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Abstract—We have seen an emerging trend towards wearables
nowadays. In this paper, we focus on smart glasses, whose current
interfaces are difficult to use, error-prone, and provide no or
insecure user authentication. We thus present GlassGesture, a
system that improves Google Glass through a gesture-based
user interface, which provides efficient gesture recognition and
robust authentication. First, our gesture recognition enables the
use of simple head gestures as input. It is accurate in various
wearer activities regardless of noise. Particularly, we improve the
recognition efficiency significantly by employing a novel similarity
search scheme. Second, our gesture-based authentication can
identify owner through features extracted from head movements.
We improve the authentication performance by proposing new
features based on peak analyses, and employing an ensemble
method. Last, we implement GlassGesture and present extensive
evaluations. GlassGesture achieves a gesture recognition accuracy
near 96%. For authentication, GlassGesture can accept autho-
rized users in near 92% of trials, and reject attackers in near
99% of trials. We also show that in 100 trials imitators cannot
successfully masquerade as the authorized user even once.

I. INTRODUCTION

In recent years, we have seen an emerging trend towards
wearables, which are designed to improve the usability of
computers worn on the human body, while being more aesthet-
ically pleasing and fashionable at the same time. One category
of wearable devices is smart glasses (eyewear), which are
usually equipped with a heads-up, near-eye display and various
sensors, mounted on a pair of glasses. Among many kinds
of smart eyewear, Google Glass (Glass for short) is the most
iconic product. However, since Glass is a new type of wearable
device, the user interface is less than ideal.

On one hand, there is no virtual or physical keyboard
attached to Glass. Currently, the most prominent input method
for Glass has two parts. However, each of these input methods
suffers in many scenarios. First, there is a touchpad mounted
on the right-hand side of the device. Tapping and swiping on
the touchpad is error-prone for users: 1) The user needs to
raise their hands and fingers to the side of their forehead to
locate the touchpad and perform actions, which can be difficult
or dangerous when the user is walking or driving. 2) Since
the touchpad is very narrow and slim, some gestures, such
as slide up/down, or tap can be easily confused. 3) When
the user puts Glass on their head, or takes it off, it is very
easy to accidentally touch the touchpad, causing erroneous
input. Second, Glass supports voice commands and speech
recognition. A significant drawback is that voice input cannot

be applied in every scenario; for example, when the user is
talking directly with someone, or in a conference or meeting.
An even worse example is that other people can accidentally
activate Glass using voice commands, as long as the command
is loud enough to be picked by Glass. Additionally, disabled
users are at a severe disadvantage using Glass if they cannot
speak, or have lost control of their arms or fine motor skills.

On the other hand, authentication on Glass is very cumber-
some and is based solely on the touchpad [1]. As a wearable
device, Glass contains rich private information including point-
of-view (POV) photo/video recording, deep integration of
social/communication apps, and personal accounts of all kinds.
There will be a severe information leak if Glass is accessed by
some malicious users. Thus, any user interface for Glass needs
to provide schemes to reject unauthorized access. However,
the current authentication on Glass is far from mature: a
“password” is set by performing four consecutive swiping or
tapping actions on the touchpad similar to a traditional four
digit PIN code. This system has many problems. First, the
entropy is low, as only five touchpad gestures (tap, swipe
forward with one or two fingers, or swipe backward with
one or two fingers) are available, which form a limited
set of permutations. Second, these gestures are difficult to
perform correctly on the narrow touchpad, especially when
the user is not still. Third, this sort of password is hard to
remember because it is unorthodox. Finally, this system is
very susceptible to shoulder surfing attacks. Any attacker can
easily observe the pattern from possibly several meters away,
with no special equipment.

Fig. 1: Head Movements

To solve all of these problems, we propose the use of head
gestures (gesture for short) as an alternative user interface
for smart eyewear devices like Google Glass. Because head
gestures are an intuitive option, we can leverage them as



a hands-free and easy-to-use interface. A head gesture is a
short burst of several discrete and consecutive movements
of the user’s head, as illustrated in Fig. 1. Motion sensors
(i.e. the accelerometer and gyroscope) on Glass are able to
measure and detect all kinds of head movements due to their
high electromechanical sensitivity. However, smart eyewear
presents new challenges for head gesture interface design.
We need to answer questions such as “What are easy-to-
perform head gestures?”, “How do we accurately recognize
those gestures?”, “How do we make the system efficient on
resource-limited hardware?”, and “How does the system reject
unauthorized access?” and so on.

In this paper, we present GlassGesture, a system aiming
to improve the usability of Glass by providing a novel user
interface based on head gestures. We are the first work,
to the authors’ knowledge, to consider head-gesture-based
recognition/authentication problems for smart glasses. First,
GlassGesture provides head gesture recognition as a form
of user interface. This has several advantages against the
current input methods, because head gestures are easy-to-
perform, intuitive, hands-free, user-defined, and accessible for
the disabled. In some situations, it may be considered inap-
propriate or even rude to operate Glass through the provided
touchpad or voice commands. Head gestures in comparison,
can be tiny and not easily noticeable to mitigate the social
awkwardness. Second, the head gesture user interface can
authenticate users. In particular, head gestures have not been
exploited in authentication yet in the literature. We propose
a novel head-gesture-based authentication scheme by using
simple head gestures to answer security questions. For exam-
ple, we ask user to answer a yes-or-no question, by shaking
(no) or nodding (yes) her head. However, an attacker who
knows the answer to the security questions can still access
the device. To mitigate such attacks, we further propose to
leverage unique signatures extracted from such head gestures
to identify the owner of the device from other users. Compared
to the original, touchpad-based authentication, our proposed
head-gesture-based authentication is more resistant to shoulder
surfing attacks , and requires much less effort from the user.

In summary, we make the following contributions:
• For gesture recognition, our system increases the input

space of the Glass by enabling small, easy-to-perform
head gestures. We propose a reference gesture library ex-
clusively for head movements. We utilize activity context
information to adaptively set thresholds for robust gesture
detection. We use a weighted dynamic time warping
(DTW) algorithm to match templates for better accuracy.
We speed up the gesture matching with a novel scheme,
which reduces the time cost by at least 55%.

• For authentication, we prove that “head gestures can be
used as passwords”. We design a two-factor authenti-
cation scheme, in which we ask users to perform head
gestures to answer questions that show up in the near-
eye display. To characterize head gestures, we identify a
set of useful features and propose new features based on
peak analyses. We also explore several optimizations such

as one-class ensemble classifier, and one-class feature
selection, to improve the authentication performance.

• We prototype our system on Google Glass. We design
experiments to evaluate gesture recognition in different
user activities. We collect a total of around 6000 gesture
samples from 18 users to evaluate the authentication
performance. Our evaluation shows that GlassGesture
shows accurate gesture recognition. It can reliably accept
the authorized users and reject attackers.

II. RELATED WORK

Activity Recognition. Researchers have shown that when
smart device is carried with user, it can provide context
information about the user activities [2]–[4]. However, in this
paper, we are not aiming at improving upon the state-of-the-art
activity recognition systems. We use a simple activity detector,
to tune parameters for gesture detection.

