LAVEA: Latency-Aware Video Analytics
on Edge Computing Platform

Shanhe Yi', Zijiang Hao", Qingyang Zhang'¢, Quan Zhang',
Weisong Shif, Qun Li°
College of William and Mary
Wayne State University'
Anhui University, China

\Kyz//

NV

CALIFORNIA G

OLD RUSH 1840

o B L A

Video Data is a Gold Mine

You have to do it quickly.

How to do low-latency video analytics?

Motivation - Amber Alert

* Video analytic tasks are computation-intensive

and bandwidth-hungry A
 Run on mobile or Iog devices
 Computational latency .
e Battery drain 2
 Heat dissipation .
 Run on cloud: .

e T[ransmission latency
 Bandwidth cost

L\ 4

aare

Image acquisition
License plate extraction
License plate analysis
Character recognition

CCCCCCCCCCCCC

How Edge Computing can Help?

Edge Computing Network

P il

WIFIBS\ i
Edge-front - Edge computing services /ﬂ # B
can be ubiguitous as Internet access. ; sever
AN 7 ﬁ’i

WILLI AM 8 \I ARY

ccccccccccc

How Edge Computing can Help?

e Feasibility of leveraging edge computing node

' ' — wired client
1 1 mm WiFi 2.4GHz
mm wired client vt
- mm WIFI 2.4GHZ| &g
]
2l mm WIiFIi 5GHz || s
2
58|
o
~—~ LN |
N~
£ L Bl Bl he e waw
~ wired WiFi 5G WiFi 2.4Ghz ec2 ec2
|: edge edge edge east west
3|
—
o -
LN
o

wired WiFi 5G WIiFi 2.4Ghz ec2 ec2
edge edge edge east west

Round-trip time (RTT) : Wired connection is the best;
WiFi 5GHz has larger mean and variance compared to
the cloud node in the the closest region;

ccccccccccc

How Edge Computing can Help?

e Feasibility of leveraging edge computing node

mm wired client

= Wit sotie] T mm wired client
mm WIiFi 2.4GHz

o
£ mm WIiFI 5GHz
Eo
ol |
—
° J i |
n » -
© " wired WiFi 5G WiFi 2.4Ghz _ec2 ec2
dge east west

edge edge e

200

100

dwidth (Mbps)

Edge computing node has huge
advantages in latency & bandwidth!

wired WiFi 5G WIiFi 2.4Ghz ec2 ec2
edge edge edge east west

Bandwidth (BW) : All clients have benefits in utilizing a

wired or advanced-wireless edge computing node.
W

ccccccccccccc

How shall we provide low-latency video
analytics in edge computing system?

CCCCCCCCCCCCC

Video Analytics meets Edge Computing

Response Time Edge Computing
Minimization Problem Platform Design

e Serverless architecture
e Client task offloading selecting e Edge computing service

e Offloaded task prioritizing e Offloading service
e Offloaded task placing e Queueing service
e Scheduling service

e ~
‘ ‘J‘W,;‘\l,(

WILLIAM & MARY

ccccccccccc

- System Design Overview
* Edge Computing Services
* Evaluation

* Conclusion

"""""""""""""

System Design - Edge Client

r j_j Dash Camera Smartphone and Tablet
Application B
” apto
Worker | | Worker | ooo | Worker Local Worker l“.
Stack -
. \ v ’
Task Scheduler Profiler A((/I\))\-
Offloading Controller Access Point [—
Edge Computing Platform Client API e
Edge Computing Platform SDK
OS or Container
LL w,
- —

e Resource-constrained devices

* Run lightweight data
processing locally

e Offload heavy tasks to

nearby edge computing

nodes

* Profiler
* Collect task performance
» Offloading Controller

* Act as an agent to fultill
offloading decisions

,;"

"""""""""""""

System Design -

—dge Computing Node

Dash Camera o - rtohone and Tablet

)
&‘.& DD
Security Cam ,/ "ptp

Host OS

* Docker container - resource allocation/isolation, easy deployment

e Modular services

Serverless architecture (Function-as-a-Service)
AWS Lambda@Edge, Apache OpenWhisk
* Event-based micro-service framework

WILLIAM & MARY

System Design - Edge Computing Node

Task Worker

Worker Worker | ©00 Worker

Worker Worker | oo o Worker

Worker Worker | ooo Worker

user request

e event of interests (e.g. plate, face, car)

e Input source

e the event handler code (function), build the docker image

e execution configuration (e.g. cron job, where to save the result, or
trigger another event)

e resource configuration (limit container resource)

WILLIAM & MARY

System Design - Edge Computing Node

P T T T T T T T T T T T T T T T T T T T B !

