
AMIL: Localizing Neighboring Mobile Devices
Through a Simple Gesture

Hao Han, Shanhe Yi†, Qun Li†, Guobin Shen‡, Yunxin Liu‡, Ed Novak†
Intelligent Automation, Inc., †College of William and Mary, ‡Microsoft Research Asia
hhan@i-a-i.com, †{syi,liqun,ejnovak}@cs.wm.edu, ‡{jackysh,yunliu}@microsoft.com

Abstract—Smartphone users are often grouped to exchange
files or perform collaborative tasks when meeting together. We ar-
gue that the location information of group members is critical to
many mobile applications. Existing localization solutions mostly
rely on anchor nodes or infrastructures to perform ranging
and positioning. These approaches are inefficient for ad hoc
scenarios. In this paper, we propose AMIL, an Acoustic Mobility-
Induced TDoA (Time-Difference-of-Arrival)-based Localization
scheme for smartphones. In AMIL, a smartphone user can use
simple gestures (e.g., hold the phone and draw a triangle in the
air) to quickly obtain the relative coordinates of neighboring
mobile devices. We have implemented and evaluated AMIL on
off-the-shelf smartphones. The field tests have shown that our
scheme can achieve less than three degree orientation errors and
can successfully build a simple map of 12 people in an office
room with average error of 50cm.

I. INTRODUCTION

Smartphone users are often grouped to exchange files when
meeting together. They may not know each other in advance,
so have no prior knowledge about each other’s names. They
would like, however, to exchange information such as contact
information or share electronic documents during the meeting.
To achieve that goal, mobile users often use their smartphones
to set up local networks (e.g., Wi-Fi or Bluetooth), where
inter-connected devices can communicate with each other. In
such networks, the ad hoc pattern increases the demand for
more intuitive ways to identify communication parties. For
example, Bluetooth can list neighboring devices and display
their names. Yet the user may not easily link the name
to individual communication party, because there exists a
perception gap between the digital world and the physical
world. We argue that location information can help bridge this
gap and enable a more intuitive method of sharing. Suppose all
neighboring devices can be displayed on a map according to
their relative positions, a user can easily share information with
selected targets (see Fig.1). It should be noticed that existing
NFC technology has provided an intuitive way to share files.
However, in order to share with many users, touching each
other’s devices is inefficient.

In this paper we design and implement AMIL: an Acoustic
Mobility-Induced Localization scheme for smartphones with a
requirement of only a set of common hardware: a speaker, a
microphone, and Inertial Measurement Units (IMUs). AMIL
allows a mobile user to quickly locate other devices in
proximity with little configuration overhead. Unlike conven-
tional localization approaches, AMIL offers a fast one-to-

many localization scheme: a device can perform AMIL to
obtain the relative coordinates of all other devices without
measuring the distance between them. Furthermore, AMIL is
a pure software solution that does not rely on any dedicated
hardware or modification to the operation system. It thus can
be adopted across different embedded platforms with little
deployment effort. Note that the intention of this work is to
develop a working system that allows a single mobile user
to obtain the basic positions of others so as to distinguish
them efficiently. Our work does not aim at inventing a more
accuracy localization algorithm.

In the literature, researchers from Microsoft are among the
first to use speaker/microphone for acoustic ranging on mobile
devices with BeepBeep [1]. BeepBeep uses a TDoA (Time
Difference of Arrival)-based approach to measure the distance
between two devices only. Although mutual distances can be
further used to determine the relative positions, it requires at
least three anchor nodes to determine the location of a device.
Aiming to support localization between two devices, recent
work [2] extends BeepBeep, where each device must have
at least two speakers and two microphones. By measuring
the distances for all speaker-to-microphone pairs, two devices
can thus locate each other. The major drawback of both
approaches is that every device has to transmit beeps, so that
the localization overhead is increased significantly with the
number of devices. However, no matter how many devices
are nearby, a fixed number of beeps are emitted by a single
device in AMIL. AMIL induces the mobility of a single device
to create arbitrary “virtual” anchors. In such a way, a single
device can locate others more efficiently.