Gesture Recognition. It has been shown that gestures as
input can be precise, and fast. While there is a broad range
of gesture recognition techniques based on vision, wireless
signal, touch screen [5]–[7], we focus mainly on motion-
sensor-based gesture recognition because it is low-cost, com-
putationally feasible, and easy to deploy on mobile devices [8].
We differ from these works in that we propose a head gesture
based interface for smart glasses. And we carefully design
the system to work with head gestures which faces different
challenges such as noise from user activities, performance on
resource-constrained devices. For head gesture recognition,
existing work mainly focuses on vision-based methods [9],
while GlassGesture utilizes sensor mounted on user’s head.
For gesture recognition on Google Glass, Head Wake Up
and Head Nudge [10] are two built-in gesture detectors as
experimental features which monitor the angle of head. A
similar open-sourced implementation can be found in [11]. In
contrast, GlassGesture is more advanced which can recognize
self-defined, free-form head gestures efficiently and accurately.

User Authentication. There has been research on au-
thenticating based on the unique patterns they exhibit while
interacting with phone [12]–[17] through touch screens and
motion sensors. These systems show that such authentication
schemes are less susceptible to shoulder surfing, and, don’t
require the user to memorize passcode. For authentication on
Google Glass, work [18] and [19] are touchpad-gesture-based
authentication, which needs continuous user effort to hold up
fingers on the touchpad. Our work is orthogonal that tries to
bring easy authentication to smart glasses using head gestures,
which is simple, hands-free, and requires less effort.

III. GLASSGESTURE SYSTEM DESIGN

In this section, we present the system design of Glass-
Gesture. First, we give an overview of our system and its
architecture. Then we introduce each module and elaborate its
corresponding components.
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Fig. 2: System Architecture

A. System Overview

Our system consists of two modules, which together form
our gesture-based interface. The first module allows users to
input small gestures using their heads; the second module
authenticates users based on their head gestures. The archi-
tecture of our system is illustrated in Fig. 2, which shows
that the Gesture Recognition module is the corner stone. We
leverage an activity detector to tune the parameters for more
accurate gesture detection, based on user activity context. An
enrollment submodule is in charge of managing the gesture
templates. The gesture recognizer runs the DTW matching
algorithm to recognize potential gestures. The gesture-based
authentication module is built on top of the first module.
It extracts features from the raw sensor data for training.
With trained classifiers, we form a two-step authentication
mechanism using simple head gestures to answer secure
questions first and identifying the correct, unique signatures in
the gesture movement data second. In the following sections,
we present the design details of each module.

B. Head Gesture Recognition

Observations and Challenges. We have made some pre-
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Fig. 3: Collected Sensor Trace: The user sits still for about 17s,
then stands up and walks for about 10s, then runs for a few seconds
and stops. In each activities (marked in accelerometer plot), she
performs several head gestures such as nodding, shaking, looking
up/down/left/right (sensor coordinate reference [20]).

liminary observations from the collected trace in Fig. 3: 1)
Different activities add different amounts of noise. It is not
easy to derive a general criterion for gesture detection in all
of the many kinds of activities the user may be participating
in at the time the gesture is made. 2) Head gestures mainly
consist of rotations rather than accelerations. We see obvious

gyroscope readings while the user is performing head gestures
in various activities, compared to relatively noisy accelerom-
eter readings. There it is possible to provide head gesture
detection/recognition through the gyroscope data. 3) Head
gestures can be used rather frequently by the user. We need an
efficient recognition scheme for performance considerations.

In summary, we face three challenges in designing this
module. 1) Head gesture library: There is no library, which
defines the most suitable head gestures for smart glasses. 2)
Noise: Sensors on Glass are used to collect head movements,
while at the same time may also collecting noise from other
user activities. This will deteriorate the performance of the
gesture recognition. 3) Computation: In recognition tasks,
computationally-intensive algorithms may need to be called
frequently, resulting in unsatisfactory performance. Therefore,
it must be optimized to be extremely efficient, without sacri-
ficing substantial recognition accuracy.

Head Gesture Library. We need to provide a head gesture
library as reference since head gestures are quite different from
traditional hand gestures. For example, 1) head gestures mainly
consist of rotational movement. 2) users moving their heads
have limited freedom in 3D space. (e.g. usually humans can
only look up and down in less than 180◦. 3) In order to convey
more information, we need a new set of head gestures beside
the traditional ones that are already used (e.g., shaking for
“no” and nodding for “yes”). In light of these constraints, we
develop six basic candidate gesture categories adapted from
work [8] and [21]: 1) nod, 2) look up/down/left/right, 3) shake,
4) circle, 5) triangle, and 6) rectangle. To clear up confusion
when drawing (performing, acting out the gesture), we suggest
the user move their head just like drawing something in the
air in front of themselves using their nose like a pen tip.

Gesture Styles Number
of strokes

Easy
to perform

Frequency
in Fig. 4

Easy
to repeat Decision

1 up and down 3+ 5.2 low no keep

2 up/down/left/right 1 4.9 high yes
(81%) keep,repeat

3 left and right 3+ 4.4 low no keep

4 cw/ccw 1 3.0 very low neutral keep

5 cw/ccw,
directions 3 2.2 very low no drop

6 cw/ccw,
start points 4 1.4 very low no drop

TABLE I: Head gesture candidates.

With the purpose of trying to figure out what gestures are
suitable, we performed a simple survey to rank them on how
easy each category is to be performed for untrained users. It
is important to note that the survey, and all data collections in
the entire paper, have gone through the IRB approval process.
In total, we have received 22 effective responses. The study
results are presented in Table I. Our survey results indicate
that nodding and shaking are popular and usually convey
special meanings (e.g. “yes” and “no”). Circles are easy to
perform since they are single-stroke. The rectangle and triangle
gestures are the least favored, due to the multiple strokes they
entail. Simple “look up/down/left/right” gestures are easy and
fast, but they appear frequently in daily head movement as
shown in Fig. 4, another study we have done to understand
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Fig. 4: Gesture frequency of a user seated, working at a desk for
about 20 minutes. The number in the name is the repetition count.
“cw” is short for clockwise, “ccw” is short for counter-clockwise.

the frequency of daily life head gestures. This leads us to
believe there will be a significant false positive rate if they
are utilized naively. However, 81% of participants think they
are easy to be performed repeatedly. We decide to keep these
gestures, as long as the user is willing to repeat them two or
three times consecutively to reduce the false positive rate. It is
important to note that this head gesture library is only a default
reference. GlassGesture allows the user to define new arbitrary
head gestures. We also evaluate are gesture recognition system
with “number” and “letter” input later in this work.

