and cloud environments, which are
widely used and supported by big companies. We do not disclose
them due to ethical considerations.

5.3 Identifying Vulnerabilities of CNCF Projects
To demonstrate the effectiveness of excessive permission attacks on
open-source projects, we use our tool to scan third-party apps from
the CNCF project lists. Table 2 presents the result summary of CNCF
projects. More specifically, we identify 2, 16, and 33 third-party apps
in graduated, incubating, and sandbox projects, respectively. Over-
all, there are 51 of all 153 (33.3%) CNCF projects that have potential
security risks of making excessive permission attacks. Among them,
5 projects involve strategy ❶ in Figure 6, 6 projects involve strat-
egy ❷ in Figure 6, and 40 projects involve strategy ❸ in Figure 6. In
addition, the identified projects cover all three attacking strategies
presented in §4.

In the following, to present how to carry out excessive permis-
sion attacks following our strategies in a real scenario, we launch
attacks with typical apps which assign us CVEs to illustrate the
details. Note that eight CVEs are assigned to us and we have dis-
cussed the attack via Kubevirt in §3.2. Next, we present the attacks
via other seven third-party apps. The result summary of exces-
sive permission attacks via typical third-party apps in our local
environment is shown in Table 3.

5.3.1 Excessive Permission Attack with CubeFS. The first attack
involves exploiting the excessive permissions of the CubeFS’ critical
DaemonSet via the strategy ❶ in Figure 6. This allows an attacker

to obtain the cluster admin’s token, thereby it carries out a privilege
escalation via CubeFS.

CubeFS4 is an open-source cloud-native file storage system,
which is hosted by the CNCF as an incubating project. As shown
in Table 3, the CubeFS has a cfs-csi-node critical DaemonSet,
which runs a pod on each node of a Kubernetes cluster. The crit-
ical DaemonSet uses a service account cfs-csi-service-account,
which is assigned a cfs-csi-cluster-role ClusterRole via a Clus-
terRoleBinding named cfs-csi-cluster-role-binding. This Clus-
terRole has the “get/list” verbs of the “secrets” resource. Thus, on
an attacker-controlled worker node, the attacker can abuse the ex-
cessive permissions of the critical DaemonSet to obtain all secrets
directly, including the cluster admin’s secret if created, and escape
from a worker node to take over the whole cluster. We report this
vulnerability to the CubeFS community, and they fix this issue and
assigned us a new CVE (i.e., CVE-2023-30512).

5.3.2 Excessive Permission Attack via OpenKruise. The second at-
tack involves exploiting excessive permissions in OpenKruise’s
critical DaemonSet via the strategy ❶ in Figure 6. Similar to the
CubeFS, OpenKruise has one critical DaemonSet, which can be
leveraged by the attacker to get the cluster admin’s token and
result in a privilege escalation.

OpenKruise5 is a CNCF incubating project, which provides open-
source automated management of large-scale applications in Ku-
bernetes. As shown in Table 3, the OpenKruise has a kruise-daemon
critical DaemonSet, which runs a pod on each node of a Kubernetes
cluster. The kruise-daemon DaemonSet uses the kruise-daemon ser-
vice account, which is assigned the kruise-daemon-role ClusterRole
via the kruise-daemon-rolebinding ClusterRoleBinding. This Clus-
terRole has “get/list” verbs of the “secrets” resource. Thus, similar
to the excessive permission attacks via CubeFS, the attacker can
leverage these excessive permissions to get/list all secrets in the
whole cluster (including the cluster admin’s token if created), and
thus it makes a privilege escalation. We report this vulnerability
to the OpenKruise community and they fix this issue. A new CVE
CVE-2023-30617 has been assigned to us.

5.3.3 Excessive Permission Attack with Fluid. The third attack in-
volves an excessive permission vulnerability in Fluid via the strat-
egy ❷ in Figure 6. An attacker can exploit the excessive permission
of the Fluid’s critical DaemonSet to hijack the critical component
of Fluid to run on the attacker-controlled worker node. After that,
he/she leverages the excessive permission of the critical component
to retrieve all secrets in the whole cluster, including the cluster
admin’s token if it is created, which results in a privilege escalation.

Fluid6 is a Kubernetes-native distributed dataset orchestrator,
which is a CNCF sandbox project. As shown in Table 3, the Fluid
has a csi-nodeplugin-fluid critical DaemonSet. Additionally, the
Fluid has a fluid-webhook critical component, which is a Kubernetes
Deployment that runs on worker nodes randomly.

For the csi-nodeplugin-fluid critical DaemonSet, its service ac-
count is fluid-csi, which has a fluid-csi-plugin ClusterRole via
fluid-csi-plugin ClusterRoleBinding. The fluid-csi-plugin Clus-
terRole has a “patch” verb of the “nodes” resource, and this excessive

5https://openkruise.io/
6https://fluid-cloudnative.github.io/

 

3055

https://openkruise.io/
https://fluid-cloudnative.github.io/


Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 3: Result summary of excessive permission attacks via typical third-party apps in our local environment. “Component
name” means the name of critical DaemonSet or critical component, and “Type” means the component’s type.

App name CVE-ID Component name Type Service account ClusterRole Excessive permission
CubeFS 2023-30512 cfs-csi-node DaemonSet cfs-csi-service-account cfs-csi-cluster-role get/list secrets

OpenKruise 2023-30617 kruise-daemon DaemonSet kruise-daemon kruise-daemon-role get/list secrets

Kubevirt 2023-26484 virt-handler DaemonSet kubevirt-handler kubevirt-handler list/patch nodes
virt-operator Deployment kubevirt-operator kubevirt-operator get/list secrets

Fluid 2023-30840 csi-nodeplugin-fluid DaemonSet fluid-csi fluid-csi-plugin patch nodes
fluid-webhook Deployment fluid-webhook fluid-webhook get/list secrets

Kubewarden 2023-22645 kubewarden-controller Deployment kubewarden-controller kubewarden-controller-
manager-cluster-role get/list secrets

Open Cluster
Management 2023-2250

cluster-manager-registration-
controller Deployment cluster-manager-registration-

controller-sa

open-cluster-management:
cluster-manager-

registration:controller

escalate/bind verbs of
clusterroles

cluster-manager Deployment cluster-manager cluster-manager
escalate/bind verbs of

clusterroles,
get/list secrets

Clusternet 2023-30622 clusternet-hub Deployment clusternet-hub clusternet:hub * verbs of *.* resources