The basic idea of AMIL is as follows: A device (player) who
attempts to locate other devices is moved in the air. During the
movement, the internal accelerometer and gyroscope track the
displacement at every instant. The player, meanwhile, emits
audio beeps with a specific pattern. Other devices (listeners)
passively use their microphones to listen each beep, digitize
the sound signal, and compare it with the known pattern to
confirm the arrival time. Due to the movement of the player,
a listener at difference place is expected to measure differ-
ent time intervals between beeps. The player can use these
differences coupled with its motion trail to determine each
listener’s location. Again, AMIL does not intend to improve
the accuracy of the state-of-the-art localization algorithm.
Instead, AMIL offers a lightweight way to obtain the direction
and distance of all the neighboring mobile devices.



Fig. 1: Motivation scenario

d1 d2

d3

d4

d5

d6

d1 d2

d3

d4

d5

d6

Player

Listeners

Player moves

Listeners

(a) unsolvable (b) solvable

Fig. 2: Intuition of AMIL localization
scheme

Fig. 3: Intuition of the difference of beep intervals
between a player and a listener

The idea of mobility-induced TDoA in AMIL is not totally
new, it has been proposed for localization in wireless sensor
networks in [3]. This paper, however, has demonstrated for
the first time that mobile devices can adopt this technique
for localization with a set of common hardware and pure
software implementation. Since the mobility of a phone is
limited by a small area covered by (human) arm motion, it is
very challenging to leverage phone’s internal sensors to deliver
an accurate localization when the mutual distance between
phones are far away. Furthermore, the moving strategy has
effects on the localization accuracy. Little work focused on
this problem before. It is non-trivial to design a better moving
gesture for practical use.

To the best of our knowledge, we are the first to combine in-
ternal motion sensors and acoustic techniques on smartphones
for localization. The main contributions of this work are:

• AMIL is the first working system that allows a off-the-
shelf smartphone to locate neighboring mobile devices
easily. We have conducted extensive experiments to eval-
uate our system in a real-world environment.

• We characterize several new challenges of applying
acoustic mobility-induced localization on smartphones,
such as microphone’s sample rate drift and moving strat-
egy. We also give solutions to address each challenge.

II. SYSTEM DESIGN AND ALGORITHM

In this section, we present the system design and algorithms
of AMIL. We first describe the intuition behind why a single
user (player) can locate others (listeners) and then elaborate
the system architecture and each component.

A. Intuition

The intuition of our localization scheme is illustrated in
Fig. 2. We assume that the player who attempts to locate
several listeners is able to measure the distance towards each
of them (e.g., d1 to d6). Yet only knowing the distance is not
enough to locate each listener, because there is only one anchor
point (shown in Fig. 2(a)). The listener can reside in any point
on a circle centered on the player with the radius equal to
the measured distance dj . If we could create multiple anchor
points, the problem is then solvable. To achieve this, we move
the player and rely on IMUs to track the displacement (shown
in Fig. 2(b)). Thus, multiple “virtual” anchors are created, and
the position of each listener can be uniquely determined.

Actually, measuring the mutual distance (i.e., d1 to d6)
is not necessary here. In our solution, the player can locate
multiple receivers simultaneously by emitting a series of audio
beeps without the necessity for each listener to reply the beep.
Suppose the player emits k + 1 beeps at intervals ∆ti for
i ∈ [1, k]. After propagation, each listener will measure a set
of beep intervals ∆Ti shown in Fig. 3. If the player and the
listener are both stationary, we have ∆ti = ∆Ti. Due to the
spatial change when the player emits beeps, each listener will
capture different beep intervals depending on its own location.
For example, if the player moves towards a listener, the beep
interval measured by this listener is less than that captured by
the player. Based on the interval difference, we can derive the
delta distance using the speed of sound as c · (∆Ti − ∆ti).
After k + 1 beeps, we have k delta distances. The player can
finally use them to determine the position for each listener; the
details of this will be elaborated later. The advantage of this
approach is that only the player emits beeps, while listeners
only passively listen for beeps. This approach is easy for any
mobile user who wants to locate others to perform in practice.

B. Architecture
Fig. 4 depicts the system architecture of AMIL. In this

architecture, a player uses its internal speaker to emit beeps
with a pre-defined pattern, and its microphone to pick up the
acoustic signals for measuring the beep intervals. The player
also relies on IMUs (i.e., accelerometer and gyroscope), to
estimate the displacement of the phone during the movement.
At the same time, the listener just passively records sound from
its microphone, measures the beep intervals, and exchanges
this information with the player through other available com-
munication channels such as Wi-Fi or Bluetooth.