! L Task Queue RN Task Worker :

. Edge Front Gateway ! o R |
1 9 y</"+_"",x - Jovt— 2 | Worker | | Worker | ©©0 | Worker |
e OB o= It SR |
J-r” PPt N I 5 L1 | Worker | | Worker [coo | Worker | !
// : _,f” '// /:/ | o) ”,’/| : |
i | Producer | ooo | Producer [/1 | g-""7""-- O----7 S !

' ~< Al gn_ < st -t~ | Worker [| Worker | ooo | Worker ,

| ~<_ Ry 1_1_ |

. TTTeeeT S ST |

e user request -> task (in a format docker command along with
input)
e event of interests (e.g. plate, face, car)
* Input source
* the event handler code (function) -> docker image
e a script for docker to run

WILLIAM & MARY

System

Design -

Worker

Worker

—dge Computing Node

Producer

7

Worker

Worker

Worker

Worker

Worker

Worker

consume the tasks in docker container instances

Worker

WILLIAM & MARY

* [ntroduction

* System Design Overview

- Edge Computing Services
- Offloading Service - Client Task Offloading Problem
- Queueing Service - Offloaded Task Prioritizing
- Scheduling Service - Offloaded Task Placement

* Evaluation

e Conclusion

CCCCCCCCCCCCC

Client Task Offloading - System Model

@ Directed Acyclic Graph

video frame

Motion p—
OpenALPR image G =(V,E)
Task Graph | region
Detection
no plate
detected Each vertexv e V
plate candidate plate candidate Welght |S the COmpUtathn
\, cost of a task (¢y)
Plate Plate Plate
Character Character
Each edge e = (u,v),u,v € V

Character
Analysis Analysis Analysis

weight is the data size of
intermediate result (du,v)

—*
Result
Generation

———

Weights are gathered via profilers, as
pre-runtime information.

WILLIAM & MARY

Client Task Offloading - Problem Formulation

Input
video frame
Motion
image Detection
ﬁ motion
@ region
N image
'@—._ D Plate still
)] .
Detection

no plate

Edge Computing
Node

Plate
Character

Plate
Character
Analysis Analysis

O
Character Character
Recognition Recognition
Result
Generation

Plate
Character
Analysis

Character
Recognition

(ONe}

WILLIAM & MARY

CHARTZIRED 1493

Client Task Offloading - Problem Formulation

video frame

Motion
image Detection

motion
region

image
Plate still

Detection

aaaaaaa

For each clienti,i € [1, N]
We use an indicator £,,; € {0,1}

If 1,; =1, task v at client ¢ runs |0

Otherwise, run remotely

N
min Z(Tilocal + Tinet + Tiremote)

L7
R =1

The loc 7 The remote execution time

of client
Tzremote _ Z(l I, p cv/pO)

local
Tz' veV

d

Cy theca? Cou the computation cost
Di thepr [Po the edge processor speed

(——'—'ﬁ

W
WILLIAM & MARY

ccccccccccc

Client Task Offloading - Problem Formulation

video frame

Motion
image N
motion o
nover min § :(Tilocal | Tinet | Tiremote)

image
I‘i yT'q

Plate
Detection

=1
Bandwidth constraint
ato ato N
000 ' Soto Zri S R
i=1

Avolid ping-pong constraint

Result
Generation

Mixed Integer Non-Linear s.t. Ly < Iy, Ve(u,v) € E,Vi € [1, N]