OpenFeature 2023-29018 open-feature-operator-
controller-manager Deployment open-feature-operator-

controller-manager
open-feature-operator-

manager-role
list/update verbs of
clusterrolebindings

Figure 7: Excessive permission attack via Fluid. The attacker
can leverage the cfs-nodeplugin-fluid critical DaemonSet to
force the fluid-webhook critical component to run on the
attacker-controlled worker node, which can be leveraged
to get the cluster admin’s token.

permission can be leveraged to patch other nodes with unschedu-
lable taint. For the fluid-webhook critical component, its service
account is fluid-webhook, and it has a fluid-webhook ClusterRole
through the fluid-webhook-clusterrolebinding ClusterRoleBind-
ing. The ClusterRole has “get/list” verbs of the “secrets” resource,
and this excessive permission can be used to get all secrets in the
whole cluster.

Therefore, as shown in Figure 7, similar to the Kubevirt attack
we discussed in §3.2, an attacker can exploit the excessive per-
mission of the csi-nodeplugin-fluid to patch other nodes with
“node.kubernetes.io/unschedulable: NoExecute”. As a result, the
fluid-webhook will be evicted from its original node and forced
to run on the attacker-controlled worker node (❶ in Figure 7).
After that, the attacker can abuse the excessive permissions of
fluid-webhook to obtain all secrets (including the cluster admin’s

Figure 8: The potential risk of Kubewarden. The attacker can
leverage the DaemonSet of other apps to force the Kubewar-
den’s critical component to run on the attacker-controlled
node, then he/she can use its excessive permission to get the
cluster admin’s token.

token) in the entire cluster (❷ in Figure 7). We report this vulnera-
bility to the Fluid community. They fix this problem and assign us
a new CVE (i.e., CVE-2023-30840).

5.3.4 A Potential Risk of Kubewarden. The fourth case is a poten-
tial risk of Kubewarden3, which is a CNCF sandbox project. First,
Kubewarden’s critical component (i.e., kubewarden-controller) can
be forced to run on the attacker-controlled worker node via other
third-party apps. After that, the excessive permissions of this crit-
ical component can be abused to steal the cluster admin’s token,
which involves the strategy ❸ in Figure 6.

For the first step, as shown in Figure 8, an attacker can leverage
other third-party apps’ critical DaemonSets (e.g., the critical Dae-
monSets of Kubevirt or Fluid ) to patch all other nodes and make
them unschedulable. The Kubewarden’s critical component will be
evicted and forced to run on the attacker-controlled worker node
(❶ in Figure 8).

 

3056



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

For the second step, Kubewarden has a kubewarden-controller

critical component, which is a Kubernetes Deployment and runs
on worker nodes randomly. As shown in Table 3, this critical
component has a kubewarden-controller service account, which is
assigned a kubewarden-controller-manager-cluster-role Cluster-
Role via the kubewarden-controller-manager-cluster-role Cluster-
RoleBinding. This ClusterRole has “get/list” verbs of the “secrets”
resource. Thus, an attacker can abuse these excessive permissions
to obtain all secrets in the entire cluster, which results in a privi-
lege escalation (❷ in Figure 8). We report this vulnerability to the
Kubewarden community. They fix this problem and give us a new
CVE (i.e., CVE-2023-22645).

5.3.5 A Potential Risk of Open Cluster Management. The fifth case
is a potential risk of Open Cluster Management (OCM for short).
OCM7 is a CNCF sandbox project which focuses on multi-cluster
and multi-cloud scenarios for Kubernetes apps. Similar to the Kube-
warden attack, it also needs other third-party apps to force OCM’s
critical components to run on the attacker-controlled worker node.
After that, the two critical components of OCM can be leveraged
to steal high-critical permissions in the Kubernetes cluster, and it
involves the strategy ❸ in Figure 6.

The first step of this attack is the same as the Kubewarden. After
the first step, there are two OCM critical components, one of them
is cluster-manager-registration-controller Deployment, and the
other is cluster-manager Deployment. They both have excessive
permissions.

For the cluster-manager-registration-controller critical com-
ponent, it has a cluster-manager-registration-controller-sa ser-
vice account. This service account is bounded with a ClusterRole
open-cluster-management:cluster-manager-registration:controller

via a same-name ClusterRoleBinding. The ClusterRole has the “es-
calate/bind” verbs of the “clusterroles” resource. The “escalate” verb
makes the attacker can edit a ClusterRole that he/she is already
bounded to, including granting high-critical permissions to his/her
own ClusterRole. The “bind” verb allows the attacker to create
a ClusterRoleBinding resource even if they do not have the per-
missions for the targeted ClusterRole. Thus, these excessive per-
missions can both allow an attacker to grant the cluster admin
to his/her own account in the Kubernetes cluster, and it leads to
privilege escalations.

For the critical component cluster-manager, besides the “esca-
late/bind” verbs of the “clusterroles” resource, it also has “get/list”
verbs of the “secrets” resource, which can be used to retrieve all
secrets in the whole cluster and also lead to a privilege escalation.
We report these vulnerabilities to the OCM community. They fix
these problems and assign us a new CVE (i.e., CVE-2023-2250).

5.3.6 A Potential Risk of Clusternet. The sixth case is a potential
risk of Clusternet. Clusternet8 is a CNCF sandbox project which
helps users manage multiple Kubernetes clusters. Similar to the
former two attacks, it also needs other third-party apps to force
Clusternet’s critical component to run on the attacker-controlled
worker node. After that, its excessive permissions can be abused to

7https://open-cluster-management.io/
8https://clusternet.io/

steal the cluster admin’s secrets in the Kubernetes cluster, and it
involves the strategy ❸ in Figure 6.

The first step of this attack is the same as the former two attacks.
For the second step, Clusternet has a clusternet-hub critical compo-
nent. As shown in Table 3, the clusternet-hub has a clusternet-hub
service account. This service account has a clusternet:hub Cluster-
Role via the clusternet:hub ClusterRoleBinding. The ClusterRole
has “*” verbs of “*.*” resources. The “*” verb means all Kubernetes
verbs of resources, including the “list” verb. The “*.*” resources
contain multiple Kubernetes resources, including the “secrets” re-
source. Thus, an attacker can abuse this excessive permission to
list all secrets in the whole cluster, including the cluster admin’s
token if created, which causes a privilege escalation. We report this
problem to the Clusternet community. They fix it and assign us a
new CVE (i.e., CVE-2023-30622).