There are three algorithms in AMIL – the movement track-
ing algorithm, the interval calculation algorithm, and the
positioning algorithm. The movement tracking algorithm is
used only on the player side to track the motion trail of
the player and determine the displacement when each beep
is played. The interval calculation algorithm is performed on
both the player and the listener sides, aiming to detect the
beeps and measure beep intervals. After that, each listener
sends back the calculated beep intervals to the player. Once
receiving the beep intervals from the listeners, the player
will use the positioning algorithm to compute the relative
coordinates for each listener. The detail of each algorithm is
presented in the following subsections.



�������
����	��


��

��������	
��
���	���

���

���	�
��

����

���������

����
��

����	��

���

���	�
��

����

����	��

���

���	�
��

����	��

���
�����


��

����

�������
�����

������
��

����������

������
������

	���	��

���

�����
���

������������ ������������������

 

!
!

Fig. 4: System architecture

C. Movement tracking algorithm

A player leverages accelerometer and gyroscope to compute
its displacement at every beep. The basic idea is to double inte-
grate the accelerometer readings to derive displacement, where
the first integration converts the acceleration into velocity, and
the second integration converts the velocity into displacement.
However, on-board motion sensors are not designed for precise
tracking. Any small errors caused by noise, gravity and rota-
tion will be accumulated into a significant drift. To minimize
these errors, we apply the following methods.

Motion detection. In order to reduce the drift, it is impor-
tant to decrease the integration period. Thus, we only integrate
on the period when motion is detected. To detect motion, we
separate sensor readings into bins and compute the standard
deviation (std) of each bin. If the std for a bin is greater
than a pre-defined threshold, the first reading in that bin is
conservatively regarded as the start point of a movement.
Given the start point, we marks the end point by checking
if the deviations of two subsequent consecutive bins are less
than the threshold.

Rotation transformation. An accelerometer records ac-
celeration readings along the axes of phone’s frame. During
moving, the phone’s frame may be rotated. Thus, sensor
readings actually come from different reference coordinate
systems. To address this problem, we leverage gyroscope data
to perform rotation transformation. The gyroscope measures
the instantaneous angular speed around phone’s x, y, and z
axes. We define the initial phone’s frame is the reference
frame. The output of the gyroscope is integrated over time
to calculate the angle of rotation from the sampling instance
to the initial orientation. Suppose at timestamp t1, the angle
changes on x, y, z axes are roll (ϕ), pitch (θ), and yaw (ψ)
respectively. The rotation matrix is calculated as follows,[
1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

][
cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

][
cosψ −sinψ 0
sinψ cosψ 0
0 0 1

]
.

The product of the rotation matrix and the accelerometer read-
ings in the phone’s frame yields the transformed acceleration.

Velocity compensation. When the phone is moved, it is
natural to pause for a short time somewhere. For instance, if

a user draws a triangle, natural pauses shall occur at three
corners. During the pause, the phone is stationary and its
speed is zero. However, the acceleration residues caused by
gravity and the misalignment of internal sensors typically
are integrated to a non-zero velocity at a stop. We need to
compensate the velocity. First, we detect the pauses using the
method mentioned in motion detection. At each pause, if the
integrated velocity is not zero, all velocities integrated during
the last movement are adjusted to the following value:

v′(tj) = v(tj)− v(tk)
tj − ti
tk − ti

, j ∈ [i, k]

where v′(tj) denotes the adjusted velocity at tj , v(tj) refers
to the originally integrated velocity at tj , and ti and tk
represent the starting and ending time of motion. Using this
method, constant gravity and sensor misalignment offset can
be eliminated.

D. Interval calculation algorithm

Due to the uncertain delay between the time when a
command is issued to emit a tone, and the instant when the
tone is physically emitted by the hardware, the actual interval
between two beeps on the sender side cannot be accurately
determined directly from the timestamp in the software when
the command was issued. To deal with this problem, we
adopt a “self-recording” method similar to work [1], [2], [4],
where the sender records itself using its own microphone when
beeping. Since the distance between the sender’s speaker and
microphone never changes, the time interval between the two
beeps captured by the microphone is exactly the same as they
are physically emitted by the speaker. In practice, the beep
signal should be designed carefully to cope with the following
issues. First, the sound signal will be attenuated and distorted
through the communication channel, and negatively affected
by the ambient noise. Thus, the signal should be designed to
have a good Signal-to-Noise Ratio (SNR) when reaches the
receiver. Second, the signal should have a better resistance
to multi-path and non-line-of-sight (NLOS) effects. Based on
existing work [1], [2], [4], [5], we choose a linear chirp
waveform to overcome these challenges.

