
Challenges and Software Architecture for Fog

Computing

Zijiang Hao, Ed Novak†, Shanhe Yi, Qun Li

College of William and Mary, Williamsburg, VA, USA
†Franklin and Marshall College, Lancaster, PA, USA

{hebo, syi, liqun}@cs.wm.edu, †enovak@fandm.edu

Abstract—In this paper, we give a detailed description
of fog computing (also termed edge computing) and show
the research challenges and problems. Based on our un-
derstanding of these challenges and problems, we propose
a software architecture, which is flexible to incorporate
different design choices and user-specified polices. Then we
report our design of WM-FOG, a computing framework for
fog environments that embraces this software architecture,
and show the evaluation of our prototype system.

Keywords—System architectures, integration and model-
ing; Distributed applications

I. INTRODUCTION

The explosive proliferation of ubiquitously connected

devices has revolutionized every aspect of human life.

However, since most end-user devices, such as smart-

phones, tablets and wearable devices, have generally

weaker CPUs, limited network connectivity, less mem-

ory and storage, etc., applications nowadays are usu-

ally backed by cloud services. Cloud computing has

significantly changed the way we leverage resources

for computation, networking, and storage. It provides

resources on an on-demand basis, saves expenditures on

hardware, and breaks down various technical barriers.

Resource pooling in data centers indeed provides more

than enough resources for end-user devices. However,

moving data from the edge of Internet to the core of

Internet, where most data centers are located, is not

easy, especially when more and more data nowadays is

user-generated content that requires high bandwidth to

transmit, according to a recent report [1]. In addition,

the unpredictable delay may ruin the user experience

of delay-sensitive applications, such as human-computer

interfaces, emergency services, and real-time games.

While we believe that cloud computing will still be a

mainstream computing paradigm in the future, the rapid

development of Internet and pervasive mobile devices

has called for a new computing paradigm that can

overcome the inherent drawbacks of cloud computing,

such as unpredictable latency, bandwidth bottlenecks,

lack of mobility support and location awareness, and

so on. To this end, fog computing (also termed edge

computing) has been proposed as a non-trivial extension

of cloud computing. By providing elastic resources at

the edge of network, fog computing can better support

a variety of emerging applications.

Fog computing has been defined from several perspec-

tives [2], [3], and similar concepts such as cloudlets [4],

mobile-edge computing [5] and mobile-cloud comput-

ing [6] have also been proposed. We have given a more

general definition of fog computing in our previous

work [7] as “a geographically distributed computing

architecture, with a resource pool that consists of one

or more ubiquitously connected heterogeneous devices

(including edge devices) at the edge of network, and

not exclusively seamlessly backed by cloud services, to

collaboratively provide elastic computation, storage and

communication (and many other new services and tasks)

in virtualization isolated environments to a large scale

of clients in proximity.”

Fog computing will benefit several relevant domains,

including mobile/wearable computing [8], Internet of

Things (IoT) and big data analytics, in reducing latency,

increasing throughput, consolidating resources, saving

energy, and enhancing security and privacy [9]. In IoT,

fog computing can provide unified interfaces and flexible

resources to accomplish heterogeneous computational

and storage requests. In virtual reality (VR), a 3D VR

gaming headset has to be cable-connected to a high-

end server for low latency on processing complex 3D

graphics. Fog computing can fulfill the low latency need

for VR users in proximity, and can save expenditures on

extra hardware. In big data analytics, huge volumes of

data are generated at the edge of network. Fog computing

supports edge analytics, which can reduce the delay of

data analytics and decrease the cost of data transmission

and storage.

In this paper, we introduce fog computing, a new

computing paradigm that extends cloud computing. Fog

computing promises performance benefits such as low

latency and quick response time in various applica-

tion scenarios. We compare fog computing and cloud

computing in detail, and list a number of research

challenges and problems. Based on our understanding of

these challenges and problems, we propose a software

architecture, which is flexible to incorporate different

design choices and user-specified polices, and highlight

WM-FOG, a computing framework for fog environments

that embraces this software architecture. We also conduct

experiments on our prototype system to show that WM-

FOG can work effectively and efficiently in real-world

fog environments.

