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Abstract—Smartphone lock screens are implemented to reduce
the risk of data loss or compromise given the fact that increasing
amount of person data are accessible on smartphones nowadays.
Unfortunately, many smartphone users abandon lock screens due
to the inconvenience of unlocking their phones many times a day.
With the wide adoption of wearables, token-based approaches
have gained popularity in simplifying unlocking and retaining
security at the same time. To this end, we propose to take
advantage of the smartwatch for easy smartphone unlocking.
In this paper, we have designed WearLock, a system that uses
acoustic tones as tokens to automate the unlocking securely. We
build a sub-channel selection and an adaptive modulation in
the acoustic modem to maximize unlocking success rate against
ambient noise only when those two devices are nearby. We
leverage the motion sensor on the smartwatch to reduce the
unlock frequency. We offload smartwatch tasks to the smartphone
to speed up computation and save energy. We have implemented
the WearLock prototype and conducted extensive evaluations.
Results achieved a low average bit error rate (BER) as 8% in
various experiments. Compared to traditional manual personal
identification numbers (PINs) entry, WearLock achieves at least
18% unlock speedup without any manual effort.

I. INTRODUCTION

As smartphone stores a wide variety of sensitive information
of the owner, it is critical to provide effective protection for
smartphone data. Currently, every smartphone operating sys-
tem has a built-in screen lock application, which enables users
to unlock their smartphones via PINs, passwords, patterns,
etc. However, the reality is that a significant portion of users
never lock their smartphones. A recent study [1] indicated
that 53 out of 150 (35%) of participants have never enabled
any sort of screen lock and the primary reason was due to
the inconvenient input methods of screen locks. In another
study [2], a large portion of participants (57.1%) indicated that
they use none or naive screen lock (e.g. slide-to-unlock) while
lots of participants (46.8%) agreed that unlocking their phones
can be annoying and many of them (25.5%) admitted that they
want a way to unlock their phone much easier. Therefore, the
problem of user authentication on mobile devices is how to
balance the security and the user experience [3].

To address this problem, one direction is to reduce the
number of unlocks upon existing authentication mechanisms.
There are two common approaches. One is to provide partial
functionality on lock screens, enabling smartphone interac-
tions before unlocking. This technique potentially reduces
the number of unlocks, thus easing the unlock burden on
users but at the cost of information security. For example,

this approach may display several lines of an incoming email
on a locked screen for user. However, those few lines may
contain sensitive data. Further judgement from users is needed
to determine what functionality or information is safe on
the locked screen. The other approach is to choose the right
moment to surface the authentication instead of enforcing it at
each user session [4], which eventually involves some sort of
implicit authentication methods. This scheme is not suitable
for use in screen lock due to noticeable delays [2].

Another more promising direction to solve this prob-
lem without security tradeoff is to find the most suitable
authentication method for mobile devices. The commonly
seen authenticators on smartphone can be categorized into
passwords (“what you know”), biometrics (“who you are”),
and tokens (“what you have”) [5]. The term password in
this paper includes words, phrases, patterns, PINs, or their
combinations, which are used as secrets for authentication.
However, this approach is problematic for mobile devices for
several reasons. First, simple passwords are easy to guess
while strong passwords are hard to remember. Second, the
input environments on mobile devices introduce difficulties
for users to enter passwords consisting of characters, dig-
its, and symbols. Third, even though pattern or graphical
passwords are much easier to input but all those passwords
including previously mentioned are susceptible to shoulder
surfing attacks or smudge attacks. Alternatively, biometric-
based authentication uses unique features (e.g. fingerprints,
eye iris, faces, voices, etc.) extracted from the human body
and is considered convenience and secure. Recent work has
also considered various gestures and inputting habits [6]–[9]
as the sources for biometric extraction. However, one big
disadvantage of biometric-based authentication is that those
biometrics are uniquely tied to human body and are not as
replaceable as passwords or tokens when being compromised
or disclosed [10]–[12]. The token-based authentication usually
includes contact-less proximity card, smart card with static or
dynamic tokens. The advantages of token are easy-to-use, no
need to memorize passwords, while the disadvantage is the
cost of additional hardware.

In this paper, we seek a smartphone authentication solution
in line with token-based method. Ideally, we want a secure
screen lock that 1) authenticates user on each interaction; 2)
is resistance to malicious observers; 3) requires minimal effort
from user. Originally, the token-based solution is less favored
due to the cost of additional hardware as mentioned. However,



due to the increasing popularity of smart things and wearables,
this solution has re-gained attentions [13]–[15]. Based on a
market research of Kantar Wearable Technology [16] and
Morgan Stanley [17], 12% of US consumers own at least one
wearable device while 55% of consumers have intentions to
buy at least one wearable devices. Hence, we envision that
many smartphone users will possess at least one peripheral
wearable device, such as a smartwatch or smartband, in the
near future. Therefore, we investigate the solution which
leverages pervasively co-located trusted devices for token-
based authentication to create an automated and secure screen
lock approach. Nevertheless, it is not easy to find a proper
channel to conveniently establish a secure range to associate
smartphone with co-located trusted devices (e.g. a smartwatch
in our system). Solutions utilizing Near Field Communications
(NFC) tags as trusted devices require users to manually
attach a tag close to the phone’s NFC antenna to achieve
proximity of 10 cm or less. Solutions based on Bluetooth-
enabled wearables, speakers and cars, can constantly connect
to smartphones, but the connection range of Bluetooth cannot
be securely guaranteed. Variants such as device model, paired
device, and local environment may sustain a Bluetooth con-
nection up to 100 meters in distance [18]. In our preliminary
experiment, we have confirmed that android trusted devices
based on Bluetooth do not lock one’s phone until the trusted
devices are 10-15 meters away in line-of-sight or 2-3 rooms
away in none-line-of-sight. If someone takes your smartphone
and stay not too far away from your trusted device, he may
access your unlocked phone since your trusted device is still
connected via Bluetooth.