To detect the beep signal and its arrival time, we adopt
a common cross-correlation-based method used in previous
mentioned work, where the emitted waveform is correlated
with the received signal to determine when the beep is present
in the received signals. Let the sample sequence {ui} for
i = 1, 2, · · · , n denote the received samples from microphone,
and the sample sequence {vi} for i = 1, 2, · · · ,m represent
the known, emitted waveform, where n >> m. In matched
filtering, a sliding window with the length equal to m is
extracted from {ui}, and the sample correlation coefficient
r is computed as follows:

r =

∑m
i=1(ui − u)(vi − v)√∑n

i=1(ui − u)2
√∑n

i=1(vi − v)2
,

where u and v are the sample means of the sliding window and
{vi} respectively. For each r, the computational complexity



Θ(m) can be achieved by Welford’s one-pass algorithm. As
the sliding windows moves from the begin to the end of
{vi} sample by sample, each r is computed with the total
computation complexity equal to Θ(n ·m). A large value of r
means a high similarity between the two sequences. The arrival
instance of each beep (in terms of sample index) can be found
at the maximal peak of these coefficients. After obtaining the
index of two beeps, the beep interval is then calculated by the
number of samples between two beeps divided by the sampling
rate (44.1 kHz in our implementation). It is worth noting that
owing to the multiplicity of paths, the sound signal arriving via
the shortest path may be weaker than that of the reflections.
This situation is even worse in NLOS scenarios because the
direct path signal has to traverse through obstructions. As a
result, the maximum correlation peak may not represent the
Line-of-Sight distance. To address this problem, we adopt an
existing technique, in [6], that finds the first sidelobe that
exceeds a threshold ratio to the maximum peak.

FFT-based acceleration for beep detection. The cor-
relation is computationally expensive especially when n is
large. Some works(e.g., [1] and [6]) offload the computation
to a powerful cloud server or leverage parallelism of GPU
hardware to accelerate the process. Such approaches work but
at the expense of extra communication overhead or power
consumption, because the computational complexity is still
Θ(n · m). In recent work, Qiu et al [2] applied an energy
threshold to reduce the search space in the sample sequence.
However, setting such a threshold is challenging due to the
dynamics of ambient noise. If set too low, the computational
overhead won’t save much. In contrast, if set too high, some
beeps may be lost. To overcome this issue, Zhang et al. [4]
used auto-correlation to quickly estimate the rough position
of a beep and then apply cross-correlation to identify the
exact position. In their approach, a beep is composed of two
same sequences: one followed by the other. If a sequence of
audio samples is found to be very similar to its half-lag (-
shift) sequence, a beep is detected. Auto-correlation can be
computed fast but inherently has wide peak, so it is difficult
to detect the position of a beep accurately. That is why cross-
correlation is used in the second stage. However, this method
cannot be applied to any scenario with highly self-correlated
ambient noise, such as air conditioner. In AMIL, we propose
a fast Fourier transform (FFT) based filter to reduce the
search space. First, the emitted chirp sound is converted to
the frequency domain by FFT. At the same time, the spanning
frequency is recorded. Next, the received sequence is divided
into equal blocks with size equal to that of the chirps. In
each block, an FFT is computed to find whether the similar
spanning frequency is detected with high energy. If true, a beep
may reside in the block and cross-correlation is calculated on
the samples in recent two blocks. Otherwise, we skip it to save
the computation of cross correlation. We include the previous
block conservatively because a beep sequence may be present
in two consecutive blocks and we want to find the exact start
point, which may reside in the first block. Suppose N beeps
are emitted, each with length equal to m, and the received

signal has n samples in total. To detect the position of every
beep, our approach needs about Θ(n logm) time to process
FFT plus Θ(m2) time to calculate cross-correlation. Later, in
the evaluation section, we will use experiments to show the
efficiency of this method.

E. Positioning Algorithm
Since three beeps are the minimal requirement to position a

device in a 2D plane, we first present the positioning algorithm
for three beeps and then generalize it to more than three beeps.