5.3.7 A Potential Risk of OpenFeature. The seventh case repre-
sents a potential risk in OpenFeature. OpenFeature9 is a CNCF
sandbox project that enables a robust feature flag ecosystem us-
ing cloud-native technologies. Similar to the former three attacks,
the OpenFeature’s critical component can be forced to run on the
attacker-controlled worker node, and the critical component has ex-
cessive permissions to escalate the privileges of any service account
in the whole cluster, which involves strategy ❸ in Figure 6.

The first step of this attack is the same as the former three
attacks. For the second step, the OpenFeature has a critical compo-
nent named open-feature-operator-controller-manager. This crit-
ical component has a open-feature-operator-controller-manager

service account. This service account is granted a ClusterRole
called open-feature-operator-manager-role via a ClusterRoleBind-
ing called open-feature-operator-manager-rolebinding. This Clus-
terRole has “list/update” verbs for the “clusterrolebindings” re-
source. Thus, an attacker can modify all existing ClusterRoleBind-
ings with any service accounts in the whole cluster, which makes
escalate the privileges of any service account. We report this vul-
nerability to the OpenFeature community. They fix it and give us a
new CVE (i.e., CVE-2023-29018).

5.4 Identifying Vulnerabilities of Cloud Vendors
To further understand the prevalence of excessive permission at-
tacks in business environments, we analyze the third-party apps
used by Google GKE, Amazon EKS, Azure AKS, and Alibaba Cloud
ACK. All of them have vulnerabilities of making excessive permis-
sion attacks. The result summary of excessive permissions in cloud
environments is shown in Table 4.

5.4.1 Excessive Permissions in Google GKE. Google GKE can install
14 third-party apps during its startup, and three of them (i.e., Calico
Network Policy, Config Connector, and Anthos) are vulnerable to
excessive permission attacks. The results are summarized in Table 4.

The Calico Network Policy app has a calico-node critical Dae-
monSet, which has an excessive permission that allows the “patch”
verb of the “nodes/status” resource. This excessive permission can
be exploited to force critical components of other third-party apps
to run on the attacker-controlled worker node. For example, the
calico-node critical DaemonSet can patch other nodes/status with

9https://openfeature.dev/

 

3057

https://open-cluster-management.io/
https://clusternet.io/
https://openfeature.dev/


Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 4: Result summary of excessive permissions in cloud environments. “Vendor” means the name of cloud vendors, “App”
means the name of third-party apps, and “Type” means the type of components.

Vendor App Component Type Excessive permission Report channel Report status

Google GKE

Calico Network
Policy calico-node DaemonSet patch nodes/status

Google Bug
Hunters Confirmed

Config Connector configconnector
-operator StatefulSet get/list secrets

Anthos

istio-cni-node DaemonSet delete pods
activator

Deployment get/list secrets
autoscaler
controller
metrics
webhook

Amazon EKS
Amazon VPC CNI aws-node DaemonSet update nodes

AWS Security ConfirmedTetrate Istio
Distro istiod Deployment get/list secrets

Upbound Universal
Crossplane crossplane Deployment get/list secrets

Azure AKS

Secret store
CSI driver

aks-secrets-store
-csi-driver DaemonSet get/list secrets Microsoft Security

Response Center
(MSRC)

Confirmed
Azure Policy gatekeeper-audit Deployment get/list *.* resourcesgatekeeper-controller

Alibaba
Cloud ACK

Prometheus
Monitoring

node-exporter DaemonSet get/list secrets

Alibaba Security
Response Center

(ASRC)
Confirmed

arms-prometheus-ack
-arms-prometheus Deployment get/list secrets

kube-state-metrics Deployment get/list secrets
CSI Volume Plugin csi-plugin DaemonSet get/list secrets
Node-problem

-detector
ack-node-problem
-detector-daemonset DaemonSet * verbs of nodes

Flannel kube-flannel-ds DaemonSet patch nodes/status
Terway terway-eniip DaemonSet update/patch nodes

Nginx Ingress nginx-ingress
-controller Deployment list secrets

ALB Ingress alb-ingress
-controller Deployment get/list secrets

MSE Ingress ack-mse-ingress
-controller Deployment get/list secrets

CloudMonitor Agent alicloud-monitor
-controller Deployment get/list * resources

“capacity: CPU 0”, which means other nodes have no CPU resources.
Thus, the critical components of other apps will be forced to run
on the attacker-controlled worker node after being deleted, which
involves the first step of the strategy ❸ in Figure 6.

Regarding the Config Connector app, its StatefulSet [16] (a set
of pods each of which has a sticky ID) configconnector-operator
has the “get/list” verbs of the “secrets” resource. These excessive
permissions can be exploited to retrieve all secrets in the whole
cluster, including the cluster admin’s secret if created. Thus, this
critical component can be used to carry out an excessive permission
attack after being forced to run on the attacker-controlled worker
node, which involves the second step of the strategy ❸ in Figure 6.

For the Anthos third-party app, its istio-cni-node critical Dae-
monSet can be used to delete pods across the whole cluster. This
makes the critical components possibly rescheduled and run on
the attacker-controlled worker node, which involves the first step

of strategy ❸ in Figure 6. Additionally, its activator, autoscaler,
controller, metrics, and webhook critical component has the “get/list”
verbs of the “secrets” resource, and they all involve the second step
of strategy ❸ in Figure 6.

5.4.2 Excessive Permissions in Amazon EKS. Amazon EKS can en-
able 13 third-party apps during its startup, and three of them,
namely Amazon VPC CNI, Tetrate Istio Distro (TID), and Upbound
Universal Crossplane (UXP) are vulnerable to excessive permis-
sion attacks that can result in privilege escalations. The details are
summarized in Table 4.

More specifically, the Amazon VPC CNI app has a aws-node crit-
ical DaemonSet that has the “update” verb of the “nodes” resource.
This can be leveraged to update nodes and force the critical compo-
nents of other apps to run on the attacker-controlled worker node,
which involves the first step of strategy ❸ in Figure 6. The TID app

 

3058



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

has a istiod critical component, and the UXP has a crossplane crit-
ical component. They both have the “get/list” verbs of the “secrets”
resource. Thus, they both involve the second step of strategy ❸

in Figure 6.