II. COMPARISONS BETWEEN FOG AND CLOUD

There are several key differences between fog comput-

ing and cloud computing. Cloud servers are usually rack-

mounted high-end servers located in large warehouse-

like data centers. Centralized cloud servers allow for

replication, load balancing, failure recovery, power man-

agement, and easy access to failed hardware for re-

pairing and replacement. For this reason, the reliability

of cloud services can be held at a very high standard.

The exact opposite can be expected in fog computing.

Fog nodes are geographically distributed, scattered all

over the edges of Internet, and logically decentralized

in that they are maintained by different organizations.

Consequently, fog nodes are not as reliable as cloud

servers, and physically locating a failed fog node and

repairing it is more difficult and costly. Many financial

and time costs, such as those related to power and system

configuration, cannot be amortized as they would be

with cloud computing. Another key insight is that the

network connectivity to fog nodes cannot be guaranteed.

An unreachable fog node cannot fulfill any request even

if its computational hardware is fully functional. Simple

tasks like regular testing and auditing of hardware are

immensely more complicated and costly in fog com-

puting, due to necessary coordination among different

organizations, geographical distribution, and unreliable

network connectivity.

Scheduling tasks in fog computing is complex com-

pared with that in cloud computing. A fog computing

application is typically spread over a) the client’s mobile

device, b) one of potentially many fog nodes, and occa-

sionally c) a back-end cloud server. Therefore, deciding

where to schedule computational tasks in fog computing

is more difficult. For cloud computing applications,

the latency is usually predictable. For fog computing

applications, however, deciding which fog node to use

alters the latency that the user will experience. Beside

the unpredictable round-trip time, slow hardware and

low bandwidth also affect the user-perceived latency.

Meanwhile, some tasks, such as aggregate caching, may

benefit from running in the back-end cloud. Another

problem is that it is unclear where the scheduling should

be done. Entrusting the client devices to perform the

scheduling opens the possibility of malicious users abus-

ing the system. Fog nodes may act selfishly or may not

always be aware of tasks running on the client devices.

The back-end cloud may introduce unnecessary latency

to the scheduling program. In short, in fog computing,

more factors must be considered in deciding where

and when to schedule tasks to provide the best user

experience.

Fog nodes are maintained independently by many

different organizations, which is in sharp contrast to

the back-end cloud owned and maintained by a sin-

gle organization. This means that fog nodes cannot be

trusted as easily as cloud servers. Users can more easily

trust cloud computing because the organizations that

provide cloud services are well-motivated to invest in

resilient security and privacy measures. Fog computing,

on the other hand, is implemented by many independent

agents. These various owners may not maintain the same

rigorous privacy and security standards, let alone the

high standard fulfilled by cloud computing. As such,

users will have a much more difficult time trusting

different fog nodes.

Fog nodes are heterogeneous, where there is no guar-

antee that the nodes will contain similar resources. In

fact, quite the opposite can be expected; fog nodes,

owned and maintained by different organizations, usually

have vastly different RAM capacity, CPU performance,

storage space, and network bandwidth. This is in sharp

contrast to cloud computing, in which it is common

for one organization to own all of the cloud servers.

To ease the burden of application deployment, hardware

management and resource sharing, cloud servers usu-

ally exhibit much less heterogeneity. Furthermore, fog

nodes are smaller and less powerful than large cloud

servers. While a cloud server may be one of many

high-end, powerful rack-mounted servers, fog nodes are

usually deployed in small batches using desktop-class

machines, re-purposed computing appliances such as

routers and gaming consoles, and small collections of

rack-mounted servers. Because of the heterogeneity and

generally weaker hardware in fog computing, many of

the differences we have outlined so far are exacerbated.