Activity Detector. The observations made in Fig. 3 motivate
the need for a user activity context service, to help detect
head gestures in different activity contexts. Normally, Google
Play Service provides activity APIs, which can be leveraged.
Unfortunately, it is not supported on Glass at the time of
writing. To fill this gap, we have implemented a simple
activity detector using the accelerometer. Samples from the
accelerometer are chunked by an overlapping sliding window.
We extract features, like mean, standard deviation (std), root
mean square (rms), from each axis in every chunk. Then a
decision tree is used as the classifier, due to its simplicity
and efficiency. The classifier currently gives one of the four
outputs: 1) sitting/standing, which indicates that the user’s
head is fixed and the user’s body is not moving; 2) walking; 3)
running; and 4) driving. By using a 50 Hz sampling rate, and a
10-second window with a 5-second overlap, the classifier gives
an average accuracy of 98% in our preliminary experiments,
which is adequate for use in our system.

Gesture Detector. The goal of the gesture detector is to
capture potential gesture from the sensor’s time series data.
To find a potential gesture, we begin with windowing (30
samples) the gyroscope samples, and we calculate the rolling
standard deviation (std). A threshold on the gyroscope rolling
std for the gesture detector will be set according to the current
activity context, given by activity detector. To determine
the thresholds, we collect user gyroscope data in different
activities with and without the head gestures and apply a
histogram-based method as shown in Fig. 5. In our current
implementation, we disable the gesture recognition function
when the user is running or driving for safety concerns. If
the rolling std is below the current threshold, we know that
there cannot be any gesture present, and the samples are
discarded. Otherwise, we start to buffer both accelerometer
and gyroscope readings. We keep these buffered samples until
the rolling std drops below the threshold, indicating that user
is no longer moving and the gesture has finished. We then

Fig. 5: Thresholds under different activities. The threshold will be
set small when the user is sitting or standing, to enable even tiny
head gesture detection (0.15). It will be set much larger when user
is walking or running (0.7 and 1.3 respectively).

check the sample length and drop all the buffered samples
if the length is too short or too long (a head gesture usually
ranges from 30 to 240 samples at 50 Hz sampling rate).

Gesture Recognizer. The gesture recognizer is the core of
the gesture recognition module. A head gesture is defined as
a time series of gyroscope samples about 0.5s to 2s long. The
raw gyroscope sensor data, S, can be written as an infinite
stream of four-tuples, i.e. S = {(x, y, z, t)1, (x, y, z, t)2, ...}.
Likewise, a gesture G, is defined as a subset of sequential
elements in S, i.e. G = St∈[t1,t2] ⊆ S. We refer to gestures
that the system has already learned as “gesture templates”,
denoted as Gt. Because the system is passively listening, the
user can perform any gesture at any time, so the problem
becomes finding the gesture G in the infinite time series S
and identifying which template Gt is the closest match.

1) Gesture Template Enrollment: GlassGesture selects tem-
plates, from the gestures recorded as the user does, in a gesture
template enrollment procedure. This allows the system to be
maximally accurate for its user. During enrollment, we require
users to sit still when they are recording a new gesture. The
recorded time series are normalized and error cases are filtered
out. We will create templates from the recorded gestures
using a clustering algorithm called affinity propagation, which
has been proposed as an effective method [22]. The selected
gesture, i.e. the affinity propagation cluster center, is stored as
a gesture template in the system for recognition later.

2) Weighted Dynamic Time Warping: We use the weighted
DTW algorithm to measure how well two gestures match,
which has several advantages such as simplicity, working di-
rectly on raw data, and computational feasibility on wearables
[8]. DTW calculates the distance between two gestures, by
scaling one in the time domain until the distance is minimized.
The algorithm takes two time series; a potential gesture G and
a gesture template Gt. Assuming that G is of length l and Gt
is of length lt, where i ∈ [1, l], j ∈ [1, lt], given a 3-axis
gyroscope time series, we have

dtw(G,Gt) =
√

wxD2
l,lt

(x) + wyD2
l,lt

(y) + wzD2
l,lt

(z)

The function D denotes the matching distance or cost, which
is calculated as

Di,j = d(G(i), Gt(j)) + min{Di−1,j−1, Di,j−1, Di−1,j}

where d is a distance measure; we use Euclidean distance
(ED). We also add weights (wx, wy, wz) to each axis to better
capture the differences of gestures, since we have found that



head gestures have different movement distributions along
each axis. For example, a nodding gesture is much stronger
in the x-axis the the y-axis or z-axis. Weights are calculated
by the std on each axis of the template as

wx =
std(Gtx)

std(Gtx) + std(Gty) + std(Gtz)

The best match (minimal D(l, lt)) is optimized in the sense
of an optimal alignment of those samples. We can say that
G matches Gt, if dtw(G,Gt) is below a certain threshold.
To recognize which gesture is present in a given window, we
need to run DTW iterating all templates. Whichever template
has the lowest DTW distance with the target, and is below a
safety threshold, is selected as the recognition result.

3) Efficient Similarity Search: DTW is a pair-wise template
matching algorithm, which means that to detect a gesture
naively, we need to traverse all gesture templates. It costs
O(N2) to compare two time series at length of N (we set
l = lt = N for simplicity), which is not efficient when there
is a large number of gesture templates. We propose several
schemes to optimize the performance.

Firstly, to reduce the search complexity, we want to build
a k-dimensional (k-d) tree to do k-Nearest Neighbor (kNN)
searches. However, tree branch pruning based on the triangle
inequality will introduce errors if applied directly on DTW
distances between gesture templates, since DTW distance is
a non-metric and does not satisfy the triangle inequality [23].
Therefore, we build the tree using Euclidean distance (ED)
instead, which is a metric distance, and therefore preserves
the triangle inequality, allowing us to do pruning safely.

Secondly, to further reduce the computation, we down-
sample the inputs before calculating the ED. Then we build
the k-d tree. To recognize a target gesture, we first use the
down-sampled target gesture to do the kNN search over the
k-d tree. Then, we iterate over all k candidate templates to
calculate the DTW distance with the target to find the best
match with no down-sampling for the best accuracy.

The construction of a k-d tree is given in Alg. 1. And the
kNN search is given in Alg. 2. Say we have m templates,
which are all of length N . It costs O(m ∗N2) when iterating
over all the templates to match a target gesture, using DTW.
The set of m gesture templates in N -space (each template
is of length N ) can be firstly down-sampled to nED-space
(each template is at nED length, nED ≪ N ). We build a k-d
tree of O(m) size in O(m logm) time to process the down-
sampled templates, of which the cost can be amortized. The
kNN search query can be answered in O(m

1
nED + k), where

k is the number of query results. In total, the time cost is
O(m

1
nED + k + k ∗N2).

Lastly, we can also down-sample the gesture data before
running DTW after the kNN search. The time cost will become
O(m

1
nED +k+k ∗nDTW

2) where nDTW ≪ N is the down-
sampled length for DTW. However, it is non-trivial to choose
proper nDTW , since we don’t want the down-sampling to
remove important features of the time series. If this is the
case, then the DTW algorithm may fail at differentiating two

slightly different gestures. We evaluate nDTW through our
experiments in the evaluation section.