5.4.3 Excessive Permissions in Azure AKS. Azure AKS can enable 7
third-party apps to enhance the Kubernetes cluster’s capabilities.
The Secret store CSI driver app and Azure Policy app suffer from
excessive permission attacks. The Secret store CSI driver app has a
aks-secrets-store-csi-driver critical DaemonSet. It has “get/list”
verbs of the “secrets” resource, which can be abused to obtain
all secrets inside the whole cluster directly, and it involves the
strategy ❶ in Figure 6.

As for the Azure Policy app, it has the gatekeeper-audit and
the gatekeeper-controller critical components. They both have
“get/list” verbs of “*.*” resources. These excessive permissions can
be abused to retrieve all secrets in the whole cluster, which involves
the second step of strategy ❸ in Figure 6.

5.4.4 Excessive Permissions in Alibaba Cloud ACK. Alibaba Cloud
ACK can enable 13 third-party apps during its startup. However, the
ACK becomes susceptible to multiple excessive permission attacks
with 9 of them. The results are summarized in Table 4.

The Prometheus Monitoring app and CSI Volume Plugin app
can be leveraged to make excessive permission attacks. Specif-
ically, the node-exporter critical DaemonSet of the Prometheus
monitoring app and csi-plugin critical DaemonSet of the CSI Vol-
ume plugin app both have “get/list” verbs of the “secrets” resource,
which can be abused to get all secrets in the whole cluster di-
rectly. And they both involve the strategy ❶ in Figure 6. The
Prometheus Monitoring app also carries out two critical compo-
nents arms-prometheus-ack-arms-prometheus and kube-state-metrics.
They both have the “get/list” verbs of the “secrets” resource, and
they involve the second step of strategy ❸ in Figure 6.

The node-problem-detector, Flannel, and Terway apps all have
critical DaemonSets which have excessive permissions to mod-
ify the “nodes” or “nodes/status” resource. These enable them to
force critical components of other third-party apps to run on the
attacker-controlled worker node, involving the first step of strat-
egy ❸ in Figure 6.

Additionally, the critical components of the Nginx Ingress, ALB
Ingress, MSE Ingress, and CloudMonitor Agent apps have excessive
permissions which can be used to retrieve all secrets in the cluster.
And they all trigger the second step of strategy ❸ in Figure 6.

5.5 Responsible Disclosure
We report our findings to the relevant communities and cloud
vendors through the proper channels. We obtain multiple CVEs
and a bounty.
Report to communities. For the identified 51 projects from all
153 CNCF projects, we report all their issues to the relevant com-
munities. As shown in Table 5, of the 51 identified projects, 32 of
them respond to us, and the other 19 have no responses yet. Of the
32 responded projects, 10 of them confirm our reports and fix their
source code, and 8 CVEs are assigned to us. 22 of 32 responded
projects confirm our reports and we are still communicating with

Table 5: Result summary of Identified CNCF projects.

Identified projects 51
No Response 19

Responded 32

Fixed (CVE) 8
Fixed (no CVE) 2

Pending 22

them. For ethical considerations, we only post the confirmed vul-
nerabilities with CVE numbers and refrain from publicly disclosing
other identified projects.
Report to vendors. We report the vulnerabilities of cloud envi-
ronments to related vendors through the proper channels, and they
all confirm our findings. Specifically, we report our findings about
Google GKE through the Google Bug Hunters10. We write an e-
mail to the AWS Security Team11 to report the problems of Amazon
EKS. For the Azure AKS issues, we submit a vulnerability report to
the Microsoft Security Response Center (MSRC)12. For the Alibaba
Cloud ACK problems, we submit a report to the Alibaba Security
Response Center (ASRC)13.

All four vendors confirm the issueswe reported, and they promise
to fix them. For the Google GKE, the Google Bug Hunters acknowl-
edge our findings and give us a bounty. More specifically, they think
the exploitation likelihood is medium, and the issue is qualified
as an abuse-related methodology with medium impact. They say:
“Google Vulnerability Reward Program panel has decided to issue a
reward of $1337.00 for your report.”. We have decided to donate this
bounty. For the Amazon EKS, the Amazon Security Team confirms
our findings and they are fixing them. They say: “We are currently
in the process of implementing a fix for the issue.” For the Azure AKS,
the MSRC also confirms our reports and will fix these problems.
They say: “A fix for this issue will be considered in a future version of
this product as a defense in depth.” For the Alibaba Cloud ACK, the
ASRC confirm our findings and they are fixing these issues. They
say: “Thanks for your report. We have checked the settings and will
fix them.”

6 MITIGATION DISCUSSION
This section presents several actionable suggestions to mitigate the
risks based on our discussions with related communities. Note that
these methods are specific to certain third-party apps, and what
works for onemay not work for another. Additionally, some of these
methods may have side effects on the normal functionalities of the
apps and require a trade-off between security and performance. It is
a significant undertaking to resolve these problems fundamentally
and it possibly requires collaboration between the vendors of third-
party apps.
Removing unnecessary permissions. The third-party app ven-
dors should review and remove unnecessary permissions of the
related ClusterRoles and service accounts. If the existing service

10https://bughunters.google.com/
11aws-security@amazon.com
12https://www.microsoft.com/en-us/msrc
13https://asrc.alibaba.com/

 

3059

https://bughunters.google.com/
aws-security@amazon.com
https://www.microsoft.com/en-us/msrc
https://asrc.alibaba.com/


Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

account’s ClusterRole has excessive permissions which are not re-
quired by the app’s functionalities, those permissions should be
removed. However, once the permissions required for the normal
operation of third-party apps are removed, the application may
crash. The maintainers of apps need to review the apps’ source
code carefully before applying this method.