Fog computing aims to establish a new tier of mobile

computing, in which constraints on energy and hardware

resources can be relaxed by nearby fog nodes. Users

can effortlessly offload computation to nearby fog nodes,

and can transparently and seamlessly move computation

from one fog node to another. Mobility is a key feature of

the fog computing paradigm, and applications deployed

on fog infrastructure need to always take this into

account. This differs from cloud computing, in which

applications are deployed in only one cloud at a time,

unless the need for scaling is beyond the capacity of a

single cloud provider. A situation that is rarely seen in

cloud computing but may be common in fog computing

is that users may connect to the network only briefly

while moving. Consider the scenario in which fog nodes

are placed along roadways and users temporarily connect

to them to acquire traffic and weather conditions ahead.

Another example is that users move from one fog node

to another when they are leaving their office and heading

to a different building on a college or corporate campus

for a meeting.

III. RESEARCH CHALLENGES AND PROBLEMS IN

FOG COMPUTING

In this section, we discuss the challenges and problems

in fog computing. We have identified papers on the

concept of fog computing with a joint effort of our

previous work [10], [11], [7], [12] and other existing

work [13], [14], [15]. We refer the reader to these

references for an integral view of the state-of-the-art on

fog computing.

Fog computing is a novel computing paradigm, which

demands a new programming model. We need to design

intuitive and effective tools and frameworks for develop-

ers, helping them orchestrate dynamic, hierarchical and

heterogeneous resources to build compatible applications

on diverse platforms. To take task scheduling and migra-

tion for example, various research questions may arise.

How can we provide a simple abstraction for developers

to mark tasks that can be migrated? What choices and

preferences should be left to users? How can we allow

developers to specify migration rules on various devices?

Furthermore, we should avoid forcing developers to re-

implement functionalities that will likely be common,

such as distributed caching, workload balancing, system

monitoring, and so on.

Fog computing introduces a variety of new and inter-

esting scheduling challenges. Since tasks can now be

moved between different physical devices (i.e., client

devices, fog nodes, and back-end cloud servers), schedul-

ing is much more complex. Some of the research

questions are listed as follows. For fog nodes with

heterogeneous hardware, is it acceptable to trade energy

for reduced latency? Should a process running on a fog

node be interrupted when the user moves toward another

fog node? How should tasks be scheduled considering a)

latency, b) energy consumption, c) mobility, and d) ex-

isting workload? Where should the scheduling program

be executed? What are the benefits of jointly schedul-

ing tasks? Beside these research questions, some other

concerns must also be taken into account. For example,

security and privacy considerations are complex in fog

computing, and tasks from sensitive applications should

be scheduled on more trustworthy nodes. Furthermore,

on traditional desktop and server machines, completely

fair scheduling (CFS) dominates the landscape. For fog

computing, however, this algorithm may not be ideal,

as different fog nodes may have different hardware

resources, and some tasks (e.g., those making the user

wait) may be more important than others (e.g., back-

ground services such as the backup/snapshot functional-

ity). What other scheduling algorithms can be used to

optimize the factors that are important for highly mobile

computing, such as low latency?

Data management for fog computing applications also

introduces new challenges. Perhaps the ideal abstraction

for both users and developers is a “global storage,” which

can always be accessed, has an infinite size, and yet

performs with the speed of information stored locally.

With fog computing, this dream may finally be realized.

However, how to implement such a storage system is still

an open question. What efficient algorithms can be used

to shuffle data among devices? How can prefetching be

best implemented to achieve the lowest latency? What

namespace scheme should be used? How can sensitive

and encrypted data be cached privately and effectively?

Furthermore, energy consumption and network usage

must be conserved on mobile devices, as they typically

have energy limits enforced by limited battery technol-

ogy and data limits enforced by mobile carriers.

An attractive aspect of cloud computing is the auto-

matic discovery of services. As fog nodes differ from

location to location, users can arrive at a new location

and take advantage of the various services provided by

the fog nodes in that particular location. Given that this

feature relies on the prudent deployment accomplished

by service developers, implementing service discovery

protocols in fog computing can be quite challenging.