C. Head-Gesture-based Authentication

Basic Idea. As we mentioned previously, Glass does not
have a robust authentication scheme. To secure the interface in
GlassGesture, we propose the use of signatures extracted from
simple head gestures. In order to lead the user to perform a
natural and instinctual gesture, a “yes or no” security question,
that can be answered using head gestures, is presented on the
near-eye display. The user answers with head movements. In
this way, the instinctual gestures (nodding and shaking) can be
considered consistent head movements. After that, the answer
(gestures) will be verified by the system. Features are extracted
from motion sensors, then fed into a trained classifier. If
the answer is correct and the classifier labels the gesture as
belonging to the user, the user will be accepted. Otherwise, it
will reject the user. Thus, we form a two-factor authentication
scheme. While we mainly test the feasibility of the “nod”
and “shake” gestures, since they convey social meanings in
answering questions, we do not rule out the possibility of
other head gestures. This scheme has several advantages over
the existing authentication done on the touchpad. First, the
user does not have to remember anything, as the signatures
we extract are inherent in their movement/gesture. Second,
nod and shake are simple gestures taking almost no effort
from user. Finally, an attacker cannot brute-force this system
even with significant effort, because 1) the near-eye display
is a private display, which can prevent shoulder surfing on
the secure questions; 2) the signature of the head gestures are
hard to observe by the human eye, unaided by any special
equipment. Furthermore they are difficult to forge even with
explicit knowledge of the features.

Threat Model. We have identified three types of possible
attackers. The Type-I attacker has no prior information what-
soever. This attacker simply has physical access to the user’s
Glass and attempts to authenticate as the user. Type-I attacks
are very likely to fail and ultimately amount to a brute force
attack, which can be mitigated by locking the device after a
few consecutive authentication failures. The Type-II attacker
may know the answer to the user specific security questions,
but will try to authenticate with head gestures in their own
natural styles (not trying to imitate the correct user’s motions
or features). The Type-III attacker, the most powerful attacker,
not only knows the answers to the security questions, but
also is able to observe authentication instances (e.g. through
a video clip). The attacker can try to perform the gesture in a
similar manner as the owner, in an attempt to fool the system.
Note that, there is no security mechanism which can guarantee
that the attacker will not be able to obtain the data on the
device once the attacker has physical access. The proposed
authentication method can slow the attacker down, foil naive
or inexperienced attackers, and make the task of extracting
data from the device more difficult.

Authentication Setup. In this offline setup phase, the user
first needs to establish a large set of security questions with



Algorithm 1 Build KD-Tree

1: procedure BUILD KDTREES( T, nED)
2: for each template t in T do
3: downsampling to length-nED

4: stored in Tdown.
5: end for
6: Build a KD Tree from Tdown using

Euclidean distance, as Tr
7: end procedure

Algorithm 2 kNN search.

1: procedure KNN SEARCH(Tr, t, k)
2: put k nearest neighbors of target t in

tree Tr into C.
3: for each candidate in C do
4: run DTW on target and candidate.
5: end for
6: return index of minimal DTW distances
7: end procedure

Fig. 6: K-S test results for gesture Nod and
Shake

answers. These questions could be something like “Is Ford
the maker of your first car?”, “Is red your favorite color?” etc.
Next, the user is also involved in contributing an initial training
set, from which a classifier model can be built. Because
the classifier requires some training samples before sufficient
accuracy is achieved (>30 training samples in our evaluation),
we optionally propose that the system can leverage the gesture
recognition module to opportunistically collect instances of
the “nod” and “shake” gestures. Whenever GlassGesture rec-
ognizes these gestures, we store these instances for classifier
training in the authentication module.

Feature Set. We select statistical features such as, mean,
standard deviation (std), root mean square (rms), kurtosis,
skewness, median absolute deviation (mad), zero-crossing rate
(zcr) and inter-quartile range (iqr). We also add features like
energy, duration and inter-axis correlation (iac). Additionally,
we add a new category of features called peak features (in-
cluding average peak-to-peak duration, average peak-to-peak
amplitude, and peak number) by analysing peaks in the motion
sensor data, which we have found effective at characterizing
movements like head gestures. We collect motion sensor data
of gesture samples from 18 users (gender: m/f: 14/4; age: 20-
30: 11, 30-40: 5, 40+: 2.) while they are answering yes or no
questions using head gestures. We extract features from the
raw accelerometer and gyroscope data on each axis, in total
84 unique features, for each sample. To test the effectiveness
of the selected features, we run a two-sample Kolmogorov-
Smirnov test (K-S test) to see whether the features of different
users are from differentiable distributions. From the results in
Fig. 6, we can find that all the p-values, returned by K-S test,
are smaller than the significant level (0.05), which indicates
the effectiveness of selected features.

Training and Classification. SVM classifies have been
widely used in biometric-based authentication systems and
radial basis function (RBF) kernels have been shown to have
good performance [13], [14]. For the authentication problem,
a one-class classifier is the most practical model since, at the
training phase, the system can only gather training samples
from the authorized user. However, ideally, if the system
is able to gather enough negative instances, the one-class
classifier might be outperformed by a two-class classifier,
eventually. Therefore, for practicality concerns, we report
the one-class classifier results to assess our gesture-based
authentication system. The training phase happens offline. We

use a grid search to get the optimal parameters for the one-
class SVM classifier (OCSVM) and the RBF kernel with a
10-fold cross validation. To further improve the classification
performance, we employ a one-class ensemble SVM method
(OCESVM) [24] to combine multiple classifiers. The basic
idea is that we collect and rank multiple sets of parameters
by the true positive rate (TPR) with a constraint on the false
positive rate (FPR <1%) during the grid search. Then the
top-r (we set r = 5 empirically) classifiers are chosen to
form an ensemble classifier using majority voting on the
classification decisions. We use the trained model to classify
the test samples. The test samples can be labeled in one of two
ways: 1) samples from the authorized user; 2) samples from
some other, unauthorized user. We will present the evaluation
of our training and classification in next section.

Feature Selection. While our features are extracted from
three axes, it is possible that a gesture in 3D space may be
well characterized by features extracted from data of only one
(1D) or two axes (2D). Therefore, we apply recursive feature
elimination (RFE) [25] to eliminate redundant or useless
features, which will increase accuracy and reduce delay. In
RFE, the training process will recursively select a subset of
the features, which works best on preliminary data. However,
RFE usually works with multi-class classifiers, not one-class
classifiers. Therefore, we propose a new way of applying
RFE in one-class classification. The training set in one-class
classification are all positive instances (same class labels). The
basic idea is to divide the training set into several groups
evenly and manually assign each group a different virtual class
label, to turn the one-class training set into a multi-class one.
In applying of RFE onto this “fake” multi-class training set, we
use a 10-fold cross validation and vote on the features in each
run. Since features which top the voting result contribute most
in differentiating those virtual groups, we eliminate features
with more than e votes and finally train a one-class SVM
classifier with the rest of features. The problem here is how
to determine the value of e. Through our experiments we
empirically set e = 3, which gives the best performance in
most of our trials. We will evaluate this feature selection
scheme later.