For example, for those attacks presented in our paper, Open-
Feature removed the unnecessary “update” verb of other “Clus-
terRoleBinding” resources besides the only required one. CubeFS,
Fluid, Kubewarden, and Open Cluster Management (OCM) also
fixed their problems by removing unnecessary permissions. Be-
sides, Clusternet removed the clusternet:hub ClusterRole which
has excessive permissions directly.
Using more complex designs for service accounts. Another
suggestion to mitigate the risks is to use more complex service ac-
counts. For third-party apps with multiple components that require
different permissions, it is more secure to use multiple service ac-
counts with varying permission levels than a single service account
with excessive permissions. However, the service account which is
given excessive permissions may be necessary for its operations.
Besides, it may require additional work to use more complex service
accounts for the third-party app’s maintainers.
Using RoleBinding to remove cluster efforts. As the RoleBind-
ing only gives permissions within a specific Kubernetes names-
pace whereas ClusterRoleBinding grants those permissions for the
whole cluster, it can also restrain the related services account with
RoleBinding to only access resources inside a specific namespace.
Nevertheless, some third-party apps need to access resources in
multiple Kubernetes namespaces where functionalities need to be
consumed. This means locking down with Rolebinding would be
difficult and cannot be generalized since the namespaces requiring
resource consumption may not be known in advance.

For example, Kubewarden used rolebinding and restricted access
of the kubewarden-controller-manager-cluster-role to only those
secrets in the “kubewarden” namespace. The OCM also leveraged
rolebinding to eliminate cluster efforts.
Using accurate resource names. Using accurate resource names
is an effective way to mitigate the risks, particularly for critical
resources such as secrets. For example, the Kubevirt app uses the
secret name to restrain the secrets that can be accessed by the
kubevirt-operator ClusterRole. However, similar to other methods
of mitigating the risks, it may impact some features of specific apps
by removing any access to resources via specific resource names.

7 RELATEDWORK
In this section, we present the studies that are related to Kubernetes
security and container security.

7.1 Kubernetes Security
Attacks in Kubernetes. There are multiple works on attacking Ku-
bernetes. Sushring et al. confirm attackers can launch co-residency
attacks on a victim application from inside state-of-the-art con-
tainers running in the same Kubernetes cluster [64]. Shamim et al.
study attacks under the scenario of violating Kubernetes security
best practices [62]. Ronen et al. propose a DDoS attack against

Kubernetes auto-scaling [26]. Pecka et al. research the attack meth-
ods in the DevOps pipeline with a Kubernetes environment [56].
Rahman et al. analyze the misconfigurations in Kubernetes mani-
fests [57]. Zeng et al. propose a full-stack vulnerability analysis of
the cloud-native platform, which includes Kubernetes [78].
Defenses in Kubernetes. There are also works on securing Kuber-
netes. Kong et al. propose a secure container deployment strategy to
defend against co-resident attacks in container cloud [44]. Karn et
al. realize the detection of malicious cryptomining software running
in Kubernetes cluster by monitoring Linux system calls [43]. Baarzi
et al. implement a system for defending application-layer DoS at-
tacks against microservices [25]. Haque et al. propose a scheme to
automate the security configuration of container orchestrator [42].
Blaise et al. propose a methodology for evaluating the security and
extracting the risk mode of a Helm Chart deployment [27].

To the best of our knowledge, our work is the first to systemati-
cally exploit the excessive permission of Kubernetes’ third-party
apps. Our work further complements previous research efforts on
understanding the security of container orchestration systems.

7.2 Container Security
Attacks in containers. The security of the container is always
an important research area. Luo et al. study the convert container
channels of Docker that cause information leakage [50]. Gao et
al. study the risk of information leakage caused by the /proc and
/sys file systems in the container [39]. Lin et al. prove that kernel
vulnerabilities can break through the isolation mechanism of con-
tainers [49]. Duarte et al. study the vulnerability of Docker by static
code analysis of Docker patch code [35]. Yang et al. systematically
identify the abstract resource attack surface in the container [77].
Haq et al. give a security analysis of Docker containers for the ARM
architecture [41]. However, they target co-host containers. The new
attack surface that exists in Kubernetes third-party apps is out of
their scope.
Defenses in containers. In addition, the security enhancement
for containers also receives extensive researches. Lei et al. design a
security mechanism that can minimize the available system calls
in the container according to the container image [47]. Sun et al.
design a security namespace that enables autonomous security
control for containers [66]. Suneia et al. research the security im-
plementation in container fusion scenario [67]. Nam et al. design
a novel security-enforcement network stack for containers [52].
Brady et al. implement a system for detecting malicious container
images [28]. However, these papers mainly focus on securing the
native container, not the third-party apps of the Kubernetes cluster,
and they can not defend against our attack.

Unlike those previous works, our work shows that the excessive
permissions of third-party apps in Kubernetes can be leveraged
to take over the whole cluster. We are the first to systematically
research the new attack surface and measure the security impacts
by exploiting these attack surfaces in multiple real deployments.

7.3 Android Permission Security
Android permissionAttacks Excessive permissions given to apps
can also lead to security vulnerabilities in Android. For example,

 

3060



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Nanzi Yang et al.

Xing et al. discover that a malicious app can escalate a set of priv-
ilege permissions via OS upgrading [76]. Aafer et al. show that a
malicious app is able to leverage the gap carried out by the hanging
attribute references to acquire critical system capabilities [1]. Yousra
et al. identify and explore the inconsistent security configurations
in custom Android ROMs [2]. Gorski et al. systematically identify
permission re-delegation vulnerabilities within Android’s system
services [40]. Tuncay et al. exploit false transparency to deceive
users into granting sensitive permissions to malicious apps [74]. Li
et al. reveal the shortcoming of Android custom permissions that
can be exploited to make privilege escalation [48]. Aldoseri et al.
demonstrate two vulnerabilities of Andriod app components that
can affect the security and privacy guarantees of recent Android
versions [3]. However, the Android permission attacks target the
application-level permission model, whereas our attacks exploit
the cluster-level access control mechanism in Kubernetes to gain
unauthorized privileges.
Securing Android permission attacks. There are multiple works
on securing permission attacks in Android. For example, Sanz et
al. systematically detect malware in Android by permission usage
analysis [60]. Arp et al. make a broad static analysis to identify
malicious applications directly on the smartphone [5]. Wijesekera
et al. propose a machine-learning approach that exploits users’ past
permission decisions to predict future decisions when permissions
are used [75]. Arora et al use permission pairs to detect Android
malware [4]. Shen et al. explored what extra information that sys-
tems can provide to help users make more informed permission
decisions [63]. However, these defense methods in Andriod are
implemented in a single operation system through manifest decla-
rations and runtime user consent, whereas mitigating our attacks
in Kubernetes requires a security mechanism enforced throughout
the entire cluster and targeting the Kubernetes APIs. Therefore,
referring to the security mechanism of Android to defend against
our attack requires more effort.