Moreover, service provisioning is usually done dynami-

cally in fog computing, i.e., new virtual machines (VMs)

are orchestrated on the spot when a particular service

is needed. This raises many research questions. When

should services be started and stopped? What is the

best way to balance workload? Should VM-based or

container-based virtualization be used? It may even be

possible to predict what services will be needed and pro-

vision them in advance, before users even arrive. What

methodologies should be used to efficiently provision

services for hundreds, thousands, and millions of users?

Some services are deployed on fog nodes to aggregate

information from nearby client devices. What is the best

way to split workload for these services, with regard to

the energy efficiency on the client side?

In cloud computing, data consistency can be achieved

by coordinating the cloud servers in the data centers

where the cloud is deployed. In fog computing, however,

things become complicated. When writing data objects in

a fog environment, it is necessary to not only coordinate

the back-end cloud servers, but also invalidate the cached

data on the fog nodes as well as on the client devices

if strong data consistency is needed. This may result

in deteriorated write performance, which weakens the

benefits of using fog nodes as the write cache servers.

On the other hand, fog computing also provides oppor-

tunities of achieving data consistency more efficiently

than cloud computing. For example, if the write requests

on a data object are sent to only one fog node during a

certain time period, which we envision is a common case

in fog computing, the system may temporarily transfer

the ownership of the data object from the cloud to

the fog node. By doing this, data consistency can be

achieved on the fog node, which promises better write

performance than cloud computing, as the fog node

resides at the edge of network. Nevertheless, to fully

exploit the opportunities of achieving data consistency

in fog computing is still challenging and requires plenty

of research efforts.

Finally, and perhaps most importantly, fog computing

and IoT have significant privacy and security concerns.

Due to the heterogeneous nature of both, security and

privacy are usually cast aside in order to achieve general

functionality and interoperability. In other words, en-

cryption and strict privacy policies make it more difficult

for arbitrary devices to exchange data. Therefore, many

manufacturers today simply do away with these features.

Moreover, encryption algorithms and security protocols,

which are notoriously complex, are often implemented

or configured with mistakes, leaving sensitive user data

exposed to attackers. This problem is further exacerbated

by the dispersed ownership of fog nodes. Fog nodes are

usually owned by different parties, such as universities,

corporations, commonwealth organizations, and personal

households. Some fog nodes may even be jointly owned

by two or more parties. Users approaching a fog node

may be weary of the services provided by these parties,

due to their vastly differing motivations. As we have

seen with online social networking, collection and resale

of private user data is highly valuable to corporations.

Meanwhile, these parties also need authentication pro-

tocols to protect themselves against Sybil accounts,

distributed denial of service (DDoS) attacks, and other

malicious activities. It will be important in the future to

make fog computing applications preserve user privacy,

provide rigorous security guarantees, and address the

needs of all the parties involved.

Exploring solutions to the aforementioned problems is

critical in realizing the many benefits promised by fog

computing. It is our goal in this work to expose these

design choices in detail, so that developers can more

easily figure them out in their implementations. This is

a first step towards identifying reasonable solutions to

these problems.

IV. WM-FOG OVERVIEW

Based on our understanding of the aforementioned

challenges and problems, we propose WM-FOG, a com-

puting framework for fog environments. The design

of WM-FOG embraces a software architecture, which

is flexible to incorporate different design choices and

user-specified polices. More specifically, WM-FOG pro-

vides a flexible way to define workflows that can be

easily deployed and executed on fog-based systems.

By properly scheduling the workflows on the system

entities (i.e., client devices, fog nodes, and back-end

cloud servers), WM-FOG can take advantage of the fog

computing paradigm and achieve considerable perfor-

mance enhancement. Furthermore, and most importantly,

WM-FOG provides a way to customize policies on

the workflows, through which developers can help the

system make even better use of the underlying hardware

resources.

