LAVEA: Latency-Aware Video Analytics on Edge Computing Platform

Shanhe Yi*, Zijiang Hao*, Qingyang Zhang^[3], Quan Zhang^[4], Weisong Shi^[4], Qun Li*

College of William and Mary*

Wayne State University^[4]

Anhui University, China^[5]

Video Data is a Gold Mine

You have to do it quickly.

How to do *low-latency* video analytics?

Motivation - Amber Alert

- Run on mobile or IoT devices
 - Computational latency
 - Battery drain
 - Heat dissipation
- Run on cloud:
 - Transmission latency
 - Bandwidth cost

AB.1234

- License plate extraction
- License plate analysis
- Character recognition

How Edge Computing can Help?

Edge Computing Network

How Edge Computing can Help?

Feasibility of leveraging edge computing node

Round-trip time (RTT): Wired connection is the best; WiFi 5GHz has larger mean and variance compared to the cloud node in the closest region;

How Edge Computing can Help?

Feasibility of leveraging edge computing node

Bandwidth (BW): All clients have benefits in utilizing a wired or advanced-wireless edge computing node.

How shall we provide low-latency video analytics in edge computing system?

Video Analytics meets Edge Computing

Response Time Minimization Problem

- Client task offloading selecting
- Offloaded task prioritizing
- Offloaded task placing

Edge Computing Platform Design

- Serverless architecture
- Edge computing service
 - Offloading service
 - Queueing service
 - Scheduling service

- Introduction
- System Design Overview
- Edge Computing Services
- Evaluation
- Conclusion

System Design - Edge Client

- Resource-constrained devices
 - Run lightweight data processing locally
 - Offload heavy tasks to nearby edge computing nodes

Profiler

- Collect task performance
- Offloading Controller
 - Act as an agent to fulfill offloading decisions

Host OS

- Docker container resource allocation/isolation, easy deployment
- Modular services
- Serverless architecture (Function-as-a-Service)
 - AWS Lambda@Edge, Apache OpenWhisk
 - Event-based micro-service framework

- user request
 - event of interests (e.g. plate, face, car)
 - input source
 - the event handler code (function), build the docker image
 - execution configuration (e.g. cron job, where to save the result, or trigger another event)
 - resource configuration (limit container resource)

- user request -> task (in a format docker command along with input)
 - event of interests (e.g. plate, face, car)
 - input source
 - the event handler code (function) -> docker image
 - a script for docker to run

consume the tasks in docker container instances

- Introduction
- System Design Overview
- Edge Computing Services
 - Offloading Service Client Task Offloading Problem
 - Queueing Service Offloaded Task Prioritizing
 - · Scheduling Service Offloaded Task Placement
- Evaluation
- Conclusion

Client Task Offloading - System Model

Directed Acyclic Graph

$$G = (V, E)$$

Each vertex $v \in V$ weight is the computation cost of a task (c_v)

Each edge $e = (u, v), u, v \in V$ weight is the data size of intermediate result $(d_{u,v})$

Weights are gathered via profilers, as pre-runtime information.

Client Task Offloading - Problem Formulation

Client Task Offloading - Problem Formulation

 T_i^{local}

For each client $i, i \in [1, N]$ We use an indicator $I_{v,i} \in \{0, 1\}$ If $I_{v,i} = 1$, task v at client i runs lo Otherwise, run remotely

The loc 1 The remote execution time of client

$$T_i^{remote} = \sum_{v \in V} (1 - I_{v,i})(c_v/p_0)$$

 c_v the computation cost p_0 the edge processor speed

Client Task Offloading - Problem Formulation

Mixed Integer Non-Linear Programming (MINLP)

- relax the integer constrains
- solve the NLP using a constrained nonlinear optimization solver (SQP)
- branch & bound
 - brutal force

s.t.
$$I_{v,i} \leq I_{u,i}, \forall e(u,v) \in E, \forall i \in [1,N]$$

Delay tolerate constraint

s.t.
$$\overline{T}_i^{local} - (T_i^{net} + T_i^{remote}) > \tau, \forall i \in [1, N]$$

- An offloaded task two stage
 - Wait for the input or intermediate data (e.g., image or video)
 - Processing the data and return result

- Schedule offloaded tasks to minimize the makespan time
 - Flow job shop model and Johnson's rule [1]

T1? -> Head

T2? -> Tail

Pick Job with smallest stage time

29-36.