8 CONCLUSION
This paper reveals that multiple third-party apps in the Kubernetes
cluster are granted excessive permissions. Such permissions can be
exploited to make attacks with severe consequences (e.g., taking
over the whole cluster and resulting in privilege escalation), which
we termed as excessive permission attacks. To systematically explore
the paths of excessive permission attacks, we design three strategies
based on different ways to abuse excessive permissions.We evaluate
the impact by analyzing the CNCF projects in the local cluster, and
51 CNCF projects are vulnerable to excessive permission attacks.
Furthermore, We analyze the excessive permissions of third-party
apps in Google GKE, Amazon EKS, Azure AKS, and Alibaba Cloud
ACK, and all four cloud vendors have excessive permissions in the
third-party apps used by their Kubernetes clusters. We report all
our findings to related communities and cloud vendors, and eight
CVEs and a bounty are given to us. Finally, we provide several
actionable suggestions to mitigate the risks.

ACKNOWLEDGMENTS
The authors would like to thank our shepherd and reviewers for
their insightful comments. Those comments helped to reshape this

paper. This work is partially supported by the National Natural
Science Foundation of China (Key Program Grant No. 62232013,
Grant No. 62002317), by the Foundation for Innovative Research
Groups of the National Natural Science Foundation of China (Grant
No. 62121001), and by the Hangzhou Leading Innovation and En-
trepreneurship Team (TD2020003).

REFERENCES
[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng

Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. 2015. Hare hunting
in the wild android: A study on the threat of hanging attribute references. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. 1248–1259.

[2] Yousra Aafer, Xiao Zhang, and Wenliang Du. 2016. Harvesting Inconsistent
Security Configurations in Custom Android {ROMs} via Differential Analysis.
In 25th USENIX Security Symposium (USENIX Security 16). 1153–1168.

[3] Abdulla Aldoseri, David Oswald, and Robert Chiper. 2022. A Tale of Four Gates:
Privilege Escalation and Permission Bypasses on Android Through App Com-
ponents. In European Symposium on Research in Computer Security. Springer,
233–251.

[4] Anshul Arora, Sateesh K Peddoju, and Mauro Conti. 2019. Permpair: Android
malware detection using permission pairs. IEEE Transactions on Information
Forensics and Security 15 (2019), 1968–1982.

[5] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23–26.

[6] Kubernetes Authors. 2022. Kubernetes. https://kubernetes.io/.
[7] Kubernetes Authors. 2023. Case Studies. https://kubernetes.io/case-studies.
[8] Kubernetes Authors. 2023. Control Plane. https://kubernetes.io/docs/reference/

glossary/?all=true#term-control-plane.
[9] Kubernetes Authors. 2023. DaemonSet. https://kubernetes.io/docs/concepts/

workloads/controllers/daemonset/.
[10] Kubernetes Authors. 2023. Deployment. https://kubernetes.io/docs/concepts/

workloads/controllers/deployment/.
[11] Kubernetes Authors. 2023. Namespaces. https://kubernetes.io/docs/concepts/

overview/working-with-objects/namespaces/.
[12] Kubernetes Authors. 2023. Role and ClusterRole. https://kubernetes.io/docs/

reference/access-authn-authz/rbac/#role-and-clusterrole.
[13] Kubernetes Authors. 2023. Secrets. https://kubernetes.io/docs/concepts/

configuration/secret/.
[14] Kubernetes Authors. 2023. Securing a Cluster. https://kubernetes.io/docs/tasks/

administer-cluster/securing-a-cluster/.
[15] Kubernetes Authors. 2023. Service Accounts. https://kubernetes.io/docs/

concepts/security/service-accounts/.
[16] Kubernetes Authors. 2023. StatefulSets. https://kubernetes.io/docs/concepts/

workloads/controllers/statefulset/.
[17] Kubernetes Authors. 2023. Using RBAC Authorization. https://kubernetes.io/

docs/reference/access-authn-authz/rbac/.
[18] Yuval Avrahami. 2021. Finding Azurescape – Cross-Account Container Takeover

in Azure Container Instances. https://unit42.paloaltonetworks.com/azure-
container-instances/.

[19] AWS. 2023. Amazon EKS add-ons. https://docs.aws.amazon.com/eks/latest/
userguide/eks-add-ons.html.

[20] AWS. 2023. Isolating tenant workloads to specific nodes. https:
//aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#isolating-
tenant-workloads-to-specific-nodes.

[21] AWS. 2023. What is Amazon EKS? https://docs.aws.amazon.com/eks/latest/
userguide/what-is-eks.html.

[22] Azure. 2023. Add-ons, extensions, and other integrations with Azure Kubernetes
Service. https://learn.microsoft.com/en-us/azure/aks/integrations.

[23] Azure. 2023. Azure Kubernetes Service (AKS). https://azure.microsoft.com/en-
us/products/kubernetes-service.

[24] Azure. 2023. Best practices for advanced scheduler features in Azure Kuber-
netes Service (AKS). https://learn.microsoft.com/en-us/azure/aks/operator-best-
practices-advanced-scheduler.

[25] Ataollah Fatahi Baarzi, George Kesidis, Dan Fleck, and Angelos Stavrou. 2020.
Microservices made attack-resilient using unsupervised service fissioning. In
Proceedings of the 13th European workshop on Systems Security. 31–36.

[26] Ronen Ben David and Anat Bremler Barr. 2021. Kubernetes Autoscaling: YoYo
Attack Vulnerability and Mitigation. arXiv e-prints (2021), arXiv–2105.

[27] Agathe Blaise and Filippo Rebecchi. 2022. Stay at the Helm: secure Kubernetes
deployments via graph generation and attack reconstruction. In 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD). IEEE, 59–69.