A. Workflow Examples

To define a workflow, the developer needs to specify

its data and computation. We call the data data items, and

the computation transitions in WM-FOG. Each workflow

contains one or more data items and zero or more

transitions.

rawData

(a) The RawVideo workflow.

rawData encodedData
encode

(b) The EncodedVideo workflow.

rawData1

rawData2

rawDataN

...

mergedData

merge

(c) The TemperatureDistribution workflow.

Fig. 1. Workflow examples.

Figure 1(a) illustrates a simple workflow, which is

called RawVideo. This workflow contains only one data

item, depicted as “rawData” in the figure, and no tran-

sition. The only data item rawData represents the raw

video data that the WM-FOG system has received from

a client device.

System Monitor

Data Access Interface

Lock Manager Cache Manager Workflow Engine

app app app app app app app

Entity Proxy Locking Proxy Caching Proxy Scheduling Proxy

client client client fog fog fog cloud

Fig. 2. WM-FOG software stack.

Figure 1(b) illustrates a slightly more complicated

workflow, which is called EncodedVideo. This workflow

contains two data items, rawData and encodedData,

and one transition, encode. The encode transition takes

rawData as input and generates encodedData as output.

Clearly, in this workflow, the WM-FOG system receives

raw video data from a client device, encodes it, and

stores the encoded data for future use.

Figure 1(c) illustrates a workflow involving multiple

writers, which is called TemperatureDistribution. Sup-

pose there are N fog nodes covering different regions,

and each fog node has a number of temperature sensors

deployed in the region that it covers. Each temperature

sensor continuously uploads the ambient temperature

data to the fog node it belongs to, and the fog node in

turn forwards the data to the back-end cloud. The cloud

receives data from the N fog nodes, merges them, and

stores the merged data for future use.

B. System Architecture

Figure 2 depicts the architecture of WM-FOG. There

are four layers in the figure. The top layer is called

the application layer, where user applications reside.

User applications initiate workflow instances by writing

input data to them, and receive results by reading output

data from them. The next layer is called the workflow

layer, where workflow instances reside. Each workflow

instance exposes a Data Access Interface to user appli-

cations, through which its data items can be accessed.

Moreover, each workflow instance has four proxies, i.e.,

the Entity Proxy, the Locking Proxy, the Caching Proxy,

and the Scheduling Proxy. These proxies can be used to

implement user-specified policies on workflows. Under

the workflow layer is the system layer, where the system

components, i.e., the System Monitor, the Lock Manager,

the Cache Manager, and the Workflow Engine, reside.

These system components implement the fundamental

mechanisms of WM-FOG, and workflow instances can

communicate with them through the proxies in order to

apply user-specified policies. The bottom layer is called

the entity layer, as the system entities (client devices,

fog nodes, and the cloud) reside in this layer.

C. Customizing Workflow Policies

WM-FOG provides a workflow-defining language for

developers. More specifically, developers can specify the

data items and transitions for each workflow they are

defining through this language. Furthermore, they can

selectively implement the callback functions of the data

items and transitions to define their own policies. To de-

fine a policy on a workflow, the developer is supposed to

invoke the workflow’s proxies in the callback functions,

informing the system components of her suggestions on

how to handle the workflow under various conditions.

Note that the developer can only provide her suggestions,

but not control the behavior of the system components.

1) Implementing Synchronization Policies: A devel-

oper can implement her own synchronization policy on

a data item, by programming its callback functions. In

these callback functions, the developer is supposed to

invoke the Caching Proxy of the workflow to communi-

cate with the Cache Manager, providing her suggestions

on how to synchronize the data item.

For example, suppose the developer who has defined

the RawVideo workflow shown in Figure 1(a) has im-

plemented a synchronization policy on the rawData data

item, which eagerly synchronizes the first 20 MB of data

to the back-end cloud, while keeps the remaining part of

data on the fog node and synchronizes it lazily. By doing

this, user applications that read the data item can get

served immediately. Meanwhile, the Caching Manager

will spontaneously synchronize the remaining part of

data when the system has spare hardware resources,

guaranteeing that the data item can be fully synchronized

as soon as possible. This synchronization policy has

the same effect on serving read requests as the default

synchronization policy, which eagerly synchronizes the

whole data item to the back-end cloud, but imposes less

burden on the system, which is critical when the system

is handling a burst of workflow requests.