To address those concerns, in this paper, we propose to
exploit the acoustic channel to build the trusted relationship
between a smartphone and its associated smartwatch and auto-
matically unlock the phone when the smartwatch is nearby. To
this end, we build WearLock, a system to automatically unlock
smartphones via an acoustic channel between a smartphone
and its associated wearable, i.e., a smartwatch in this paper.
To be noted that our system is not meant to replace current
smartphone authentication schemes (password or biometric
based authentications), but provides a secure and efficient
alternative which can significant reduce authentication effort
on users. The assumption is that with a given noise level,
we can maintain secure acoustic channel within roughly 1m
distance between two devices using speaker and microphone,
which acts as the secure boundary. Microphones and speakers
are commonly available on these devices, eliminating the need
for extra hardware additions. The communication range of
acoustic channel is shorter than the Bluetooth and longer than
NFC or magnetic-based channel [19], which is more desirable
for the purpose of unlocking smartphones. One challenge is to
build a robust and reliable acoustic modem scheme to secure
the acoustic channel when devices are nearby. The other is to
carefully design a system to accommodate the limited battery
capacity and computation power of wearable hardware.

In summary, we make the following contributions:
• We proposed a novel automated and secure unlocking

scheme for smartphone via a trusted wearable device. It
requires minimal amount of effort from user.

• We are the first, to the best of our knowledge, to exploit
the adaptive modulation of acoustics on common of-the-
shelf (COTS) mobile devices for robust data transmission.
The acoustic modem can adapt to ambient noise levels
and interfering signals.

• We built WearLock on unmodified COTS smartphone and
smartwatch devices and evaluated the system extensively.

II. SYSTEM OVERVIEW

In this section, we describe the system architecture of
WearLock and the smartwatch-assisted unlocking protocol.
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Fig. 1: The architecture of WearLock.

System Architecture. Figure 1 illustrates the architecture of
WearLock, which consists of a smartphone and a smartwatch.
The smartphone usually has a speaker and microphone, a
wireless interfaces (Bluetooth or WiFi), and optionally motion
sensors. The smartwatch usually has a microphone, a wireless
interface and optionally motion sensors. Both devices run
an instance of WearLock Controller, as the agent executing
our proposed unlocking protocol, which takes input from
underlying hardware and controls the the output channels
such as speaker for emitting acoustics, wireless radio for
sending configurations, and Android Keyguard for enabling or
disabling lock screen. The one time password (OTP) module
is responsible for the one time password generation and
verification. The acoustic modem is an OFDM modem which
enables data such as OTP to be transmitted over the acoustic
channel using proper modulation schemes.

The smartphone and the smartwatch communicate with each
other through both the wireless and the acoustic channels.
The wireless channel serves as the secure control channel,
transmitting acoustic channel configuration information, in-
cluding the pilot sub-channel, the null sub-channel, and the
data sub-channel. The acoustic channel conveys data payload
in data sub-channels along with pilot sub-channels. The motion
sensor will be used to construct a pre-filter to skip unnecessary
unlocking requests by matching the motion pattern. In the
following sections, we will provide further details on the
acoustic OFDM modem design, the secure unlocking scheme,
and several system optimizations.

Smartwatch-assisted Unlocking Protocol. Figure 2 illus-
trates the overall protocol of WearLock between the smart-
phone and the smartwatch. The protocol has two phases: 1)
Phase 1 is Request-to-Send/Clear-to-Send (RTS/CTS) phase
for channel probing; and 2) Phase 2 is the data transmission
phase for OFDM modulated OTP token.



Smartphone’s view: To avoid continuous probing and mon-
itoring, we design to start our protocol when the user clicks
the power button. The smartphone detects the presence or
absence of the wireless link with the smartwatch. When the
wireless link is present, the smartphone continues to evaluate
the motion patterns of the smartphone and the smartwatch,
respectively. If the motion patterns match, it is assumed that
both are co-located and the smartphone continues to operate
by verifying recorded audio token from the smartwatch. If the
token is validated, then the Android Keyguard service will
maintain the smartphone in screen unlocked state. During this
process, if the wireless link, or the motion pattern, or the token
validation fails, subsequent computations will be skipped and
the Android Keyguard will remain the smartphone locked.

Smartwatch’s view: The smartwatch runs a thin client, which
cooperates with the smartphone controller. The smartwatch
transmits information such as Bluetooth/WiFi status, sensor
data, and recorded acoustics over the wireless channel.
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Fig. 2: The Protocol of WearLock.

III. ACOUSTIC MODEM DESIGN

We designed and implemented a pure software modem for
reliable data transmission over the acoustic channel. The goal
is to meet the challenge of achieving robust communication
under different ambient noise environments. We first discuss
important characteristics of the acoustic channel. Then, we
will describe our modem design, which includes signal detec-
tion using preamble identification, time synchronization using
preamble and cyclic prefix, channel estimation and equal-
ization with pilot tone, and signal modulation/demodulation.
Figure 3 shows the block diagram of OFDM modem design.

The Acoustic Channel. Before diving into the design of
acoustic modem, it is necessary to understand the important
aspects of the acoustic channel, which significantly impact our
design decisions. Next, we will discuss details of our OFDM
modem design followed by practical considerations of our
implementation.

1) Ambient Noise: Ambient noise directly affects the
Signal-Noise-Ratio (SNR) at the receiver side. While ambient
noise introduces many challenges, it also provides opportu-
nities for co-location detection [20]. In order to measure the
sound or noise power, we use the sound pressure level (SPL),
which is defined as SPL = 20 log10

p
pref

, where p is the root
mean square (RMS) power and pref is a reference value.