 

3061

https://kubernetes.io/
https://kubernetes.io/case-studies
https://kubernetes.io/docs/reference/glossary/?all=true#term-control-plane
https://kubernetes.io/docs/reference/glossary/?all=true#term-control-plane
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/##role-and-clusterrole
https://kubernetes.io/docs/reference/access-authn-authz/rbac/##role-and-clusterrole
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://unit42.paloaltonetworks.com/azure-container-instances/
https://unit42.paloaltonetworks.com/azure-container-instances/
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#isolating-tenant-workloads-to-specific-nodes
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#isolating-tenant-workloads-to-specific-nodes
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#isolating-tenant-workloads-to-specific-nodes
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://learn.microsoft.com/en-us/azure/aks/integrations
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-advanced-scheduler
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-advanced-scheduler


Take Over the Whole Cluster: Attacking Kubernetes via Excessive Permissions of Third-party Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[28] Kelly Brady, Seung Moon, Tuan Nguyen, and Joel Coffman. 2020. Docker con-
tainer security in cloud computing. In 2020 10th Annual Computing and Commu-
nication Workshop and Conference (CCWC). IEEE, 0975–0980.

[29] ALESSANDRO BRUCATO. 2023. Detecting and mitigating CVE-2022-42889 a.k.a.
Text4shell. https://sysdig.com/blog/cve-2022-42889-text4shell/.

[30] Tencent Kubernetes Engine Distributed Cloud Center. 2023. Tencent Kubernetes
Engine Distributed Cloud Center Operation Guide Product Documentation.
https://main.qcloudimg.com/raw/document/intl/product/pdf/1144_45541_en.pdf.

[31] Tencent Kubernetes Engine Distributed Cloud Center. 2023. Tencent Kubernetes
Engine Distributed Cloud Center Product Introduction Product Documentation.
https://main.qcloudimg.com/raw/document/intl/product/pdf/1144_45535_en.pdf.

[32] Alibaba Cloud. 2023. Alibaba Cloud Container Service for Kubernetes (ACK).
https://www.alibabacloud.com/product/kubernetes.

[33] Alibaba Cloud. 2023. App Marketplace. https://www.alibabacloud.com/help/en/
container-service-for-kubernetes/latest/app-marketplace.

[34] CNCF. 2023. ANNUAL SURVEY 2022. https://www.cncf.io/reports/cncf-annual-
survey-2022/.

[35] Ana Duarte and Nuno Antunes. 2018. An empirical study of docker vulnerabilities
and of static code analysis applicability. In 2018 Eighth Latin-American Symposium
on Dependable Computing (LADC). IEEE, 27–36.

[36] Fluid. 2023. Adopters of Fluid. https://github.com/fluid-
cloudnative/fluid/blob/master/ADOPTERS.md#adopters-of-fluid.

[37] Cloud Native Computing Fundation. 2023. GRADUATED AND INCUBATING
PROJECTS. https://www.cncf.io/projects/.

[38] Cloud Native Computing Fundation. 2023. SANDBOX PROJECTS. https://www.
cncf.io/sandbox-projects/.

[39] Xing Gao, Benjamin Steenkamer, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. 2018. A study on the security implications of
information leakages in container clouds. IEEE Transactions on Dependable and
Secure Computing 18, 1 (2018), 174–191.

[40] Sigmund Albert Gorski III and William Enck. 2019. Arf: identifying re-delegation
vulnerabilities in android system services. In Proceedings of the 12th conference
on security and privacy in wireless and mobile networks. 151–161.

[41] Md Sadun Haq, Ali Şaman Tosun, and Turgay Korkmaz. 2022. Security Analysis
of Docker Containers for ARM Architecture. In 2022 IEEE/ACM 7th Symposium
on Edge Computing (SEC). IEEE, 224–236.

[42] Mubin Ul Haque, M Mehdi Kholoosi, and M Ali Babar. 2022. KGSecConfig: A
Knowledge Graph Based Approach for Secured Container Orchestrator Configu-
ration. In 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 420–431.

[43] Rupesh Raj Karn, Prabhakar Kudva, Hai Huang, Sahil Suneja, and Ibrahim M
Elfadel. 2020. Cryptomining detection in container clouds using system calls
and explainable machine learning. IEEE Transactions on Parallel and Distributed
Systems 32, 3 (2020), 674–691.

[44] Tong Kong, Liming Wang, Duohe Ma, Zhen Xu, Qian Yang, and Kai Chen. 2019.
A secure container deployment strategy by genetic algorithm to defend against
co-resident attacks in cloud computing. In 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 1825–1832.

[45] Kubevirt. 2023. Adopters. https://github.com/kubevirt/kubevirt/blob/main/
ADOPTERS.md.

[46] Kubewarden. 2023. Adopters. https://github.com/kubewarden/kubewarden-
controller/blob/main/ADOPTERS.md/.

[47] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,
and Qi Li. 2017. SPEAKER: Split-phase execution of application containers. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 230–251.

[48] Rui Li, Wenrui Diao, Zhou Li, Jianqi Du, and Shanqing Guo. 2021. Android custom
permissions demystified: From privilege escalation to design shortcomings. In
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 70–86.

[49] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018.
A measurement study on linux container security: Attacks and countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference.
418–429.

[50] Yang Luo, Wu Luo, Xiaoning Sun, Qingni Shen, Anbang Ruan, and Zhonghai Wu.
2016. Whispers between the containers: High-capacity covert channel attacks in
docker. In 2016 IEEE trustcom/bigdatase/ispa. IEEE, 630–637.

[51] AntonyMartin, Simone Raponi, Théo Combe, and Roberto Di Pietro. 2018. Docker
ecosystem–vulnerability analysis. Computer Communications 122 (2018), 30–43.

[52] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran,
and Seungwon Shin. 2020. {BASTION}: A security enforcement network stack
for container networks. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). 81–95.

[53] OpenFeature. 2023. Adopters. https://github.com/open-
feature/community/blob/main/ ADOPTERS.md/.

[54] OpenKruise. 2023. Users. https://github.com/openkruise/kruise#users.
[55] Inc O’Reilly Media. 2023. Chapter 1. Container Secu-

rity Threats. https://www.oreilly.com/library/view/container-
security/9781492056690/ch01.html.

[56] Nicholas Pecka, Lotfi Ben Othmane, and Altaz Valani. 2022. Privilege Escalation
Attack Scenarios on the DevOps Pipeline Within a Kubernetes Environment. In
Proceedings of the International Conference on Software and System Processes and
International Conference on Global Software Engineering. 45–49.

[57] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pan-
dita. 2023. Security Misconfigurations in Open Source Kubernetes Manifests: An
Empirical Study. ACM Transactions on Software Engineering and Methodology
(2023).