2) Implementing Locking Policies: A developer can

implement her own locking policy on a data item, by

programming its callback functions. In these callback

functions, the developer is supposed to invoke the Lock-

ing Proxy of the workflow to communicate with the Lock

Manager, providing her suggestions on how to manage

the locks on the data item.

For example, the rawDataI data items (I = 1, 2, ..., N)

shown in Figure 1(c) are written by multiple writers (i.e.,

temperature sensors). Suppose the rawData1 data item

can be written by only one writer at any time, which

requires a locking mechanism to coordinate the write

operations upon it. A simple way of implementing such

a locking mechanism is to maintain a write lock for the

data item in the back-end cloud. Before a writer writes

the data item, it has to acquire the write lock from the

cloud, while after the data item has been written, the

writer needs to return the write lock to the cloud. Using

the cloud as the centralized lock server is necessary

when different writers try to acquire the same write

lock from different fog nodes. However, as previously

described, the rawData1 data item will only be written

by temperature sensors belonging to the same fog node.

In such a case, using the cloud as the centralized lock

server will impose unnecessary overhead on the write

operations. The developer can invoke the Lock Proxy in

the data item’s callback functions, informing the Lock

Manager that she suggests the write lock be maintained

on the fog node rather than in the cloud. By doing this,

the Lock Manager will try to maintain the write lock on

the fog node, which can improve the write performance

on the data item in most cases. Note again, however, that

the developer cannot really control the behavior of the

Lock Manager, i.e., if the Lock Manager considers that

the write lock should be maintained in the cloud, it will

do so, rather than unconditionally follows the developer’s

suggestion.

3) Implementing Migration Policies: When defining

a transition, the developer needs to specify its input data

items as well as their trigger thresholds. For example,

the encode transition shown in Figure 1(b) has only one

input data item, rawData. Suppose the developer has

specified that the trigger threshold of the rawData data

item is 1024 KB when defining the encode transition.

In such a case, the WorkFlow Engine will automatically

invoke the onTrigger() callback function of the encode

transition whenever the rawData data item has enqueued

1024 KB of data. The onTrigger() callback function is

the place where the developer implements the transition’s

main logic.

The execution of the onTrigger() callback function is

atomic in WM-FOG. In other words, the Workflow En-

gine may migrate a transition between two consecutive

executions of the onTrigger() callback function, but will

never do so during the execution of it. Data that needs

to be transferred in a migration should be defined as

member variables of the transition. The developer should

also provide the getter and setter functions for these

member variables.

A developer can implement her own migration policy

on a transition, by programming its callback functions

excluding onTrigger(). In these callback functions, the

developer is supposed to invoke the Scheduling Proxy of

the workflow to communicate with the Workflow Engine,

providing her suggestions on when and how to migrate

the transition.

For example, the encode transition shown in Fig-

ure 1(b) should be triggered mainly on fog nodes. This is

because the WM-FOG system can leverage the computa-

tional power of fog nodes to achieve better performance,

given that the encode transition has a good compression

ratio. Nevertheless, it may be unreasonable to always

trigger the transition on fog nodes, especially when they

are fully loaded. For this reason, the developer may

implement a migration policy on the encode transition,

informing the Workflow Engine that she suggests migrat-

ing the transition to the back-end cloud if the fog node

cannot execute it in 0.5 seconds. By doing this, some

workload on fully loaded fog nodes can be offloaded to

the back-end cloud, and the overall system performance

can thus be improved.

V. EVALUATION

In this section, we give some preliminary results to

show that WM-FOG can leverage the fog computing

paradigm to enhance the system performance when

handling workflow tasks (i.e., workflow instances).