IV. EVALUATION

Currently, we have implemented GlassGesture as a Google
Glass application. We adopt FastDTW implementation [26]



to build the gesture recognition module. For gesture authen-
tication module, we compile libSVM [27] as native code
to implement the classifier. The model is trained offline
on a remote machine (MacBook Air, i5-1.3GHz and 4GB-
RAM). In this section, we will evaluate our system in two
modules individually. We will report performance metrics in
terms of TPR ( tp

tp+fn ), FPR ( fp
fp+tn ), accuracy and F1-Score

( 2tp
2tp+fp+fn ) for both gesture recognition and authentication.

A. Gesture Recognition

We prime our system with eight command gesture tem-
plates: nod and shake, left and right 3 times, triangle and
rectangle, and cw/ccw circle. We also prepare our system for
number and alphabet input. We choose those head gestures
in order to evaluate the capability of gesture recognition on
various gestures.

Gesture Recognition with command gestures. For each
of these command gestures we conduct gesture data collection
three times, once with as little head movement as possible
(tiny) in sitting, and a second time with a normal/natural
amount of head movement (normal) in sitting and a third
time in a normal amount of head movement in walking. This
experiment is repeated for multiple rounds with each round
collecting about 10 gestures. The results of accuracy in Fig. 7
is in the form of confusion matrices.

1) Gesture in sitting: From results in Fig. 7 (a, b), we
can see that for several gestures, such as nod, left3, right3,
shake, the accuracy is perfect, even in the tiny gesture case.
The reason behind is that the gesture has a repeating pattern
in itself, which distinguishes it from other miscellaneous
movements. The most easily confused gestures are clockwise
circle and triangle, because of similar shapes in a clockwise
direction. When the user tries to make her gesture very tiny, the
head movement space is suppressed greatly, which will make
these two gestures indistinguishable. Since our system allows
users to define their own gestures, we can notify them in case
new gestures are too similar to any pre-existing templates to
ensure the best user experience.

2) Gesture in walking: When a user is walking, it is rather
natural that the user will perform gestures in an obvious,
unconstrained way. Otherwise, this gesture will just be buried
in the noise of her walking. From the confusion matrix in Fig.
7 (c), we find minor deterioration of accuracy in recognizing
gestures such as right3 and rect, which we believe is caused
by noise of walking movement. However, the triangle and
clockwise circle are more distinguishable, which as we find is
easier for the user to perform while walking rather than sitting.

Number and Alphabet Input. Next, we evaluate gesture
recognition accuracy when we use head gesture as number and
alphabet input method. Users are asked to draw 0-9 and a-z for
at least 10 times to evaluate the accuracy. While 35 of total 36
gestures are 100% identified, the only error is one instance of
number 9 is mis-recognized as number 7. The failures are due
to the limitation of template matching i.e. writing 7 and 9 are
just too similar if user doesn’t write them carefully using head

Fig. 7: (a) Confusion matrix of command gestures (sitting, tiny).
TPR: 92.87%, FPR: 5.7%. (b) Confusion matrix of command gestures
(sitting, normal). TPR: 96.99%, FPR: 2.4%. (c) Confusion matrix of
command gestures (walking, normal). TPR: 94.88%, FPR: 4.6%

movement. One way to improve this is to explore different
styles of writing them, which is out of the scope of this paper.

Gesture Recognition Performance. To demonstrate the
performance of gesture recognition, we evaluate it with the
processing of 36 gestures of number (0-9) and alphabet (a-z).
Firstly, we want to determine the proper down-sampling length
nED for calculating Euclidean distant used in kNN search
and nDTW for calculating DTW used in template matching.
In Fig. 8, we evaluate the gesture recognition accuracy at dif-
ferent down-sampling lengths (nED) and numbers of nearest
neighbours (k). We found that when the nED is set as 10, it
gives best accuracy. In Fig. 9, we change the nDTW in the
linear scanning using DTW distance metric. The time cost
grows exponentially with the input length, while the accuracy
can reach a satisfactory level when down-sampling length is
as small as 40 or 50. Next, we show the processing speedup
of our scheme against the linear scanning baseline. The results
are shown in Fig. 10. We set nED = 10, nDTW = 50. The
number of nearest neighbours to be searched can be set to 10-
14, which is a reasonable trade-off between processing speed
and accuracy based on Fig. 10 and Fig. 8. The running time
will be reduced by 70% when k = 10 and 55% when k = 14.
We use k = 14 in our system.

B. Authentication Evaluation

We have collected motion sensor data from 18 users while
they are answering questions using head gestures. We have
gathered around 100-150 trials for each gesture of each
user.Those data are pre-processed and used for feature extrac-
tion, model training and evaluation.

Impact of Number of Training Samples. Before training
the model, we want to decide an appropriate size of training
samples since it will be a trade-off between authentication
accuracy and user convenience. We run the one-class SVM
(OCSVM) training process with 10-fold cross validation.
Based on trained models, we also build a one-class ensemble
SVM classifier (OCESVM). As plotted in Fig. 12, we increase
the percentage of training samples from 0.1 to 1.0, use the rest
as test samples, and report average TPR and FPR of all users.
We find that 30 samples (0.2 ratio) is sufficient to achieve
an average TPR higher than 70% and keep an average FPR
lower than 0.3%. OCESVM shows great gain of TPR and
slight deterioration of FPR when the sizes of training samples



Table 1

Sample 
lengnth

Accuracy Running Time Running Time Running Time Accuracy

5 0.8289 0.001 0.001 0.001 1.0 82.89

10 0.88 0.003 0.003 0.003 1.0 88.00

20 0.9129 0.013 0.013 0.013 1.0 91.29

30 0.9436 0.026 0.026 0.026 1.0 94.36

40 0.9636 0.049 0.049 0.049 1.0 96.36

50 0.9701 0.075 0.075 0.075 1.0 97.01

60 0.972 0.106 0.106 0.106 1.0 97.2

70 0.9721 0.145 0.145 0.145 1.0 97.21

80 0.9745 0.20 0.2 0.20 1.0 97.45

90 0.9755 0.234 0.234 0.234 1.0 97.55

100 0.9786 0.296 0.296 0.296 1.0 97.86

110 0.9816 0.345 0.345 0.345 1.0 98.16

120 0.9836 0.45 0.45 0.45 1.0 98.36

130 0.9812 0.50 0.5 0.50 1.0 98.12

140 0.985 0.55 0.55 0.55 1.0 98.5

150 0.985 0.649 0.649 0.649 1.0 98.5

160 0.987 0.70 0.7 0.70 1.0 98.7

170 0.9912 0.84 0.84 0.84 1.0 99.12

180 0.9912 0.87 0.87 0.87 1.0 99.12

190 0.996 0.90 0.9 0.90 1.0 99.6

200 0.9932 0.95 0.95 0.95 1.0 99.32

210 0.996 1.0 1.0 1.0 1.0 99.6

220 0.9952 0.95 0.95 0.95 1.0 99.52

230 0.996 0.97 0.97 0.97 1.0 99.6

Table 2

Features F1-Scores

peak 94.96

mean 95.45

std 96.5

rms 95.98

zcr 96.73

kurtosis 95.12

mad 96.48

skewness 95.55

iqr 96.2

iac 95.74

energy 95.46

sma 96.26

F1
-S

co
re

s

94

94.75

95.5

96.25

97

Feature Excluded

pe
ak

mea
n std rm

s zcr

ku
rto

sis mad

ske
wne

ss iqr iac

en
erg

y
sm

a

0%

50%

100%

Down-sampling Length n
10 30 50 70 90 110 130 150 170 190 210 230

DTW Accuracy
DTW run time (scaled)