Positioning algorithm for three beeps. Suppose a receiver
is located at the coordinates (x, y). The coordinates of three
beeps are (0, 0), (x1, y1), and (x2, y2) respectively. The dis-
tance difference derived from beep intervals on both the sender
and receiver side are denoted as dd1 and dd2. Thus, we have
the following equations:

dd1 =
√
(x− x1)2 + (y − y1)2 −

√
x2 + y2

dd2 =
√
(x− x2)2 + (y − y2)2 −

√
x2 + y2 (1)

Combining the above two equations produces a system of
linear equations for x and y in terms of Ax+By = C, where
A, B and C are all constant variables given (x1, y1), (x2, y2),
dd1 and dd2. Either x or y can be expressed by the other
variable and substituted back into Eq.(1) to derive the closed-
form for x and y using (x1, y1), (x2, y2), dd1 and dd2.

The triangle inequality states that the difference of lengths
of any two sides must be less than the length of remaining
side. That means the absolute values of dd1 and dd2 must
be less than the moving lengths

√
x21 + y21 and

√
x22 + y22

respectively. In practice, due to measurement errors ddi may
be slightly larger the

√
x2i + y2i or less than −

√
x2i + y2i

where i ∈ 1, 2. In both cases, we cannot solve the equations,
though the approximate direction of receivers can be inferred.
In the former case, the receiver(s) is likely to be located
somewhere in the movement direction. In the latter case,
the receiver(s) may be located in the opposite of movement
direction.

Solving Eq.1 may produce one, two or zero solutions
in practice. If two solutions exist, additional information is
needed to select one point. For example, in a meeting room
where all people are sitting around a table and everybody is
in front of the player, the solution that indicates the receiver
is behind the player should be ignored. For the zero solution
case, more beeps are necessary.

Positioning algorithm for more beeps. In general, extra
beeps can improve the positioning accuracy. Let the coordi-
nates of the first beep be (0, 0) and (xi, yi) i = 1, 2, 3, · · · for
other beeps. We have an equation for each delta distance as:
ddi =

√
(x− xi)2 + (y − yi)2−

√
x2 + y2. Similar to Eq. 1,

combing every ddi and dd1 yields a system of linear equations
in two variables x and y. Suppose there are n beeps. All of
n− 2 linear equations can be expressed in matrix form

A1 B1

A2 B2

· · ·
An−2 Bn−2

[
x
y

]
=


C1

C2

· · ·
Cn−2

 .



As long as n ≥ 4, variables x and y can be solved without
substituting them back into the equation of ddi. The least
squares method can be used to find an approximate solution
to the overdetermined system. The point derived by such
a method has minimal distance to all the curves. However,
according to our experience, least squares method does not
work well in practice, since some curves are noisy, due to
measurement errors. Including these curves for calculation
may degrade the overall accuracy. Our method is to select
a set of three beeps from n beeps. The total number of sets is
equal to

(
n
3

)
. For each set, the positioning algorithm for three

beeps is applied to extract possible solutions. The direction
of those points to the origin is then calculated. The majority
of points within a certain angle (10◦ is used in the current
implementation) are kept and others are filtered out as outliers.
Finally, the geometric centroid of all the remaining points is
used as the location of the target. Although the localization
accuracy may be slightly deteriorated when a very accurate
solution is averaged by several less accurate solutions, this
method can output a good solution for general cases and is
therefore more robust.

III. MOVING STRATEGY

There are two error sources that may affect the accuracy
of AMIL. The first source is in the acoustic subsystem. Due
to the effects of multi-path and non-light-of-sight (NLOS) in
practice, the arrival of a beep may not be precisely detected.
Thus, the beep interval is calculated with errors. The second
source of errors are from the IMU subsystem. As mentioned
before, sensor noise, gravity and phone’s rotation will lead
to several centimeter errors of estimating the displacement of
the phone. All these measurement errors will contribute to the
inaccuracy of positioning results. In previous sections, we use
various methods to minimize these errors. This section will
focus on the impact of moving strategy on the accuracy.

To simplify the analysis, we assume a sender simply moves
along a segment and beeps at two endpoints. The angle
between a listener’s direction and the direction of movement
is defined as θ. Due to the measurement errors, the estimated
location of the listener will depart from the actual place.
According to our simulation, with bounded value of errors,
all the estimated locations will reside in a sector which also
includes the actual location. We define α as the angle of this
sector. The smaller α, the better. We seek to find a better
moving strategy (i.e., θ) that can yield a small α. In simulation,
we enumerate every possible errors within the bound for a
θ. Fig. 5 depicts the relation between θ and α, where the
value of θ ranges from -180◦ to 180◦. The positive angles
represent clockwise rotation of θ, while the negative angles
refer to counter-clockwise rotation. It is seen that if the player
is moving towards or away from the listener, the corresponding
α is the largest. However, if the direction of movement is
perpendicular to the direction of the listener, the smallest α
can be achieved. Therefore, our first guideline for a better
moving strategy is that it is better to move perpendicular than
parallel to the direction of the target.