A. Testbed Setup

We build a testbed for our experiments. The testbed

consists of five servers, one of which is more powerful

than the others. The more powerful server is used as

the back-end cloud server, while the others are used

as fog nodes. The cloud server has an 8-core Intel i7

CPU with a clock speed of 4.00 GHz and 16 GB of

main memory. Each fog node has a 4-core CPU with

a clock speed of 2.83 Hz and 4 GB of main memory,

and is directly connected to the cloud server through a

1000 Mbps network link. To simulate a real-world fog

environment, we set the upper bound of the network

bandwidth between each fog node and the cloud server

to 40 Mbps, and the latency to 10 ms (i.e., the round

trip time is 20 ms), according to the results reported

by [7]. We also deploy our first-step implementation of

WM-FOG on this testbed.

B. Benefits of Using Fog

We first evaluate to what extent fog computing can

help when handling WM-FOG workflow tasks. To this

end, we simulate a scenario in which RawVideo work-

flow tasks shown in Figure 1(a) are handled by our

system. Each RawVideo task has a total data size of

200 MB, and is sent from the client device to the fog

node at a transmission rate of 8 Mbps. On each fog

node, the arrival intervals of RawVideo tasks follow an

N (10 sec, 4 sec2) distribution. We cache the 200 MB

rawData of each RawVideo task on the fog node, while

synchronize only the first n MB of data to the cloud. The

value of n is varied from 0 to 200 in our experiments.

Figure 3 illustrates the latency results, the throughput

results, and the network usage results of these experi-

ments. From these results, we can see that a smaller syn-

chronization size (i.e., n MB) produces shorter latency,

higher throughput, and lower network usage. Despite the

fact that the synchronization size cannot be too small for

providing seamless data accessing services, these results

demonstrate the benefits of using fog computing in WM-

FOG, as tuning the synchronization size is only possible

in fog environments.

C. WM-FOG Performance

WM-FOG makes decisions on how to handle work-

flow tasks based on 1) the default policies, and 2)

suggestions from developers. In other words, the de-

fault policies are part of the fundamental mechanisms

of WM-FOG, which are supposed to provide graceful

performance for fog environments.

To evaluate how well our prototype system works, we

conduct the following experiments. We use only one

fog node and the cloud server in these experiments.

Once again, we simulate the scenario in which 200 MB

RawVideo tasks are handled by our system. A user-

specified policy that at least the first 20 MB of rawData

should be eagerly synchronized to the cloud is applied to

the RawVideo tasks. In the first experiment, we disable

the default synchronization policy, so that only the user-

specified policy is enforced. In the second experiment,

we enable the default synchronization policy, so that the

System Monitor monitors the network usage of the fog

node. If the System Monitor detects that there is spare

network resource between the fog node and the cloud,

it will inform the Cache Manager, which will in turn try

to synchronize more data for the RawVideo tasks.

 0

 40

 80

 120

 160

 0 50 100 150 200

L
a
te

n
cy

 (
se

c)

Synchronization Size (MB)

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

N
u

m
b

er
 o

f
T

a
sk

s
(/

m
in

)

Synchronization Size (MB)

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

N
et

w
o
rk

 U
sa

g
e

(M
b

p
s)

Synchronization Size (MB)

Fig. 3. Performance measurements of using fog.

Figure 4 illustrates the synchronization size results and

the network usage results of these experiments. Clearly,

when the default synchronization policy is enabled, the

system can make better use of the network resource, and

the burden of fully synchronizing the RawVideo tasks in

the future can thus be reduced. These results demonstrate

that WM-FOG is an efficient computing framework for

fog environments.

VI. CONCLUSION

In this paper, we introduce fog computing, a new

computing paradigm that extends cloud computing. We

compare fog computing and cloud computing in detail,

and list a number of research challenges and problems

in fog computing. Based on our understanding of these

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

S
y
n

ch
ro

n
iz

a
ti

o
n

 S
iz

e
(M

B
)

Time (min)

wo/ default policy
w/ default policy

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

N
et

w
o
rk

 U
sa

g
e

(M
b

p
s)

Time (min)

wo/ default policy
w/ default policy

Fig. 4. Performance measurements of WM-FOG.

challenges and problems, we propose a software archi-

tecture, which is flexible to incorporate different design

choices and user-specified polices. Then we report the

design of WM-FOG, a computing framework for fog

environments that embraces this software architecture.