Table 1-1

Sample 
lengnth

Accuracy Running Time Max Time Scaled Time Accuracy

10 0.880487 0.803 208.3056 0.385491316604066 88.0487

30 0.97317 6.763755 208.3056 3.24703464525198 97.317

50 0.970731 18.3576 208.3056 8.81282116275319 97.0731

70 0.97073 36.2835 208.3056 17.4183987372399 97.073

90 0.97317 58.877 208.3056 28.2647225998725 97.317

110 0.97317 88.0657 208.3056 42.2771639360632 97.317

130 0.975609 120.4559 208.3056 57.826529867656 97.5609

150 0.975609 157.4438 208.3056 75.5830856203578 97.5609

170 0.978048 197.1578 208.3056 94.6483435874984 97.8048

190 0.978048 208.3056 208.3056 100 97.8048

210 0.9756 205.29 208.3056 98.5523192847432 97.56

230 0.9756 204.148 208.3056 98.0040863039688 97.56

Table 3-1

Sampling 
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833

Table 3-2

Sampl
ing 
Lengt
h v.s. 
K

Sampl
e Len   
5

Sampl
e Len  
10

Sampl
e Len  
15

Sampl
e Len  
20

Sampl
e Len  
25

2 0.556 0.69 0.7097 0.7195 0.717

6 0.7585 0.8634 0.839 0.8463 0.8317

10 0.8585 0.9219 0.9024 0.8829 0.8731

14 0.9243 0.9487 0.9219 0.9048 0.9048

18 0.9607 0.9707 0.939 0.9243 0.9219

22 0.9731 0.9829 0.9561 0.9414 0.9414

26 0.9804 0.9878 0.9707 0.9609 0.956

30 0.9878 0.9951 0.9804 0.978 0.9829

34 0.9951 0.9975 0.9951 0.9975 0.9975
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Fig. 8: Accuracy changes with
sampling lengths (nED) and num-
bers of nearest neighbours.

Table 1

Sample 
lengnth

Accuracy Running Time Running Time Running Time Accuracy

5 0.8289 0.001 0.001 0.001 1.0 82.89

10 0.88 0.003 0.003 0.003 1.0 88.00

20 0.9129 0.013 0.013 0.013 1.0 91.29

30 0.9436 0.026 0.026 0.026 1.0 94.36

40 0.9636 0.049 0.049 0.049 1.0 96.36

50 0.9701 0.075 0.075 0.075 1.0 97.01

60 0.972 0.106 0.106 0.106 1.0 97.2

70 0.9721 0.145 0.145 0.145 1.0 97.21

80 0.9745 0.20 0.2 0.20 1.0 97.45

90 0.9755 0.234 0.234 0.234 1.0 97.55

100 0.9786 0.296 0.296 0.296 1.0 97.86

110 0.9816 0.345 0.345 0.345 1.0 98.16

120 0.9836 0.45 0.45 0.45 1.0 98.36

130 0.9812 0.50 0.5 0.50 1.0 98.12

140 0.985 0.55 0.55 0.55 1.0 98.5

150 0.985 0.649 0.649 0.649 1.0 98.5

160 0.987 0.70 0.7 0.70 1.0 98.7

170 0.9912 0.84 0.84 0.84 1.0 99.12

180 0.9912 0.87 0.87 0.87 1.0 99.12

190 0.996 0.90 0.9 0.90 1.0 99.6

200 0.9932 0.95 0.95 0.95 1.0 99.32

210 0.996 1.0 1.0 1.0 1.0 99.6

220 0.9952 0.95 0.95 0.95 1.0 99.52

230 0.996 0.97 0.97 0.97 1.0 99.6
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Table 1-1

Sample 
lengnth

Accuracy Running Time Max Time Scaled Time Accuracy

10 0.880487 0.803 208.3056 0.385491316604066 88.0487

30 0.97317 6.763755 208.3056 3.24703464525198 97.317

50 0.970731 18.3576 208.3056 8.81282116275319 97.0731

70 0.97073 36.2835 208.3056 17.4183987372399 97.073

90 0.97317 58.877 208.3056 28.2647225998725 97.317

110 0.97317 88.0657 208.3056 42.2771639360632 97.317

130 0.975609 120.4559 208.3056 57.826529867656 97.5609

150 0.975609 157.4438 208.3056 75.5830856203578 97.5609

170 0.978048 197.1578 208.3056 94.6483435874984 97.8048

190 0.978048 208.3056 208.3056 100 97.8048

210 0.9756 205.29 208.3056 98.5523192847432 97.56

230 0.9756 204.148 208.3056 98.0040863039688 97.56

Table 3-1

Sampling 
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833
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2 0.556 0.69 0.7097 0.7195 0.717

6 0.7585 0.8634 0.839 0.8463 0.8317

10 0.8585 0.9219 0.9024 0.8829 0.8731

14 0.9243 0.9487 0.9219 0.9048 0.9048

18 0.9607 0.9707 0.939 0.9243 0.9219

22 0.9731 0.9829 0.9561 0.9414 0.9414

26 0.9804 0.9878 0.9707 0.9609 0.956

30 0.9878 0.9951 0.9804 0.978 0.9829

34 0.9951 0.9975 0.9951 0.9975 0.9975
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Fig. 9: Accuracy and scaled run-
ning time using DTW change with
sampling lengths (nDTW ).

Table 1

Sample 
lengnth

Accuracy Running Time Running Time Running Time Accuracy

5 0.8289 0.001 0.001 0.001 1.0 82.89

10 0.88 0.003 0.003 0.003 1.0 88.00

20 0.9129 0.013 0.013 0.013 1.0 91.29

30 0.9436 0.026 0.026 0.026 1.0 94.36

40 0.9636 0.049 0.049 0.049 1.0 96.36

50 0.9701 0.075 0.075 0.075 1.0 97.01

60 0.972 0.106 0.106 0.106 1.0 97.2

70 0.9721 0.145 0.145 0.145 1.0 97.21

80 0.9745 0.20 0.2 0.20 1.0 97.45

90 0.9755 0.234 0.234 0.234 1.0 97.55

100 0.9786 0.296 0.296 0.296 1.0 97.86

110 0.9816 0.345 0.345 0.345 1.0 98.16

120 0.9836 0.45 0.45 0.45 1.0 98.36

130 0.9812 0.50 0.5 0.50 1.0 98.12

140 0.985 0.55 0.55 0.55 1.0 98.5

150 0.985 0.649 0.649 0.649 1.0 98.5

160 0.987 0.70 0.7 0.70 1.0 98.7

170 0.9912 0.84 0.84 0.84 1.0 99.12

180 0.9912 0.87 0.87 0.87 1.0 99.12

190 0.996 0.90 0.9 0.90 1.0 99.6

200 0.9932 0.95 0.95 0.95 1.0 99.32

210 0.996 1.0 1.0 1.0 1.0 99.6

220 0.9952 0.95 0.95 0.95 1.0 99.52

230 0.996 0.97 0.97 0.97 1.0 99.6
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Table 1-1

