
LAVEA: Latency-aware Video Analytics on Edge
Computing Platform

Shanhe Yi, Zijiang Hao, Qingyang Zhang†‡, Quan Zhang†, Weisong Shi†, Qun Li
College of William and Mary, †Wayne State University, ‡Anhui University, China
{syi,hebo,liqun}@cs.wm.edu, †{qyzhang, quan.zhang, weisong}@wayne.edu

Abstract—
We present LAVEA, a system built for edge computing, which

offloads computation tasks between clients and edge nodes,
collaborates nearby edge nodes, to provide low-latency video
analytics at places closer to the users. We have utilized an edge-
first design to minimize the response time, and compared various
task placement schemes tailed for inter-edge collaboration. Our
results reveal that the client-edge configuration has task speedup
against local or client-cloud configurations.

I. INTRODUCTION

Edge computing is proposed to overcome inherent prob-
lems of cloud computing and power the Internet of Things
(IoT) [1]–[5]. Among many edge applications, we focus on
video edge analytics. The ability to provide low latency video
analytics is critical for applications in the fields of public
safety, counter-terrorism, self-driving cars, VR/AR, etc [6].
For example, in “Amber Alert”, our system can automate
and speedup the searching of objects of interest by vehicle
recognition, plate recognition and face recognition utilizing
web cameras deployed at many places. Simply uploading or
redirecting video feeds to cloud cannot meet the requirement
of latency-sensitive applications. Because computer vision
algorithms such as object tracking, object detection, object
recognition, face and optical character recognition (OCR) are
either computation intensive or bandwidth hungry. In address-
ing such problems, Mobile cloud computing (MCC) utilizes
both the mobile and cloud for computation. An appropriate
partition of tasks that makes trade-off between local and
remote execution can speed up the computation and preserve
energy at the same time. However, there are still concerns of
cloud about the limited bandwidth, the unpredictable latency,
and the abrupt service outage. Existing work has exploited
adding intermediate server (cloudlet) between mobile client
and the cloud. Cloudlet is an early implementation of the
cloud-like edge computing platform with virtual machine
(VM) techniques. We employed a different design on top of
lightweight OS-level virtualization which is low-cost, modular,
easy-to-deploy/manage, and scalable.

In this paper, we are considering a mobile-edge-cloud en-
vironment and we put most of our effort into the mobile-edge
and inter-edge side design. To demonstrate the effectiveness
of our edge computing platform, we have built the Latency-
Aware Video Edge Analytics (LAVEA) system. We divide the
response time minimization problem into two sub-problems.
First, we formulated computation offloading problem as a

mathematical optimization to choose offloading tasks and al-
locate bandwidth among clients. Second, we enable inter-edge
collaboration by leveraging nearby edge nodes to reduce the
overall task completion time. We investigated task placement
schemes and the findings provided us insights that lead to an
efficient predication-based task placement scheme.

II. SYSTEM DESIGN

We present our system design in Figure 1. Our design
goals are: 1) Latency. The ability to provide low latency
services is recognized as one of the essential requirements of
edge computing system design. 2) Flexibility. Edge computing
system should be able to flexibility utilize the 3) Edge-first.
By edge-first, we mean that the edge computing platform is
the first choice of our computation offloading target.

Host or Host Cluster Hardware

Host OS

Container

Container Manager (Docker Engine)

HDFS SQL KV
Store

Data Store
Service

Offloading
Service

Queueing
Service

Scheduling
Service

Edge Front Gateway

Worker

Task Queue

Container Container Container Container

Monitoring
Service

Worker Worker

Task Scheduler

Worker Worker Worker

Worker Worker Worker

Producer

Workload Optimizer

Producer

Graph

Queue Prioritizer

Task Worker

Profiler
Service

Edge Computing Platform API

Platform Internal API

OS-level Virtualization

Edge Computing Platform SDK
Edge Computing Platform Client API

Application

Profiler
Offloading Controller

Worker Worker Worker

Task Scheduler

Local Worker
Stack

OS or Container

Edge Computing
Node

 Access Potint

Security Camera

Dash Camera Smartphone and Tablet

Laptop

Fig. 1: The architecture of edge computing platform

In LAVEA, the edge computing node attached to the same
access point or base station as clients is called the edge-front.

Edge-front offloading. We consider N clients and only one
edge server. Each client i, i ∈ [1, N] processes tasks belong
to a certain job, e.g. recognizing plates, and select tasks for
offloading to the edge. Without loss of generality, we start with
a directed acyclic graph (DAG) G = (V,E) as the task graph.
Each vertex v ∈ V is the computation of a task (cv), while
each edge e = (u, v), u, v ∈ V, e ∈ E represents the interme-
diate data size (duv). The remote response time includes the
transmission delay of sending data to the edge server and the
execution time. We use an indicator Iv,i ∈ {0, 1} to indicate
the task v of client i running locally or remotely. The total
local execution time for client i is T local

i =
∑

v∈V Iv,icv/pi
where pi is the processor speed of client i. Similarly, we use
T

local
i =

∑
v∈V (1 − Iv,i)cv/pi to represent the execution time

of running the offloaded tasks locally. For network, when
there is an offloading decision, the client need to upload
the intermediate data (outputs of previous task, application
status variables, configurations, etc) to the edge server in order
to continue the computation. The data transmission delay is
modeled as Tnet

i =
∑

(u,v)∈E(Iu,i−Iv,i)duv/ri where ri is the
bandwidth assigned for this client. For each client, the remote
execution time is T remote

i =
∑

v∈V (1− Iv,i)(cv/p0) where p0
is the processor speed of the edge server.