2) Sound propagation and attenuation: In open air, the
sound attenuation is mainly due to spreading loss. Assuming
that SPLtx and SPLrx are the sound pressure levels at the
transmitter and the receiver, respectively, and the distance
between the transmitter and the receiver is d, then the sound
attenuation in open air is defined as: SPLtx − SPLrx =
20g log10( dd0 ) where g is a geometric constant, with g = 1
for spherical propagation from a point source, and d0 is
a reference distance, i.e., the distance between transmitter’s
microphone and speaker [21].

In WearLock, we control the propagation range of acoustic
signal by adjusting the speaker volume. We have measured
the SPL at the receiver under line-of-sight (LOS) scenarios
with different distances and volume settings, and the results
are shown in Figure 4. From the figure, we can see that SPL
attenuation match well with the theoretical value in spherical
propagation, decreasing by about 6 dB when distance is
doubled. Therefore, the Signal-to-Noise (SNR) at the receiver
side can be estimated by SNRrx = SPLrx − SPLnoise where
SPLnoise is the SPL of ambient noise.

3) Microphone and Speaker Characteristics: Ringing effect
and rise effect adversely affect speaker and microphone perfor-
mance [22]. Ringing is the effect that the speaker generates a
longer output than the real length of input with a reverberation
tail slowly reducing to 0. Similarly, rise effect is due to the
fact that the speaker unit cannot reach to its highest power
instantly. To overcome these effects, we define a zero-padding
symbol guard interval Tg larger than the largest reverberation
length to reduce the inter-symbol interference (ISI), and we
also apply fading at the beginning of the signal.

OFDM Design. WearLock leverage orthogonal frequency
division multiplexing (OFDM) modulation to modulate our
token information. OFDM efficiently utilizes spectrum by
allowing overlap in the frequency domain. It is also more
resistant to frequency selective fading by enabling sub-channel
selection and equalization techniques.

1) Modulation and Demodulation: The OFDM modula-
tion and demodulation are simply implemented through Fast
Fourier’s Transformation (FFT) algorithms.

Considering a data sequence input to the IFFT, X =
[X0, X1, · · · , Xk, · · · , XN−2, XN−1], where Xk = XI(k) +
jXQ(k), which is in the form of quadrature amplitude mod-
ulation (QAM). Usually, the conversion back and forth be-
tween a binary data and the QAM-represented data input is
done through a constellation mapping/de-mapping. To get the
baseband modulated time-domain signal, we apply the IFFT:

xn =
1

N

N−1∑
k=0

XA(k)ej(
2π
N fktn+XP (k)) (1)
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where fk = k/(N∆t), Fs = 1/∆t is the sampling
rate, and tn = n∆t. And XA(k) =

√
XI(k)2 +XQ(k)2,

XP (k) = arctan(XQ(k)/XI(k)). Then the final representa-
tion of the signal is its real part sn = Re (xn). We directly
use this base-band signal as our output acoustic signal and
send it through the speaker. To demodulate a received time-
domain signal, we just apply the FFT and then look at the
complex representation of Xk in the result, and de-map it
according to the constellation diagram. However, due to the
characteristics of the acoustic channels, which present delay,
attenuation and phase distortion issues, we need to implement
synchronization, sub-carrier selection, channel estimation and
channel equalization.

2) Sub-carrier Frequency Range: Originally, we want to
work on the near-ultrasound frequency ranged from 15kHz
to 20kHz for the following reasons: 1) the frequency range
of most ambient noise in our scenarios is below 15kHz; 2)
humans are most sensitive to frequencies between 2,000 and
5,000 Hz; and 3) many new smart devices support native
44.1kHz or even higher sampling rate which indicates that
the frequency response is acceptable below 20kHz. However,
in real device experiment (A Moto 360 Android watch),
we have found that there is a mandatory built-in low-pass
filter, which limits the frequency range no higher than 7kHz,
where the signal fades significantly from 5kHz to 7kHz1.
Therefore, our design supports a smartphone-smartwatch pair

1We deem the reason of filtering as the main microphone usage in Android
wear is speech recognition. We are planning to test on more android wear
models.

utilizing audible acoustic signals (1kHz-6kHz) and an em-
ulated smartphone-smartphone pair utilizing inaudible near-
ultrasound acoustic signals (15kHz-20kHz).

3) Preamble Design: Existing preambles used in acoustic
OFDM modems are usually based on PN-sequence or linearly
frequency modulated (LFM) signals. The PN-sequence signal
is a sequence of signal that has very strong auto-correlation
output and weak cross-correlation output. The LFM signal is
also known as Chirp signal or Sweep signal, which has nice
Doppler-shift insensitivity and can be accurately detected in
matched filtering. Therefore, we adopted a chirp signal for
signal detection and coarse synchronization. The chirp signal
increases from fmin to fmax in a time frame Tp.

4) Silence Detection and Signal Detection: The purpose of
signal detection is to find the target signal in the recorded
acoustic stream. First, we use an energy-based detector to
filter out the section of silence. When there is a strong signal
with SPL that surpasses our predefined noise level, we will
perform the signal detection, relying on the detection of a
known preamble. A cross-correlator calculates a normalized
score and compares against a threshold value. Once we have
detected a target signal, we will send this audio buffer to next
processing block.