Sample 
lengnth

Accuracy Running Time Max Time Scaled Time Accuracy

10 0.880487 0.803 208.3056 0.385491316604066 88.0487

30 0.97317 6.763755 208.3056 3.24703464525198 97.317

50 0.970731 18.3576 208.3056 8.81282116275319 97.0731

70 0.97073 36.2835 208.3056 17.4183987372399 97.073

90 0.97317 58.877 208.3056 28.2647225998725 97.317

110 0.97317 88.0657 208.3056 42.2771639360632 97.317

130 0.975609 120.4559 208.3056 57.826529867656 97.5609

150 0.975609 157.4438 208.3056 75.5830856203578 97.5609

170 0.978048 197.1578 208.3056 94.6483435874984 97.8048

190 0.978048 208.3056 208.3056 100 97.8048

210 0.9756 205.29 208.3056 98.5523192847432 97.56

230 0.9756 204.148 208.3056 98.0040863039688 97.56

Table 3-1

Sampling 
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833
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Sampl
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2 0.556 0.69 0.7097 0.7195 0.717

6 0.7585 0.8634 0.839 0.8463 0.8317

10 0.8585 0.9219 0.9024 0.8829 0.8731

14 0.9243 0.9487 0.9219 0.9048 0.9048

18 0.9607 0.9707 0.939 0.9243 0.9219

22 0.9731 0.9829 0.9561 0.9414 0.9414

26 0.9804 0.9878 0.9707 0.9609 0.956

30 0.9878 0.9951 0.9804 0.978 0.9829

34 0.9951 0.9975 0.9951 0.9975 0.9975

Pr
oc

es
si

ng
 T

im
e 

(s
ec

on
d)

0

0.55

1.1

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

kNN Search
Linear Scanning

Ac
cu

ra
cy

55%

70%

85%

100%

Nearest Neighbour k
2 6 10 14 18 22 26 30 34

Sample Len   5
Sample Len  10
Sample Len  15
Sample Len  20
Sample Len  25

Fig. 10: Running time compari-
son between our scheme and linear
scanning.

Table 1

Sample 
lengnth

Accuracy Running Time Running Time Running Time

5 82.89 0.001 0.1 0.001 1.0

10 88.00 0.003 0.3 0.003 1.0

20 91.29 0.013 1.3 0.013 1.0

30 94.36 0.026 2.6 0.026 1.0

40 96.36 0.049 4.9 0.049 1.0

50 97.01 0.075 7.5 0.075 1.0

60 97.2 0.106 10.6 0.106 1.0

70 97.21 0.145 14.5 0.145 1.0

80 97.45 0.20 20 0.20 1.0

90 97.55 0.234 23.4 0.234 1.0

100 97.86 0.296 29.6 0.296 1.0

110 98.16 0.345 34.5 0.345 1.0

120 98.36 0.45 45 0.45 1.0

130 98.12 0.50 50 0.50 1.0

140 98.5 0.55 55 0.55 1.0

150 98.5 0.649 64.9 0.649 1.0

160 98.7 0.70 70 0.70 1.0

170 99.12 0.84 84 0.84 1.0

180 99.12 0.87 87 0.87 1.0

190 99.6 0.90 90 0.90 1.0

200 99.32 0.95 95 0.95 1.0

210 99.6 1.0 100.0 1.0 1.0

220 99.52 0.95 95 0.95 1.0

230 99.6 0.97 97 0.97 1.0
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Table 1-1

Sample 
lengnth

Accuracy Running Time Max Time Scaled Time

10 88.0487 0.803 208.3056 0.385491316604066

30 97.317 6.763755 208.3056 3.24703464525198

50 97.0731 18.3576 208.3056 8.81282116275319

70 97.073 36.2835 208.3056 17.4183987372399

90 97.317 58.877 208.3056 28.2647225998725

110 97.317 88.0657 208.3056 42.2771639360632

130 97.5609 120.4559 208.3056 57.826529867656

150 97.5609 157.4438 208.3056 75.5830856203578

170 97.8048 197.1578 208.3056 94.6483435874984

190 97.8048 208.3056 208.3056 100

210 97.56 205.29 208.3056 98.5523192847432

230 97.56 204.148 208.3056 98.0040863039688

Table 3-1

Sampling 
Length v.s. K

10-NN Search Linear Scanning kNN Search Linear Scanning Accuracy

2 0.1524 2.59350929534 0.0587620797325968 1.01 0.69

6 0.44867 2.59350929534 0.172997259275749 0.99 0.8634

10 0.735 2.59350929534 0.283399793985949 0.999 0.9219

14 1.147 2.59350929534 0.442257909798481 1.02 0.9487

18 1.413 2.59350929534 0.544821644764825 1.0 0.9707

22 1.726 2.59350929534 0.665507543428229 0.997 0.9829

26 2.043 2.59350929534 0.787735753895638 1.02 0.9878

30 2.387 2.59350929534 0.920374569040082 1.022 0.9951

34 2.703 2.59350929534 1.04221720155649 1 0.9975

1-0.2833

Table 3-2

Sampl
ing 
Lengt
h v.s. 
K

Sampl
e Len   
5

Sampl
e Len  
10

Sampl
e Len  
15

Sampl
e Len  
20

Sampl
e Len  
25

2 55.60 69.0 70.97 71.95 71.7

6 75.85 86.34 83.9 84.63 83.17

10 85.85 92.19 90.24 88.29 87.31

14 92.43 94.87 92.19 90.48 90.48

18 96.07 97.07 93.9 92.43 92.19

22 97.31 98.29 95.61 94.14 94.14

26 98.04 98.78 97.07 96.09 95.60

30 98.78 99.51 98.04 97.8 98.29

34 99.51 99.75 99.51 99.75 99.75
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Fig. 11: The F1-score of certain
category of features is excluded.