Programming (MINLP)
® relax the integer constrains

e solve the NLP using a Delay tolerate constraint

constrained nonlinear —local et rernote _

optimization solver (SQP) s.t. T — (Ti + 1;) > T,V1 € [1, N]
* pbranch & bound _

e brutal force e

ccccccccccc

Prioritizing Edge Task Queue

> 0->0->

* An offloaded task - two stage
* Wait for the input or intermediate data (e.g., image or video)
* Processing the data and return result

lllllllllllll

Prioritizing Edge Task Queue

* Schedule offloaded tasks to minimize the makespan time
e Flow job shop model and Johnson'’s rule [1]

1717 -> Head

T T[]

127 -> Tall

JOB T1 T2

Pick Job with smallest stage time

[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research

logistics quarterly 1, 1 (1954), 61—68. W
[2] KR Baker. 1990. Scheduling groups of jobs in the two-machine ow shop. Math- ematical and Computer Modelling 13, 3 (1990), N
29-36. T e e

Prioritizing Edge Task Queue

* Schedule offloaded tasks to minimize the makespan time
e Flow job shop model and Johnson'’s rule [1]

1717 -> Head

ST T][]

127 -> Tall

JOB T1 T2

Pick Job with smallest stage time

[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research

logistics quarterly 1, 1 (1954), 61—68. W
[2] KR Baker. 1990. Scheduling groups of jobs in the two-machine ow shop. Math- ematical and Computer Modelling 13, 3 (1990), N
29-36. T e e

Prioritizing Edge Task Queue

* Schedule offloaded tasks to minimize the makespan time
e Flow job shop model and Johnson'’s rule [1]

1717 -> Head

T T][]

127 -> Tall

JOB T1 T2

Pick Job with smallest stage time

[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research

logistics quarterly 1, 1 (1954), 61-68. x‘;ﬂ
[2] KR Baker. 1990. Scheduling groups of jobs in the two-machine ow shop. Math- ematical and Computer Modelling 13, 3 (1990), N
29-36. T e e

Prioritizing Edge Task Queue

* Schedule offloaded tasks to minimize the makespan time
e Flow job shop model and Johnson'’s rule [1]

1717 -> Head

il | ...

127 -> Tall

JOB T1 T2

Pick Job with smallest stage time

[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research

logistics quarterly 1, 1 (1954), 61—68. W
[2] KR Baker. 1990. Scheduling groups of jobs in the two-machine ow shop. Math- ematical and Computer Modelling 13, 3 (1990), N
29-36. T e e

Prioritizing Edge Task Queue

* Schedule offloaded tasks to minimize the makespan time
e Flow job shop model and Johnson'’s rule [1]

1717 -> Head

nEEln

127 -> Tall

JOB T1 T2

Pick Job with smallest stage time

[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research

logistics quarterly 1, 1 (1954), 61—68. W
[2] KR Baker. 1990. Scheduling groups of jobs in the two-machine ow shop. Math- ematical and Computer Modelling 13, 3 (1990), N
29-36. T e e

Prioritizing Edge Task Queue

* Schedule offloaded tasks to minimize the makespan time
* Flow job shop model and Johnson's rule [1]
* how to apply when there are dependencies?

Our heuristic solution for tasks with dependencies [2]
* (Group tasks with dependencies

* In each group, find the topological order with minimal
makespan time

* Apply Johnson's rule directly on task groups

[1] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules with setup times included. Naval research
logistics quarterly 1, 1 (1954), 61-68.
[2] KR Baker. 1990. Scheduling groups of jobs in the two-machine ow shop. Math- ematical and Computer Modelling 13, 3 (1990),

WILLIAM & MARY
29_36- CHARTERED 1693

Inter Edge Collaboration

 Motivation

* With increasing number of client node nearby, edge-front node
can be overloaded and non-responsive to new requests

* Collaborate with nearby edge node by placing tasks to some
not-so-busy neighbor edge nodes

e Problem

* (Given an edge-front node and its neighbors, when the edge-
front Is overloaded, how to select neighbor as task placement
target?