^[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

- Schedule offloaded tasks to minimize the makespan time
 - Flow job shop model and Johnson's rule [1]

T1? -> Head

T2? -> Tail

^[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

- Schedule offloaded tasks to minimize the makespan time
 - Flow job shop model and Johnson's rule [1]

T1? -> Head

T2? -> Tail

^[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

- Schedule offloaded tasks to minimize the makespan time
 - Flow job shop model and Johnson's rule [1]

T1? -> Head

T2? -> Tail

^[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

- Schedule offloaded tasks to minimize the makespan time
 - Flow job shop model and Johnson's rule [1]

T1? -> Head

T2? -> Tail

^[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

- Schedule offloaded tasks to minimize the makespan time
 - Flow job shop model and Johnson's rule [1]
 - how to apply when there are dependencies?

- Our heuristic solution for tasks with dependencies [2]
 - Group tasks with dependencies
 - In each group, find the topological order with minimal makespan time
 - Apply Johnson's rule directly on task groups

^[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

Inter Edge Collaboration

Motivation

- With increasing number of client node nearby, edge-front node can be overloaded and non-responsive to new requests
- Collaborate with nearby edge node by placing tasks to some not-so-busy neighbor edge nodes

Problem

 Given an edge-front node and its neighbors, when the edgefront is overloaded, how to select neighbor as task placement target?

Inter Edge Collaboration

- Scheme
 - Naive schemes
 - Shortest Transmission Time First (STTF)
 - Periodical recalibrate the latency of transmitting data
 - Neglect existing workload of the neighbor
 - Shortest Queue Length First (SQLF)
 - Query nearby edge nodes about the task queue length
 - Neglect network latency
 - Scalability Issue: pull based
 - Our scheme
 - Shortest Scheduling Latency First (SSLF)
 - Dispatch special task to nearby edge nodes
 - When special task is executed, send response to edgefront node: push based
 - Predict the response time (regression analysis)
 - Piggyback update

- Introduction
- System Design Overview
- Edge Computing Services
- Evaluation
- Conclusion

Evaluations - Setup

Datasets

- Caltech Vision Group 2001 testing image database 126 images with resolution 896x592
- Self-collected video containing license plates and converted into different resolutions (640x480, 960x720, 1280x960, 1600x1200)
- Testing datasets in OpenALPR 22 car images, with various resolutions (pixel 405x540 to 2514x1210, size 316 KB to 2.85 MB)

Testbed

- Four edge nodes, one as edge-front and three as neighbor edge nodes, cable connected, Quad-core CPU, 4GB Mem
- Two types of client nodes: Raspberry Pi2 (cable) and Raspberry Pi 3 (Wifi)
- Cloud node: t2.large EC2 instance

Evaluations - Task Profiling

Evaluations - Task Profiling

Evaluations - Task Profiling

Evaluations - Task Offloading Selection

- Overall, by offloading tasks to an edge computing platform, the application we had chosen experienced a speedup up to 4.0x on wired client-edge configuration compared to local execution, and up to 1.7x compared to a similar client-cloud configuration.
- For clients with 2.4 GHz wireless interface, the speedup is up to 1.3x on client-edge configuration compared to local execution, and is up to 1.2x compared to similar client-cloud configuration.

Evaluations - Edge Task Queue Prioritizing

- Simulation
- Baselines: shortest IO first, longest CPU last
- Result shows LCPUL is the worst among three schemes and our scheme outperforms the shortest IO first scheme.

Evaluations — Inter-Edge Collaboration

- STTF scheme intend to place tasks to edge node with lowest transmission overhead but heaviest workload (node1)
- SQLF scheme intend to place tasks to edge node with lightest workload but with highest transmission overhead (node3)
- SSLF scheme considers both transmission time and the waiting time in the queue, therefore achieves the better performance.

Conclusion

- We built LAVEA, a low-latency video edge analytic system
 - collaborates nearby client, edge and remote cloud nodes, and
 - transfers video feeds into semantic information at places closer to the users in early stages.
- We have formulated an optimization problem for offloading task selection and prioritized task queue to minimize the response time.
- In case of a saturating workload on the front edge node, we have proposed and compared various task placement schemes that are tailed for inter-edge collaboration.

End. Thank you.

Q&A