5) Synchronization: Finding the start of a frame is crit-
ical to all the follow-on processing and thus the system
performance. Our synchronization has two steps: a coarse
time-domain synchronization and a fine time-domain synchro-
nization. The coarse synchronization in time-domain is done
during the preamble detection through cross-correlation of
the received signal and the known preamble. The preamble
is a chirp signal, which correlates well with the original
chirp even if there is a frequency shift. This characteristic
ensures that we can always find a coarse start of the frame.
During the processing of OFDM symbol, we perform the fine
time-domain synchronization by leveraging the cyclic prefix.
The cyclic prefix is a technique prefixing a symbol with a
repetition of its end, which usually serves as a guard interval
to eliminate ISI and is a technique to improve the robustness
of multi-path propagation. For the purpose of fine time-domain
synchronization, we use a window-based method, to iteratively
find the best match of the head and tail of the signal after delay
adjustment. Assume the time domain signal is x(t), and the



length of cyclic prefix is Tg , we have

argmin
tf

tc+tf+Tg∑
t=tc+tf

x(t)x(t+ Ts), ∀tf ∈ [−τ, τ ] (2)

where Ts is length of symbol excluding the guard interval, tc
is the coarse delay, and τ is the searching range for tf of a
finer synchronization.

6) Channel Estimation and Equalization: Acoustic channel
requires channel estimation and equalization techniques to
overcome the distortions caused by fast fading, delay spread-
ing, and multipath propagation. We insert equal-spaced unit-
powered pilot tones for the purpose of equalization. To get
the channel estimation, we extract pilot tones in frequency
domain after proper synchronization as z(k) where k ∈ P, the
pilot sub-channel set. Since it is equal-spaced in the frequency
domain, we then apply a FFT-based interpolation with a proper
interpolation length to expand it to estimate the data channel
frequency response H(k), k ∈ P ∪ D, where D is the data
sub-channel set. And H(k) = z(k) when k ∈ P . Then, the
equalization on the pilot and data channel is calculated as
follows: ŝ(k) = z(k)

H(k) , k ∈ P∪D. By equalizing the known
a-priori pilot sub-channel to unit-power, we equalize the data
channel at the same time.

7) Adaptive Modulation: WearLock supports modulations
such as BASK/QASK, BPSK/QPSK, 8PSK and 16QAM. We
adopt an adaptive modulation scheme, which has a Request-
to-Send/Clear-to-Send (RTS/CTS) phase before the data trans-
mission phase. The motivation of adaptive modulation is that
in every round, we want to make sure that the acoustic signal
can be delivered reliably from smartphone to the nearby smart-
watch in spite of the ambient noise and interfering signals. As
is well known, the higher the order of modulation, the higher
the date rate R. R can be calculated by R = |D|rc log2M

Tg+Ts
,

where M is the modulation order, |D| is size of data sub-
channel set, rc is the coding rate for channel coding, and
rc = 1 if no channel coding is used. Higher order modulations
are more vulnerable to ambient noise and interference. This
usually requires a higher SNR to maintain the same error
rate as a lower order modulation. Therefore, dynamically
adaptive modulation are adopted by many communication
systems, in which they sense the channel quality and adapt
the modulation under certain constraints. Unlike traditional
adaptive modulation for communication systems which seeks
to maximize the system data rate, our design goal is to utilize
the propagation loss in transmission to select a modulation
mode to maintain a BER under a target BER. In the RTS/CTS
phase, WearLock sends out a preamble with a block-based
pilot symbol as a channel probing packet, which will serve the
purpose of sub-channel selection and modulation selection.

Channel probing and sub-channel selection: It is important
for WearLock to find the long-term or short-term noise which
lasts for at least the time of transmission, like periodically-
restarting air conditioner, which overlays certain frequencies
for undefined duration. By sending a channel probing packet,
WearLock can get an estimate of the channel state information

and rank all the candidate sub-channels by the noise power.
WearLock also chooses sub-channels in a priority order from
low frequency to high frequency, and from low noise power
to high noise power. We will assess the performance of sub-
channel selection in our evaluation.

Pilot-based SNR indicator: From the channel probing result,
we can also estimate the pilot signal SNR as an indicator
for adaptive modulation. In order to measure and compare
the performance of different modulation schemes, we use
a normalized signal-to-noise ratio (SNR) as metric: Eb/N0,
which is the ratio of the energy per bit to noise power spectral
density. It can be calculated as Eb

N0
= C

N ·
B
R ∝ PSNR · BR

where B is the bandwidth, and R is the data rate, as we have
discussed previously.

The C
N is the carrier to noise power ratio, which will

be estimated using a pilot-based SNR [23], which can be
calculated from the spectrum result:

PSNR =
Ek∈P [X(k) ·X∗(k)]− Ek∈N [X(k) ·X∗(k)]

Ek∈N [X(k) ·X∗(k)]
(3)

where N is the null sub-channel set.
Deciding transmission mode: We have measured how BER

of different modulations change in terms of different Eb
N0

in a quiet room (15-20db SPL) and LOS. We control the
ambient noise by an external speaker playing white noise
audio we collected. The result is shown in Figure 5, in which
the scatter plots are fitted by logarithmic tread-lines. The
ranking order of our measures closely matches the theoretic
result [24]. Due to hardware limitations, 16QAM is not usable
in real experiments or at least may need heavy error correction
techniques. Also due to the uneven responses of amplitude
modulation and phase modulation of the audio hardware,
amplitude-shift keying needs less SNR per bit than phase-shift
keying. Therefore, we setup three transmission modes in total:
QASK, QPSK, and 8PSK.
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Ambient noise measurement: The ambient noise is measured
in the first processing phase at both sides. The smartphone
also conducts a self-recording while the smartwatch is actively
recording the incoming signals. By detecting the preamble
existing in those recordings, we can coarsely align the two
time series. The time series before the preamble are used to
calculate the ambient noise. The ambient noise similarity is
used to filter the cases that those devices are apparently not



co-located. The noise level is also used to set proper speaker
volume to control the transmission range.