Table 1

Ratio Shake-TPR-
OCSVM

Nod-TPR-
OCSVM

Shake-TPR-
OCESVM

Nod-TPR-
OCESVM

Average-
TPR-OCSVM

Average-
TPR-
OCESVM

Shake-FPR-
OCSVM

Nod-FPR-
OCSVM

Shake-FPR-
OCESVM

Nod-FPR-
OCESVM

Average-
FPR-OCSVM

Average-
FPR-
OCESVM

0.1 51.2 52.41 67.7 69.31 0.51805 0.68505 0.018 0.018 0.026 0.026 0.00018 0.00026

0.2 68.7 69.167 83.47 84.626 0.689335 0.84048 0.06 0.055 0.096 0.173 0.000575 0.001345

0.3 76.42 76.468 87.73 89.57 0.76444 0.8865 0.08 0.0986 0.155 0.156 0.000893 0.001555

0.4 80.05 81.397 88.74 90.48 0.807235 0.8961 0.158 0.0935 0.210 0.248 0.0012575 0.00229

0.5 83.56 84.02 91.10 91.39 0.8379 0.91245 0.191 0.1386 0.27 0.331 0.001648 0.003005

0.6 86.38 86.745 91.58 91.47 0.865625 0.91525 0.187 0.1486 0.254 0.292 0.001678 0.00273

0.7 87.68 87.75 92.26 92.10 0.87715 0.9218 0.1988 0.169 0.35 0.294 0.001839 0.00322

0.8 88.85 88.33 91.96 92.14 0.8859 0.9205 0.228 0.2 0.347 0.3 0.00214 0.003235

0.9 90.07 89.22 92.26 92.07 0.89645 0.92165 0.233 0.174 0.259 0.33 0.002035 0.002945

1.0 92.09 92.10 92.33 92.43 0.92095 0.9238 0.25 0.19 0.26 0.35 0.0022 0.00305

(a) TPR v.s. Training Size
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Fig. 12: The average TPR and FPR change with different ratios of
training samples.

(b) F1-Scores for Gesture Shake
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Fig. 13: F1-Scores of one-class SVM with or without feature selection
for gesture nod and shake.

are small. Therefore, in our system, we build the training set
passively and continuously in the background every time the
user performs those gestures. We employ OCESVM when
the size of training samples is insufficient, and fall back
to OCSVM for system overhead concern when the gathered
training samples are adequate. This scheme eases the burden
of training on users significantly while maintaining high TPR
and low FPR at the same time.

Single TPR FPR

GlassGesture Nod 92.43% (+/-3.09) 0.09% (+/-0.22)
GlassGesture Shake 92.33% (+/-3.32) 0.17% (+/-0.33)
GlassGesture Left3 89.08% (+/-6.36) 0.48% (+/-0.79)
GlassGesture Right3 89.61% (+/-5.99) 0.52% (+/-0.87)

Multiple and Comparison TPR FPR

GlassGesture
(2 gestures) 99.16% 0.61%
Touchpad+
Voice (5 events) [19] 97.14% 1.27%
Touchscreen
GEAT (3 gestures) [13] 98.2% 1.1%

TABLE II: FPR and TPR of authentication on two gestures.

Authentication against Type-II attacker. In order to
understand the authentication performance, we evaluate the
authentication against Type-II attackers, which are more pow-
erful than Type-I attackers. We utilize the full size of the data
set to train the model with 10-fold cross-validation for each
user. While training model for a certain user, we use data
samples from all other users as Type-II attacking trials. The
result is shown in Table II in metrics of TPR and FPR and
compared with several existing works. From the result, we
can tell that our authentication system can identify authorized
users with with a high TPR as average 92.38% and defend
against Type-II attackers with a low FPR as average 0.13%

if using Nod and Shake gestures. We are careful to bother
no authorized user with occasional false positives. However,
since gestures are very short, cost nothing, and are easy to
perform, we assume that the user is willing to go through
authentication multiple times which can basically eliminate the
false positives. We compare authentication performance using
two consecutive gestures with work [19] and [13], where both
one class classifiers are used. Work [19] combines touchpad
and voice commands to authenticate user in Google Glass. Our
scheme requires fewer gestures, less effort, and produces better
result. Work [13] is about touchscreen-based authentication on
smartphone, while we show that we can achieve competitive
performance using head gestures on Google Glass. Another
work [18] uses a two-class SVM classifier, which only reports
the average error rate (AER, defined as 1

2 (1− tpr+ fpr)) as
0.04 while using 5 touchpad gestures on Glass. Our scheme
requires fewer gestures, and better result when multiple ges-
tures are combined.

Impact of Peak Features. With the intention to investigate
the impact of peak features, we use an feature-excluding
method to verify the effectiveness of peak features. We collect
number of true positive, false negative and false positive
to calculate the F1-score as a metric to show the overall
performance of the classification. In Fig. 11, the F1-score is
lowered the most when peak features are excluded. Some other
important features are mean, energy, kurtosis and skewness.

Impact of Feature Selection. To show how our feature
selection method helps in our case, we compare F1-scores of
classification with and without feature selection. From Fig.
13, we can find that for majority of users (13/18 and 12/18
respectively), feature selection improves the classification.

Imitator Attack (Type-III). In this evaluation, we want to



know whether an Type-III attacker, can fool the authentication
system. We start by taking a short video of a victim while she
is performing gesture-based authentication, and then present
this video to attackers. We give attackers enough time to
learn, practise, and mimic the victim. And we only start the
authentication process whenever each attacker feels she is
ready. We give 5 attackers 10 chances for each gesture and
unlimited access to the reference video. In all of our tests (100
trials), attackers are never able to fool the system and (falsely)
identified as authorized users. From the experiment, we find
that an imitator fails in mimicking the head gesture because 1)
it is not easy to recover every details of head gestures recorded
by sensitive motion sensors through vision observation; 2) it
is not easy to control the head movement precisely and make
it like a natural movement during mimicking. The different
muscle distributions of head and neck in human individuals
will add different features to the sensor recordings.

C. System Performance

We report the running time of several important functions:
DTW time cost in gesture recognition, training time cost
(offline on a remote machine), and classification time cost
in authentication. The time cost of gesture recognition grows
linearly with the number of templates, while the time of
running one instance of DTW is rather small as 30.2 ms. The
training is offloaded to a remote machine and cost average
42.8 seconds per user, which is affordable since the request of
training and retraining is relatively rare after the initial setup.
Classification runs on the Glass, of which the cost (28.6 ms)
of single instance is almost unnoticeable by users.

D. Other considerations

Due to space limit, we briefly discuss other practical con-
siderations. 1) Authentication Frequency: The frequency is
depend on the usage pattern of user. The default setting is
to authenticate user after booting or being taken-off, which
is a rather infrequent. 2) Biometric Invariance: We have been
keeping collecting gesture samples from several users during
a week. We have not noticed much difference in recogni-
tion/authentication accuracy. However, we do add template
adaptation [8] and classifier retraining to our system in case of
any performance deterioration. And we have fail-safe authenti-
cation for consecutive failures. We are still lack of enough data
to claim that human head gesture is invariant in a long term.
We leave those work in the future. 3) Power Consumption:
Based on the energy consumption reported in [4] and [28],
the battery life of constantly sampling sensors is 265 mins(300
mins daily in normal usage). We are expecting a much longer
lifetime since our implementation is not always-on. The device
will enter a low-power mode after a short period of inactive. It
responses to wake-up events [10] and then the gesture interface
will be enabled accordingly.

V. CONCLUSION

In this paper we propose GlassGesture to improve the us-
ability of Google Glass. Currently, Glass relies on touch input

and voice command and suffers from several drawbacks which
limits its usability. GlassGesture provides a new gesture-based
user interface with gesture recognition and authentication,
which enable users to use head gesture as input and protect
Glass from unauthorized attackers.
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