From Fig. 5, it seems that the positive θ and negative θ
have the same impact on α. In fact, if we further divide
the sector into the left and right parts based on the actual
location of the listener (i.e., the estimated location falling in
the left part is defined as negative error, and the estimated
locations in the right part refers to positive error), we can tell
the difference. Fig. 6 shows the percentage of positive and
negative errors against θ. It is seen that when θ is negative,
errors are prone to be positive; otherwise, they are prone to
be negative. If overlapping the positive and negative errors,
the final localization can be improved. Therefore, our second
guideline for movements is if moving more than once, the
directions of the movements should flank the the target.

Based on our findings, if the location of the target is known
in advance, the best movement strategy is shown in Fig. 7(a).
However, that strategy may result in a poor estimation for a
target whose location is approximately parallel to the direction
of movement like Fig. 7(b). Therefore, without knowledge
of target’s location, a triangle is the best moving strategy to
achieve good performance on average. It ensures that we can
find at least two sides of the triangle that are not parallel to
the direction of target (see Fig. 7).

The performance of AMIL is not very sensitive to the shape
of triangle according to our real experiments. Users are free
to draw any triangle. To further improve the robustness of our
localization algorithm, we design a new moving strategy to
draw a triangle: starting from the middle of the bottom side,
moving to the left corner, to the top corner, to right corner, and
then back to the origin. This strategy combines the benefits of
both the line and triangle gestures. We evaluate this triangle
gesture in comparison to the line gesture in Section V.

IV. IMPLEMENTATION

We have implemented AMIL on Android devices, including
Galaxy Nexus, HTC EVO 3D, Nexus S and Galaxy S2 with
Android version 4.x. According to previous research [1], [5],
[6], we choose a linear chirp as the ranging signal, because
linear chirps offer good pulse compressibility and increased
signal-to-noise ratio (SNR). To minimize audible artifacts, we
set the frequency band of the linear chirp as [18kHz,22kHz],
and modified the waveform with fade-in and fade-out pattern.
The duration of the chirp is 50 ms. The sampling rate of mi-
crophone is configured to 44.1kHz. During the implementation
of AMIL, we encountered two major difficulties as follows.

Sampling drift. Previous work always assumes that the
microphone hardware could generate samples at the given
sampling rate. According to our observations, sampling drift,
however, occurs among different smartphones. To demonstrate
the drift, we investigated the smartphones listed in Table I. A
Galaxy Nexus phone was set up as a player (i.e., the reference),
and other phones acted as listeners. The player emitted two
beeps with intervals ranging from 0.5s to 2.5s. Meanwhile, the
listeners measured the beep intervals in terms of microphone
samples. It is expected that the samples captured on the listener
side should be equal to that on the player side, because no
one moved. However, we indeed captured different number



−180 −120 −60 0 60 120 180
0

5

10

15

20

25

30

θ (in degree)

α 
(in

 d
eg

re
e)

Fig. 5: Relation between θ and α

−180 −120 −60 0 60 120 180
−15

−10

−5

0

5

10

15

θ (in degree)

A
ng

le
 e

rr
or

 (
in

 d
eg

re
e) Positive error

Negative error

Fig. 6: Distribution of angle errors
against θ

���

���

���

���� ����

������

������

���� ����

����

���� ����

��������

�������	
�������


Fig. 7: Exemplar moving strate-
gies

0

2

4

6

8

10

12

Line
w/ pause

Triangle
w/ pause

Circle
w/o pause

D
is

pl
ac

em
en

t e
rr

or
 (

cm
)

1.1585 1.4905

6.8055

Fig. 8: Comparison of different
gestures with or without pause

of samples on these devices. Table I presents the results,
where the positive values means more samples were captured
by listener than the player, and the negative values means
the opposite. It is seen that 1) the same model platforms
(two Galaxy Nexus phones) barely have sampling drift, and
2) the drift on different models increases linearly over time.
The experiment results are quite stable for 10 tests and also
exist when we changed the role for each phone. It should be
noticed that each sample difference will lead to around 0.8cm
ranging error given the sampling rate is 44.1kHz. In that case,
2.5s will bring about 16cm ranging error between Galaxy S2
and Galaxy Nexus. To cope with this problem, we build a
linear model to calibrate each phone based on our extensive
experiment results. During the process of localization, this
model was used to compensate the sample drift for the second
algorithm shown in Figure 4.