NLOS filtering: To detection NLOS, we use a low cost
method which analyzes the received preamble: a LFM mod-
ulated signal sent in the RTS/CTS phase. We first check
the maximal normalized cross correlation score. If the max
score is below a certain threshold (0.05 in our experiment),
we will abort the transmission, since it indicates a mismatch
on the preamble with high possibility. Otherwise, we can
coarsely synchronize the signal. Next, we approximate a delay
profile of the preamble using cross correlation. The root mean
square (RMS) delay is calculated as τrms =

√∑
n(tn−τ̂)2A(tn)∑

n A(tn)

where A(tn) is the approximate delay profile, tn = n
Fs

and
τ̂ =

∑
n tnA(tn)∑
n A(tn)

When the τrms is beyond a certain threshold
τ∗, we assume that there is a severe body blocking.

How adaptive modulation works: According to our prelim-
inary measurements in Fig. 4, in the first phase, a probing
packet is sent out using a SPL(volume) that surpasses the
SPL of noise at least a minimal SNR around 1 meters:
SPLtx−20 log10( 1.0

d0
)−SPLnoise > SNRmin where SNRmin

can be decided from a minimal Eb/N0, such as marked in
Fig. 5. This ensures that the receiver in the range receives
this probing packet. WearLock has no explicit ranging and we
use this as the bound on the transmission range, if a receiver
falls within this range, it will be able to receive the signal
which is beyond the minimal SNR. The actual received SNR
is estimated by the pilot-based SNR and will be reported in the
CTS signal. After the transmitter gets the SNRrx, this one is
used to select the modulation scheme that can reach a BER at
least smaller than a decided bound, the MaxBER as we have
also marked in Fig. 5. For example, if the rx’s SNR converts
to Eb/N0 = 35dB and MaxBER = 0.1, we can send the
signal using 8PSK, since we can get a guaranteed BER. If
MaxBER = 0.01, then we can choose modulation like QPSK
and QASK.

IV. SECURE UNLOCKING

Existing work uses SIC to secure information transmitted
in the acoustic channel. However, in our scenario, it is not
feasible since most android wearable devices are not shipped
with speakers. Therefore, we employed one time password
(OTP) scheme to make use the acoustic channel with no secret
disclosed.

Threat Model. We assume that the wireless link is securely
established, and can safely be used as a control channel for
OFDM communication. The sound channel is assumed to be
insecure and an attacker can eavesdrop. We also assume that
the attacker cannot take possession of the smart watch since
it is hard to steal the watch from user’s wrist without being
caught. An attacker may take control of the phone and try to
peak into it for the purpose of online payment, private photos
and emails, etc. In order to fool the WearLock system, we
assume that an attacker may try to perform various attacks.
One is the co-located attack, in which the attacker holds the
user’s phone to get as close to the target as possible without

being discovered. Another one is a record-and-replay attack, in
which the attacker makes use of recording and replay devices
to capture the acoustic signal and replay it to the smartphone.
Jamming or Denial-of-Service attacks are not considered, since
we can simply turn back to traditional locking scheme on
smartphones. Currently, our design cannot protect acoustic
channel against sophisticated relay attack which relies on some
sort of relay to extend the range of between those two devices.
However, we will argue the difficulty of launching this attack
in acoustic channel, then discuss potential counter-measures.

One Time Password. To defend against replay attacks,
we employ a counter-based one time password scheme(i.e.,
IETF RFC 4226 [25]). Assume that the phone and watch have
negotiated a secret key k and a counter c through Bluetooth
link, which can also be updated at anytime. The one time
password is generate by keyed-hash message authentication
code (HMAC) using HMAC-SHA-1, as HMAC(k, c). Then a
dynamic truncation (DT) technique is used to extract a 32 bit
binary from the 160-bit result, which ensures that the outputs
on different counter inputs are uniformly distributed. The final
digits are generated by the DT result taking modulo 10Digit,
where Digit is the number of digits.

Security Discussion. As we have mentioned, an attacker
possessing the victim’s phone, will try various attacks. We
have identified the following attacks and explained why our
system can defend against or mitigate those attacks.

1) Brutal Force Attack: An attacker takes possession of
victim’s phone, will try to mount brutal force attack when the
victim wearing smartwatch is in another room or quite far
away while the Bluetooth is still linked. The attacker need to
properly guess the acoustic modem parameters and guess the
OTP. A 32 bits OTP has a large keyspace as 232 and we can
easily increase the keyspace by adding more data channels
or using higher order modulations. The smartphone will be
locked up after three consecutive failures, which makes the
brutal force attack unrealistic.

2) Co-located Attack: Being similar to brutal force attack,
the attack just tries to get close enough to the victim to perform
a successful unlock. The defense against this attack lies in the
design of the modem that there is high bit error rate when
the transmission distance is beyond around 1 meter. Getting
closer to the user and covering the smartphone stealthily may
not work, since it will obstruct the direct path and result in
significant loss when acoustic channel becomes NLOS.

3) Record and Replay Attack: Since attack can monitor
the acoustic channels, disclosing the OTP token may suffer
from a replay attack, in which an attacker can record the
token signal and replay it to the watch like the man-in-the-
middle (MITM) attack. This attack is defeated by examining
the timing window, since in the protocol, we can measure the
software stack delay and wireless round-trip-time. A MITM
attacker with recorder and player in the loop definitely adds
more delay in the acoustic path. Every time the power button is
pressed, a Bluetooth message is sent to the watch indicating
the start of the protocol, and the watch replies a Bluetooth
message and starts recording. Then the smartphone starts to



send acoustic token, after which smartphone also sends a
Bluetooth message of stopping recording. And the watch will
stop recording as well. This procedure has two phases, and
it is interactive, which means we can examine the result of
the first phase, and abort the second phase if there is anything
specious. Since the OTP token is sent in the second phase, we
avoid the disclosure of OTP token in such attack.