WILLIAM & MARY

Inter Edge Collaboration

 Scheme
 Nalve schemes
e Shortest Transmission Time First (STTF)
» Periodical recalibrate the latency of transmitting data
* Neglect existing workload of the neighbor
« Shortest Queue Length First (SQLF)
* Query nearby edge nodes about the task queue length
* Neglect network latency
o Scalability Issue: pull based
e Our scheme
e Shortest Scheduling Latency First (SSLF)
* Dispatch special task to nearby edge nodes

 \When special task is executed, send response to edge-
front node: push based

* Predict the response time (regression analysis)
* Piggyback update

WILLIAM & MARY

Introduction
System Design Overview
Edge Computing Services

- Evaluation

Conclusion

IIIIIIIIIIIII

—valuations - Setup

e Datasets

e Caltech Vision Group 2001 testing image database - 126
images with resolution 896x592

* Self-collected video containing license plates and converted
into different resolutions (640x480, 960x720, 1280x960,
1600x1200)

e Testing datasets in OpenALPR - 22 car images, with various
resolutions (pixel 405x540 to 2514x1210, size 316 KB to 2.85
MB)

 Jestbed

e Four edge nodes, one as edge-front and three as neighbor
edge nodes, cable connected, Quad-core CPU, 4GB Mem

e Two types of client nodes: Raspberry Pi2 (cable) and
Raspberry Pi 3 (Wifi)
* Cloud node: t2.large EC2 instance

WILLIAM & MARY

Client RPi2 Execution Time(ms)

Client RPi3 Execution Time(ms)

800

mm MotionDetecton

'mmm PlateDetection

mm PlateAnalysis
== OCR

400 600

200

RPi2

896x592 640x480 960x720 1280x9601600x1200
workloadl workload2 workload2workload2workload?2

400 600 800

200

RPI3

1

mm MotionDetecton
mm PlateDetection ||
mm PlateAnalysis
== OCR

896x592 640x480 960x720 1280x9601600x1200
workloadl workload2 workload2workload2workload?2

Edge Execution Time(ms)

200

800

EC2 T2 Large Execution Time(ms)

600 800

400

400 600

200

—valuations - Task Profiling

mm MotionDetecton

mm PlateDetection ||

mm PlateAnalysis

== OCR

Edge, i7 QuadCore

896x592 640x480 960x720 1280x96 0

workloadlworkload2workload2workload2 workload?2

mm MotionDetecton
'mmm PlateDetection
mm PlateAnalysis

= OCR

Cloud, EC2 t2.large

896x592 640x480 960x720 1280x9601600x1200
workloadlworkload2 workload2workload2workload?2

VY AR axsas

1’“ >

e & MARY

CHAR

Client RPi2 Execution Time(ms)

Client RPi3 Execution Time(ms)

800

mm MotionDetecton

'mmm PlateDetection

mm PlateAnalysis
== OCR

400 600

200

RPi2

896x592 640x480 960x720 1280x9601600x1200
workloadl workload2 workload2workload2workload?2

400 600 800

200

RPI3

1

mm MotionDetecton
mm PlateDetection ||
mm PlateAnalysis
== OCR

896x592 640x480 960x720 1280x9601600x1200
workloadl workload2 workload2workload2workload?2

Edge Execution Time(ms)

200

800

EC2 T2 Large Execution Time(ms)

600 800

400

400 600

200

—valuations - Task Profiling

mm MotionDetecton

mm PlateDetection ||

mm PlateAnalysis

== OCR

Edge, i7 QuadCore

896x592 640x480 960x720 1280x9601600x1200
workloadlworkload2workload2workload2 workload?2

mm MotionDetecton
'mmm PlateDetection
mm PlateAnalysis

= OCR

Cloud, EC2 t2.large

896x592 640x480 960x720 1280x9601600x1200
workloadlworkload2 workload2workload2workload?2

VY AR axsas

1’“ >

e & MARY

CHAR

Client RPi2 Execution Time(ms)

Client RPi3 Execution Time(ms)

800

mm MotionDetecton

'mmm PlateDetection

mm PlateAnalysis
== OCR

400 600

200

RPi2

896x592 640x480 960x720 1280x9601600x1200
workloadl workload2 workload2workload2workload?2