[58] Michael Reeves, Dave Jing Tian, Antonio Bianchi, and Z Berkay Celik. 2021.
Towards improving container security by preventing runtime escapes. In 2021
IEEE Secure Development Conference (SecDev). IEEE, 38–46.

[59] Deb Richardson. 2021. What I learned about Kubernetes and Knative Server-
less. https://www.redhat.com/en/blog/what-i-learned-about-kubernetes-and-
knative-serverless.

[60] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia
Bringas, and Gonzalo Álvarez. 2013. Puma: Permission usage to detect malware
in android. In International joint conference CISIS’12-ICEUTE 12-SOCO 12 special
sessions. Springer, 289–298.

[61] Alibaba Container Service. 2020. From Serverless Containers to Serverless Ku-
bernetes. https://www.alibabacloud.com/blog/from-serverless-containers-to-
serverless-kubernetes_596533.

[62] Shazibul Islam Shamim. 2021. Mitigating security attacks in kubernetes manifests
for security best practices violation. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 1689–1690.

[63] Bingyu Shen, Lili Wei, Chengcheng Xiang, YudongWu, Mingyao Shen, Yuanyuan
Zhou, and Xinxin Jin. 2021. Can systems explain permissions better? understand-
ing users’ misperceptions under smartphone runtime permission model. In 30th
USENIX Security Symposium (USENIX Security 21). 751–768.

[64] Sushrut Shringarputale, Patrick McDaniel, Kevin Butler, and Thomas La Porta.
2020. Co-residency attacks on containers are real. In Proceedings of the 2020 ACM
SIGSAC Conference on Cloud Computing Security Workshop. 53–66.

[65] Container Security Site. 2023. Container Breakout Vulnerabilities. https://www.
container-security.site/attackers/container_breakout_vulnerabilities.html.

[66] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. 2018. Security namespace: making linux security frameworks
available to containers. In 27th USENIX Security Symposium (USENIX Security 18).
1423–1439.

[67] Sahil Suneja, Ali Kanso, and Canturk Isci. 2019. Can container fusion be se-
curely achieved?. In Proceedings of the 5th International Workshop on Container
Technologies and Container Clouds. 31–36.

[68] Sysdig. 2022. Sysdig 2022 Cloud-Native Security and Usage Report. https:
//sysdig.com/2022-cloud-native-security-and-usage-report/.

[69] Oren Teich. 2019. Cloud Run, a managed Knative service, is GA.
https://cloud.google.com/blog/products/serverless/knative-based-cloud-
run-services-are-ga.

[70] Google Cloud terms. [n. d.]. Isolate your workloads in dedicated
node pools. https://cloud.google.com/kubernetes-engine/docs/how-to/isolate-
workloads-dedicated-nodes.

[71] Google Cloud terms. 2023. GKE Features. https://cloud.google.com/kubernetes-
engine#section-2.

[72] Google Cloud terms. 2023. Google Cloud Marketplace. https://cloud.google.com/
marketplace.

[73] Google Cloud terms. 2023. Google Kubernetes Engine(GKE). https://cloud.google.
com/kubernetes-engine.

[74] Güliz Seray Tuncay, Jingyu Qian, and Carl A Gunter. 2020. See no evil: phishing
for permissions with false transparency. In 29th USENIX Security Symposium
(USENIX Security 20). 415–432.

[75] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David
Wagner, and Konstantin Beznosov. 2017. The feasibility of dynamically granted
permissions: Aligning mobile privacy with user preferences. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 1077–1093.

[76] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. 2014. Upgrad-
ing your android, elevating my malware: Privilege escalation through mobile os
updating. In 2014 IEEE symposium on security and privacy. IEEE, 393–408.

[77] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao Xiao, Tianyu
Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, et al. 2021. Demons in the shared
kernel: Abstract resource attacks against os-level virtualization. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
764–778.

[78] Qingyang Zeng, Mohammad Kavousi, Yinhong Luo, Ling Jin, and Yan Chen.
2023. Full-stack vulnerability analysis of the cloud-native platform. Computers &
Security 129 (2023), 103173.

 

3062

https://www.alibabacloud.com/product/kubernetes
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/app-marketplace
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/app-marketplace
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/projects/
https://www.cncf.io/sandbox-projects/
https://www.cncf.io/sandbox-projects/
https://www.redhat.com/en/blog/what-i-learned-about-kubernetes-and-knative-serverless
https://www.redhat.com/en/blog/what-i-learned-about-kubernetes-and-knative-serverless
https://www.alibabacloud.com/blog/from-serverless-containers-to-serverless-kubernetes_596533
https://www.alibabacloud.com/blog/from-serverless-containers-to-serverless-kubernetes_596533
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html
https://sysdig.com/2022-cloud-native-security-and-usage-report/
https://sysdig.com/2022-cloud-native-security-and-usage-report/
https://cloud.google.com/blog/products/serverless/knative-based-cloud-run-services-are-ga
https://cloud.google.com/blog/products/serverless/knative-based-cloud-run-services-are-ga
https://cloud.google.com/kubernetes-engine/docs/how-to/isolate-workloads-dedicated-nodes
https://cloud.google.com/kubernetes-engine/docs/how-to/isolate-workloads-dedicated-nodes
https://cloud.google.com/kubernetes-engine#section-2
https://cloud.google.com/kubernetes-engine#section-2
https://cloud.google.com/marketplace
https://cloud.google.com/marketplace
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine

	Abstract
	1 Introduction
	2 Background
	2.1 Kubernetes Architecture
	2.2 Third-party Apps of Kubernetes
	2.3 Role-based Access Control

	3 Motivation
	3.1 Threat Model and Assumptions
	3.2 Motivating Example: Excessive Permission Attack via Kubevirt

	4 Excessive Permission Attacking strategy
	4.1 Obtaining the Cluster Admin Permission Directly
	4.2 Hijacking Critical Components of the Same App
	4.3 Hijacking Critical Components of Other Apps

	5 Practical Excessive Permission Attacks
	5.1 Identifying Attack Vectors
	5.2 Setting up Third-party Apps
	5.3 Identifying Vulnerabilities of CNCF Projects
	5.4 Identifying Vulnerabilities of Cloud Vendors
	5.5 Responsible Disclosure

	6 Mitigation Discussion
	7 Related Work
	7.1 Kubernetes Security
	7.2 Container Security
	7.3 Android Permission Security

	8 Conclusion
	References