4) Relay Attack: Sophisticated relay attack will try to use
record-and-replay in a live manner, to circumvent the time
window based protection. If this attack can be performed
in ideal case, our current design cannot protect acoustic
channel against this attack. However, this attack is very hard
to mount since it needs very flat frequency/phase-response
speaker/microphone to avoid acoustic distortions in ADC and
DAC. Otherwise, we can use fingerprinting method to unique
identify those acoustic hardware to check if there are relays.
Additionally, high quality speaker/microphone usually cannot
be made in small sizes, which enlarges the chance being
spotted by victim. Another potential counter-measure is to
employ distance bounding protocol [26].

V. PERFORMANCE OPTIMIZATIONS

WearLock Controllers are the running instances of our sys-
tem on the smartphone and smartwatch. One task of WearLock
Controller is to gather information from various sources and
make the final decisions on questions such as where to run the
computation and when to abort a transmission, which gives
us plenty of opportunities for performance optimizations. The
rationale is that the change of the way of unlocking smart-
phone using a paired smartwatch does not actually reduce the
frequency of unlocking. Every audio transmission is followed
by a series of intensive computations, which would be a burden
on wearable devices. Even though the microphone and speaker
power consumption are relatively low, digit signal processing
computations such as cross correlation, FFT based Modulation
and Demodulation, FFT based interpolation are all relatively
computationally intensive, consuming more power.

We believe that by well addressing those questions, we can
not only save energy for wearable devices but also reduce the
delay of processing. We conduct computation load balance and
computation reduction as two main solutions.

Computation Offloading. To mitigate the power drain on
wearables, we leverage the natural computation pattern of
the smartphone and its paired wearable, offloading heavy
computation tasks from the smartwatch to the smartphone.
Since all the acoustic modem and digital signal processing
libraries are implemented as a common module shared by both
phone-side and watch-side apps, we can easily partition the
computations among those two devices.

In order to understand the trade-off here, we have mea-
sured the time cost of processing after the recording and the
corresponding rough power consumption, in Figure 6. The
processing mainly consists of a sliding window based cross
correlator and an OFDM demodulator. Since it is not possible
to tear apart the Android smartwatch and connect it to a
power meter, we run our system for 50 rounds of acoustic

unlocking and rely on the Android OS battery status to roughly
measure the power consumption by the API provided by
Android framework. To be noted that, this energy consumption
measure is pretty rough, as the measurement procedure keeps
the device awake, violating the life-cycle design pattern of
an Android wear app. We anticipate more energy saving in
daily usage. From the result, we can see that by offloading to
the smartphone, it not only saves energy but also reduces the
computation time.
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Fig. 6: Time Cost (a) and Power Consumption (b) Comparison on
Offloading and Local Processing on Wearable.

Computation Reduction. The basic idea of the computa-
tion reduction is to leverage a series of filters using information
such as wireless network, ambient noise and motion sensors, to
avoid unnecessary follow-up heavy computation. For example,
the WearLock only works when the Bluetooth link exists.
Therefore, if there is no Bluetooth link, all the protocols and
algorithms will not run. Alternatively, the technique used in
Sound-Proof [20] is complementary to WearLock by leverag-
ing the similarity of ambient noise, to eliminate unnecessary
acoustic transmission, which is scheduled in the RTS/CTS
phase of adaptive modulation. If the ambient noise similarity
is below a threshold, we believe those two deices are not co-
located with a high confidence and then the transmission is
aborted. Additionally, we can also leverage the activity context
information or hand movement derived from sensor units to
reduce the number of acoustic transmissions.

Leveraging Motion Sensor-based Filtering: When the user
is engaged in activities, or the smartphone is hold by the
same hand that wears the watch, we can use the raw inertial
sensor data to detect the device movement similarity. This
will serve as a filter that can eliminate unnecessary acoustic
transmission if the similarity distance is lower or higher than
predefined thresholds. In order to use sensor traces, we need
to convert the 3-axis sensors to its magnitude representation
by s ←

√
s2x + s2y + s2z , since it is challenge to obtain

accurate relative orientation between those two devices. The
alignment of the sensor time series is not necessary since we
use Dynamic Time Warping (DTW) to find the best alignment
in the time domain [27]. The procedure is presented in Alg. 1.

Even though the time complexity of DTW is O(n2) assum-
ing two inputs are length of n, it is very cheap since n is
usually small ranging from 50 to 150 samples. We will verify
the feasibility and measure the time cost in the evaluation.



Algorithm 1 Sensor-based Filter
1: procedure SENSOR-BASED FILTERING
2: for each first phase do
3: while recording do
4: spx,y,z ← phone accelerometer
5: swx,y,z ← watch accelerometer
6: sp← Normalized(Magnitude(spx,y,z))
7: sw ← Normalized(Magnitude(swx,y,z))
8: if DTW(sp, sw) > dh then
9: abort protocol . save the computation

10: else if DTW(sp, sw) < dl then
11: skip second phase . save the computation
12: else
13: continue to the second phase

VI. EVALUATION

In this section, we will first briefly discuss the implemen-
tation details. Then, we will evaluate our system in terms
of communication range, adaptive modulation, sensor-based
filtering, system delay, a filed test and a case study.

Implementation Details. We have implemented our system
on Android OS, consisting of Android phone app and Android
wear app. We have wrapped the MessageAPI and ChannelAPI
of Android Wear SDK for implicit message/file transferring
so that we do not need to handle the underlying networking
using either Bluetooth or WiFi. We have also ported the
wear app to a smartphone in order to test near-ultrasound
frequency in WearLock. The OFDM modem is written in
pure JAVA libraries, which can be running on both sides.
The digital signal processing library is also written in JAVA
and we plan to move on native DSP library in the future.
The default FFT size is 256 and the sampling rate is 44.1
kHz, which gives about 172Hz sub-channel bandwidth. We
index our channels from 1-256. and in default we pick channel
{16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30} as data channels,
and {7, 11, 15, 19, 23, 27, 31, 35} as pilot channels for working
at 1-6kHz frequency band. The rests are null channels. We
shift this channel assignment with higher index when we want
15-20Khz frequency band. This channel assignments will be
adjusted during sub-channel selection. The preamble size is
256 samples, the post-preamble guard size is 1024 samples
and the CP duration is 128 samples. All those parameters can
be easily tuned in the setting activity of our app.