The offloading task selection problem can be formulated as

min
Ii,ri

N∑
i=1

(T local
i + Tnet

i + T remote
i) (1)

where the task selection is represented by the indicator matrix
I. The optimization problem is subject to constraints: 1) The
total bandwidth s.t.

∑N
i=1 ri ≤ R 2) We restrict the data

flow to avoid ping-pong effect: s.t. Iv,i ≤ Iu,i, ∀e(u, v) ∈
E,∀i ∈ [1, N] 3) Unlike mobile cloud offloading, we consider
the resource contention or schedule delay at the edge side
by adding a end-to-end delay constraint. s.t. T

local
i − (Tnet

i +

T remote
i) > τ, ∀i ∈ [1, N] where τ can be tuned to avoid

selecting borderline tasks that if offloaded will get no gain
due to the resource contention or schedule delay at the edge.

Inter-edge Collaboration. The intuitive task placement
scheme for inter-edge collaboration is to transfer tasks to
the candidate edge node which has the least number of
queued tasks upon the time of query, stated as shortest
queue length first (SQLF). However, this scheme neglects the
network latency and has scalability issue when the number
of candidates scales. We have designed a novel predication-
based shortest scheduling latency first (SSLF) scheme for
its ability to estimate the scheduling latency efficiently. To
measure response time, edge-front appends a no-op task to
the task queue of each candidate edge node. When the special
task is executed, the edge-front shall receive the response
message and maintain a series of response times for each
candidate. Since the candidate’s workload may vary from
time to time, the most recent response time cannot serve
as a good predictor of the response time. The edge-front
estimates the response time for each candidate by regression
analysis of history response time series. In this way, edge-front
node can offload tasks to the edge node with the estimated
least response time. Once the edge-front node start to place
task to a certain candidate, the estimation will be updated
using piggybacking of the redirected tasks, which lowers the
overhead of measuring.

III. EVALUATION

We have built a testbed consisting of four edge computing
nodes. We make use of two types of Raspberry Pi (different
models with different network interfaces) nodes as clients,
We employed three datasets: 1) Caltech Vision Group 2001
dataset, 2) a video contains rear license plates in various
resolutions, 3) a small dataset in the OpenALPR project.

To understand the benefit of offloading tasks, we design an
experiment on wired and wireless clients. The result of the

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
1

2
3

4
R

e
sp

o
n
se

 T
im

e
 p

e
r

fr
a
m

e
 p

e
r

cl
ie

n
t(

s) Client-edge opt
Client only
Edge only
Client-cloud opt
Cloud only

Fig. 2: The comparison of task
selection impacts on edge offload-
ing and cloud offloading for wired
clients (RPi2).

640x480
workload2

960x720
workload2

1280x960
workload2

1600x1200
workload2

0
1

2
3

4
R

e
sp

o
n
se

 T
im

e
 p

e
r

fr
a
m

e
 p

e
r

cl
ie

n
t(

s) Client-edge opt
Client only
Edge only
Client-cloud opt
Cloud only

Fig. 3: The comparison of task
selection impacts on edge offload-
ing and cloud offloading for 2.4
Ghz wireless clients (RPi3).

first case is straightforward: the clients upload all the data
and run all the tasks remotely in edge offloading or in cloud
offloading, as shown in Fig. 2. The result of wireless client
node offloading tasks to the edge or the cloud is in Fig. 3.
Overall, our results show that the client-edge configuration
has a speedup ranging from 1.3x to 4x (1.2x to 1.7x) against
running in local (client-cloud).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

r
o
u

g
h

p
u

t
(t

a
sk

s/
se

c
)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Fig. 4: Performance of SQLF.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
h

r
o
u

g
h

p
u

t
(t

a
sk

s/
se

c
)

Time (min)

Edge-front node
Edge node #1
Edge node #2
Edge node #3

Fig. 5: Performance of SSLF.

In evaluating inter-edge collaboration, Fig. 4 and Fig. 5
illustrate the throughput result of SQLF scheme and SSLF
scheme respectively. In the setup, edge node #1 has the lowest
transmission overhead but the heaviest workload among the
three edge nodes, while edge node #3 has the lightest workload
but the highest transmission overhead. Edge node #2 has
modest transmission overhead and modest workload. In SQLF,
the edge-front node transmits tasks to less-saturated edge
nodes, efficiently reducing the workload on the edge-front
node. However, the edge-front node intends to transmit many
tasks to edge node, which has the lowest bandwidth and the
longest RTT to the edge-front node. SSLF scheme considers
both the transmission time of the task and the waiting time in
the queue on the target edge node, and therefore achieves the
better performance.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE
Personal communications, vol. 8, no. 4, pp. 10–17, 2001.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, Mobidata ’15. ACM, 2015, pp. 37–42.

[3] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Hot Topics in Web Systems and Technologies (HotWeb),
2015 Third IEEE Workshop on. IEEE, 2015, pp. 73–78.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[5] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software architecture
for fog computing,” Internet Computing, 2017.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
Oct 2016.