400 600 800

200

RPI3

1

mm MotionDetecton

mm PlateDetection ||

mm PlateAnalysis

== OCR

896x592 640x480 960x720 1280x9601600x1200
workloadl workload2 workload2workload2workload?2

Edge Execution Time(ms)

200

800

EC2 T2 Large Execution Time(ms)

600 800

400

400 600

200

—valuations - Task Profiling

mm MotionDetecton

mm PlateDetection ||

mm PlateAnalysis

== OCR

Edge, i7 QuadCore

896x592 640x480 960x720 1280x960160

workloadlworkload2workload2workload2 workload?2

mm MotionDetecton
'mmm PlateDetection
mm PlateAnalysis

= OCR

Cloud, EC2 t2.large

896x592 640x480 960x720 1280x9601600x1200
workloadlworkload2 workload2workload2workload?2

VY AR axsas

1’“ >

e & MARY

CHAR

—valuations - Task Offloading Selection

< | | < — y
mm Client-edge opt == Client-edge opt
mm Client only mm Client only
mm Edge only - ||mm Edge only

M 7] .
== Client-cloud opt == Client-cloud opt
mm Cloud only mm Cloud only

2

~r wired RPI2 2.4Ghz Wik RPI3

Response Time per frame per client(s)
1

Response Time per frame per client(s)

640x480 960x720 1280x960 1600x1200 = T 640x480 960x720 1280x960 1600x1200

« Qverall, by offloading tasks to an edge computing platform, the
application we had chosen experienced a speedup up to 4.0x on wired
client-edge configuration compared to local execution, and up to 1.7x
compared to a similar client-cloud configuration.

e For clients with 2.4 GHz wireless interface, the speedup is up to 1.3x on
client-edge configuration compared to local execution, and is up to 1.2x
compared to similar client-cloud configuration .

WILLIAM & MARY

—valuations - Edge Task Queue Prioritizing

— Our scheme
----- SIOF
- LCPUL

5

Response Time(s)

5 10 15 20 25 30 35
Number of task offloading requests.

* Simulation
* Baselines: shortest 1O first, longest CPU last

* Result shows LCPUL is the worst among three schemes and
our scheme outperforms the shortest O first scheme.

WILLIAM & MARY

—valuations — Inter-Edge Collaboration

3 3
Edge-front node —+— Edge-front node —+—
Edge node #1 - Edge node #1
’J 25 Fdoe node #7 % - Edge node #2 %
o Edge node #3
~ L
g o2
7 B mm Edge node #1 I
= S =N N N
ST mm Edge node #2 ST
5
2l 5 © mm Edge node #3
un & -
. B4
251 NO tacs K
X !
0 1 1
0 2 , 5 o 8 10 12
e
5 = |
-
3 w
L0 Edge-front node —+—
- Edge node #1 -
025 - Edge node #2
g = 8 I Edge node #3
P
2 -
F
SITIE S DN e
) 0 0 0 4 TR
2 task rask task task
5 1 o
2 SQ I_l: STTF SQLF SSLF
g
£05 ; £05F IS =1
o =)
0 1 1 1 1 1 1 O 1 1 1 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (min) Time (min)

STTF scheme intend to place tasks to edge node with lowest transmission
overhead but heaviest workload (node1)

SQLF scheme intend to place tasks to edge node with lightest workload but
with highest transmission overhead (node3)

SSLF scheme considers both transmission time and the waiting time in the
queue, therefore achieves the better performance. W

ccccccccccc

Conclusion

* We built LAVEA, a low-latency video edge analytic system
* collaborates nearby client, edge and remote cloud nodes, ana

* transfers video feeds into semantic information at places closer
to the users in early stages.

* We have formulated an optimization problem for oftloading task
selection and prioritized task queue to minimize the response time.

* In case of a saturating workload on the front edge node, we have

proposed and compared various task placement schemes that are
tailed for inter-edge collaboration.

WILLIAM & MARY

End. Thank you.

Q&A

WILLIAM & MARY