Communication Range. The communication range is a
very important performance metric. Ideally, we want to the
communication range to be strictly constrained within one
meter. However, the performance varies due to different
modulations and ambient noise. In Figure 7, we show the
communication range of the acoustic modem in terms of BER
in three different transmission modes. They are measured at an
office room with a LOS setup. We can see that by constraining
the max BER we can adaptively change the transmission mode
to guarantee that the signal fades significantly when the current
communication range is increased.

Adaptive Modulation. To understand the performance of
adaptive modulation, we have conducted two experiments.

First, we enable adaptive modulation selection in the previous
measurements to show the effectiveness of adaptive modula-
tion. In Figure 8, by constraining the BER, we can adaptively
change the modulation schemes, which can allow us to have
shorter packets or more redundant bits. It also guarantees
that an eavesdropper located nearby will have a larger BER
since a higher order modulation is more vulnerable to noise
and interference. Next, we demonstrate WearLock adaptation
to ambient noise in sub-channel selections. We use audible
frequency range for this experiment and employ an external
tone generator as an acoustic jammer, the Audacity, which
supports at most 6 mono-tracks simultaneously. We use QPSK
modulation with the smartwatch and smartphone placed at a
fixed distance about 15cm. The jammed sub-channel index is
randomly selected every time. The result, depicted in Figure 9,
shows that when the sub-channel selection is enabled, the
modem is able to avoid the noisy or interfered sub-channels
and maintain a stable BER.

Sensor-based Filtering. We have also evaluated the sensor-
based filtering to see how much similarity in sensor data we
can leverage to reduce the number of acoustic transmissions.
We tested WearLock in activities such as sitting, walking and
jogging, and also in different activities. The normalized DTW
scores and the running time are reported in Table II. The
activity context can be queried through Google Play Service
APIs. By setting a threshold on the DTW scores (0.1 in our
case), we can reduce the Max BER or skip the second phase
when the DTW score is under the threshold and abort the
transmission when the DTW score is above the threshold.

Activities Sitting Walking Running Different Cost(ms)
DTW Scores 0.05 0.02 0.06 0.20 45.9

TABLE II: Sensor-based Filtering

System Delay. The system delay is important since users
will lose their patience with the WearLock technique if it
is much slower than entering a password. There are two
types of delay: computation delay and communication delay.
We have broken down the computation delay into phase
1 channel probing processing, phase 2 pre-processing and
phase 2 demodulation in Figure 10 when the computation
is carried out on different devices. We have also measured
the communication delay in WiFi/Bluetooth message and
file transfer in Figure 11. Every experiment is repeated at
least 20 times. We did not measure the modulation since
the generation is very fast. Part of them can be generated
ahead-of-time and therefore the cost can be amortized. For
purpose of comparison, we also measured the time cost for
a user entering 4/6-digit PIN codes on an Android device
using similar method as [2]. The results are also aligned to
the medians of measurements in [2]. We compare the results
with three different configurations: Config1: the fastest case
where the smartwatch offloads computation via WiFi to a high
end smartphone (Nexus 6), Config2: the slowest case where
the smartwatch offloads computation via Bluetooth to a low
end smartphone (Galaxy Nexus), and Config3: local processing
case where the processing is on the smartwatch (Moto 360) as
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BER v.s. Locations Office Class Room Cafe Grocery Store
Diff. Hand (Audible) 0.0486(8PSK) 0.0333(8PSK) 0.0263(QPSK) 0.0119(QPSK)
Same Hand (Audible) 0.0889(8PSK) 0.0512(8PSK) 0.0655(QPSK) 0.0648(QPSK)
Diff. Hand (Near-ultrasound) 0.0556(8PSK) 0.0417(QPSK) 0.0233(QPSK) 0.0139(QPSK)
Same Hand (Near-ultrasound) 0.1054(QPSK) 0.1875(QPSK) 0.1971(QPSK) 0.2060(QPSK)

TABLE I: Field Test Result. The average BER is around 0.08.

shown in Figure 12. The results indicate WearLock has a delay
advantage over manually unlocking even on a low end device
and slow Bluetooth link with a speedup of at least 17.7%.
For the fastest case, the WearLock speedup is at least 58.6%.
Notably, WearLock experiences less delay and only needs the
user to click the power button.

Field Test. We tested WearLock with the smartphone and
smartwatch hold or worn in different configurations: same
hand and different hands. We also tested them in different
locations as offices, classrooms, cafes and grocery stores where
the typical sounds in those scenarios are human voice and
noises from sources such as keyboard typing, cafe machines,
air conditioners, etc. We report the BER results in Table I.
From the results, we find that near-ultrasound may have less
interference but significant signal fade due to direct path
blocking in the same hand case. The audible sound is less
convenient but more usable in most noise cases. It would be
better to use inaudible sound in quiet spaces and audible sound
in noisy spaces as long as the volume is controlled. We can
easily integrate this choice to current mobile OS since it is in
line with how smartphone users set their the sound preferences.