Evaluation on our prototype system demonstrates that

WM-FOG can work effectively and efficiently in fog

environments.

REFERENCES

[1] Sandvine, “Global internet phenomena report,” 2015.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of MCC,
2012, pp. 13–16.

[3] L. M. Vaquero and L. Rodero-Merino, “Finding your way in
the fog: Towards a comprehensive definition of fog computing,”
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.
27–32, 2014.

[4] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and
P. Pillai, “Cloudlets: at the leading edge of mobile-cloud conver-
gence,” in Proceedings of MobiCASE, 2014, pp. 1–9.

[5] ETSI, “Mobile-edge computing,” 2014.

[6] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud
computing: A survey,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 84–106, 2013.

[7] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proceedings of HotWeb, 2015, pp. 73–78.

[8] Y. Cao, S. Chen, and D. Brown, “Fast: A fog computing assisted
distributed analytics system to monitor fall for stroke mitigation,”
in Proceedings of NAS, 2015, pp. 2–11.

[9] T. Zhang, “Fog boosts capabilities to add more things
securely to the internet,” http://blogs.cisco.com/innovation/
fog-boosts-capabilities-to-add-more-things-securely-to-the-internet,
2016.

[10] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of MoBiData, 2015, pp.
37–42.

[11] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog
computing: A survey,” in Proceedings of WASA, 2015, pp. 685–
695.

[12] Z. Hao and Q. Li, “Edgestore: Integrating edge computing into
cloud-based storage systems,” in Proceedings of SEC, 2016.

[13] I. Stojmenovic, “Fog computing: A cloud to the ground support
for smart things and machine-to-machine networks,” in Proceed-

ings of ATNAC, 2014, pp. 117–122.
[14] W. Shi and S. Dustdar, “The promise of edge computing,” IEEE

Computer Magazine, vol. 29, no. 5, pp. 78–81, 2016.
[15] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:

Vision and challenges,” IEEE Internet of Things Journal, 2016.

Zijiang Hao is currently working toward the Ph.D. degree in computer
science under the supervision of Prof. Qun Li at the College of William
and Mary. His research interests include mobile-cloud computing,
fog/edge computing, geo-distributed storage systems, and consensus
algorithms.

Ed Novak is an assistant professor of computer science at Franklin
and Marshall College. His research interests include cybersecurity and
privacy on smart mobile devices. He received his Ph.D. degree in
computer science from the College of William and Mary in 2016.

Shanhe Yi is currently working toward the Ph.D. degree in computer
science under the supervision of Prof. Qun Li at the College of William
and Mary. His research interests include mobile/wearable computing
and fog/edge computing, with the emphasis on the usability, security
and privacy of applications and systems.

Qun Li is a professor of the Department of Computer Science at the
College of William and Mary. He holds a Ph.D. degree in computer
science from Dartmouth College. His research interests include wire-
less networks, sensor networks, RFID, pervasive computing systems,
and fog/edge computing. He received the NSF Career Award in 2008.

http://blogs.cisco.com/innovation/fog-boosts-capabilities-to-add-more-things-securely-to-the-internet
http://blogs.cisco.com/innovation/fog-boosts-capabilities-to-add-more-things-securely-to-the-internet

	Introduction
	Comparisons between Fog and Cloud
	Research Challenges and Problems in Fog Computing
	WM-FOG Overview
	Workflow Examples
	System Architecture
	Customizing Workflow Policies
	Implementing Synchronization Policies
	Implementing Locking Policies
	Implementing Migration Policies

	Evaluation
	Testbed Setup
	Benefits of Using Fog
	WM-FOG Performance

	Conclusion
	References
	Biographies
	Zijiang Hao
	Ed Novak
	Shanhe Yi
	Qun Li