A Case Study. We asked five graduate students to try our
system in a class room environment one by one and made
detailed observation during the procedure. One of the students
held the bottom of the phone tightly covering the speaker at
the beginning. In this case, it gives a success rate of 3/10 when

required BER=0.1. We asked the student to try the second time
without holding the phone so tight. In this case, the success
rate is 8/10 when BER=0.1 and 10/10 when BER=0.15. One
student held the phone in one hand and wore the watch on
another hand, which yielded a success rate of 8/10 at BER=0.1.
One of the students preferred to use the phone with one hand
and wore the watch on the same hand, which gave a success
rate of 4/10 if using BER threshold as 0.1. However, the
NLOS detection can identify 3/10 as NLOS cases. If relaxing
the corresponding required BER of NLOS cases to 0.25, the
corrected success rate is 7/10. The average success rate among
five participants is 90%. From the perspective of convenience,
although the participants have perceived the delay due to
retry after failures in certain scenarios, they still felt that our
scheme was convenient and rated higher in convenience level
comparing to entering 6-digit PINs manually. The overall error
rate is acceptable and they felt no harassment to repeat the
unlocking via acoustics in case of failures. We leave as future
work a comprehensive user study involving more participants
and environments.

VII. DISCUSSION AND LIMITATIONS

Acoustic Frequency Range: Due to the frequency range
limitation of the mobile acoustic hardware, the implemented
system can work on audio range (1-6Khz) on a phone-watch
pair, and near-ultra sound range (15-20Khz) in a phone-phone
pair. This brings the limitation that the acoustic is either



audible or can be possibly heard by babies or animals. This is
one limitation of our work and we leave this to the smartphone
manufacture when devices with higher sampling rate will be
made. For example, several latest models of Samsung Galaxy
Note supports 96kHz and higher audio recording/playback.
Device with higher sampling rate can utilize higher and more
frequency bands with less noise and more bandwidth.

Bluetooth Proximity: According to the document of Blue-
tooth proximity profile that even the link between devices
has been securely enabled, the device can be spoofed into
assuming that the other device is close due to the internal
design of Bluetooth protocol, which means that naively using
Bluetooth proximity profile for secure distance measurement
is not encouraged [28]. Currently secure distance measurement
using Bluetooth requires additional development upon existing
stacks. Comparatively, our system on mobile and wearable
devices can be easily implemented in the application level and
ported to other devices. However, we do admit that a solution
via Bluetooth is promising, and we leave this in our future
work to explore secure ranged and easy-to-implement token-
based authentication in wireless channel.

VIII. RELATED WORK

There are two main areas related to our work. First, we will
briefly outline the acoustic communication on mobile device
and justify the difference of our work. Then, we will discuss
the existing work about authentications with reduced efforts.

Acoustic Communication on Mobile Devices. WearLock
is an extension of acoustic communications work on smart
devices. Dhwani [22] aims to replace NFC with an acoustic
orthogonal frequency division multiplexing (OFDM) modem
secured by a self-interference cancellation (SIC) technique.
Dolphin [29] and PriWhisper [30] also leverage similar idea
for secure acoustic channel. However, their schemes are not
suitable for practical and efficient implementation on phone-
watch pairs, since most smartwatches have no speakers and
generating a cancellation signal imposes both energy and pro-
cessing burdens on wearable devices. We use a different secure
scheme tailed for smartwatch which acts as a listener in acous-
tic channel and conduct offloading to shift computation and
energy burdens on smartwatch to more capable smartphone.
Work [31] used On-off keying on chirp signals to overcome
one of the main limitations of acoustic communication on
mobile devices: the short communication range. However, our
work make a good use of the relatively short communication
range, and we use OFDM which yields much higher data rate.
Google NearBy [32] is a recently published API to provide
near filed communication and interaction using Bluetooth,
WiFi and acoustics. The acoustic signal is modulated in
Dual-tone multi-frequency signaling (DTMF), which is slower
and less spectrum-efficient compared to OFDM. However, it
requires the devices to support near-ultrasound in 18.5kHz-
20khz and therefore is not supported on Android Wear devices
yet. Other work requires the provision of special acoustic
communication hardware [15], [33], [34]. WearLock requires
no additional special hardware.

Reduced-Effort Authentication. The reduced-effort au-
thentication are those techniques that seek to reduce or elim-
inate the human effort involved in authentications. The sim-
plest schemes utilize short-range radio communication using
Bluetooth or NFC. ZIA [35] is one of the earliest work with
zero-interaction authentication, leveraging an authentication
token. WearLock can be taken as a natural extension from PC
and electronic tokens to the nowadays common smartphone-
smartwatch pairs. Work [4] has proposed the combination
of multiple signals to define a security confidence level and
subsequent the authentication only at certain levels. Their
scheme can reduce the authentication frequency but requires
large effort in data collection and training. Similarly, work [36]
has proposed a method to lock the device when the users
physical separation is detected. Their method is complemen-
tary to ours and can be combined. Another way of reducing
effort in authentication is to leverage device co-location or
localization [20], [37]–[39]. Sound-Proof [20] has proposed
to leverage similarities in ambient noise signals for user
authentication. Sound-of-silent [37] has proposed to utilize the
silence patterns in recordings to provide co-location context.
However, these techniques cannot defend against co-located
attackers due to their reliance on relatively widely pervading
and unvalidated signals. WearLock relies on the presence of a
validated acoustic signal that is designed not to be detectable
more than one meter away from the generating device.

IX. CONCLUSION

In this paper, we show that a convenient and secure smart-
phone unlocking can be achieved by leveraging a paired
smartwatch. We argue that the smartwatch is an ideal wearable
token device that is theft-proof and has constant connections
to the phone. Smartphone users can save much effort from
unlocking. WearLock, the implemented system, secures the
acoustic channel by adapting the transmission power and mod-
ulation configurations, and sends an OTP tokens for validation
via acoustics to unlock the smartphone. To optimize the system
performance, we offload the heavy computation to the phone,
and leverage multi-source information including sensor data
to reduce unnecessary audio transmissions. WearLock can
achieve an average bit error rate of 8% in our experiments.
WearLock achieves at least 18% speedup even on a low-end
device, compared to entering PINs.
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