TABLE I: Sampling drift under different durations

Galaxy Nexus (ref) 0.5s 1.0s 1.5s 2.0s 2.5s
Galaxy Nexus 0 0 0 0 0
HTC EVO 3D 3 5 7 9 11

Nexus S 2 3 5 7 9
Galaxy S2 -4 -8 -12 -16 -20

Beep timing. It is critical to decide when to beep. Through
study we found it is best to play a beep when the movement
pauses. The reasons are in two aspects. First, Doppler effects
will shift the frequency band of the emitted beeps and make
the detection inaccurate. Playing beeps when the phone is
stationary can mitigate this effect. Second, it is difficult to
synchronize the sensor and microphone. In other words, it is
not easy to find the precise location of the phone when a beep
is physically emitted. However, if the beep is only emitted
when the phone is stationary, we have more constraints to
improve the accuracy.

V. EVALUATION

In this section, we evaluate the performance of AMIL by
answering the following questions: 1) What is the accuracy
of our motion tracking algorithm; 2) What is the accuracy of
our localization algorithm with respect to both direction and
ranging errors; and 3) What is the on average computation
time to locate other devices.

A. Accuracy of IMU sensors

We investigated the accuracy of different gestures including
line, triangle and circle with or without pauses during the

movement. To obtain the ground truth, we first drew a trail
(i.e., line, triangle and circle) on the desk as the reference,
and then moved the phone exactly following the trail. For a
line, the estimated location of the ending point was compared
to the reference. For a triangle and a circle, we compared three
corners and quadrant points, respectively. The experiment was
repeated 30 times. Fig. 8 show the averaged results with
the standard deviation (std) as error bars. It is seen that
the line gesture has the smallest estimation error which is
slightly less than the triangle gesture and significantly less than
the circle gesture. It concludes that pausing can significantly
improve the displacement estimation. Therefore, we use simple
gestures with natural pause, namely line and triangle for rest
experiments.

B. Accuracy of determining direction

Line gesture. A line gesture with the length equal to 40cm
was first tested for localization. Given the starting point at
(0,0), we drew the line from the middle of the line, first to
the left endpoint (-20,0) and then to the right endpoint (20,0).
The reason why we drew the line in such a way is to make
three beeps at each point. Receivers were placed along a line
which is perpendicular to the moving line with 41cm away
from each other. Experiment at each location was repeated
five times. Fig. 9 shows the results. We found that the average
direction errors were within 2.5◦ and the accuracy decreased
when the receivers departed from the center. This is consistent
with the the analysis in Section 4. Note that we also tested
the cases of angles greater than 40 degree, but sometimes we
could not find any solution, hence the results were not plotted
in the figure. It confirms our guidelines in Section III.

Triangle gesture. Next, a triangle gesture with five beeps
was tested. The motion trail was kept the same for all
experiments from the coordinates (0,0) to (-20,0) to (0,20)
to (20,0) and then back to (0,0). We use Cartesian coordinate
to mark locations of player and listeners. The unit of distance
is centimeter (cm). We investigated several locations where a
line gesture cannot work well, where receivers were set to the
coordinates (-264,-366), (-264,-244), (-264,-122), (-264,0), (-
264,122), (-264,244) and (-264,-366) respectively. Again, each
location was tested for 5 times. Fig. 10 shows the results. It is
seen that the average direction errors are less than 6 degree.
It confirms that the triangle gesture performs well for some
places that the line gesture cannot work.



−40 −20 0 20 40
0

0.5

1

1.5

2

2.5

3

3.5

Relative orientation (degree)

A
ng

le
 e

rr
or

 (
de

gr
ee

)

Fig. 9: Angle errors with line gesture given
targets are located in the left region

−160 −140 −120 −100 −80 −60 −40 −20
0

2

4

6

8

10

12

Relative orientation (degree)

A
ng

le
 e

rr
or

 (
de

gr
ee

)

Fig. 10: Angle errors with triangle gesture
given targets are located in the left region

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Angle error (degree)

E
m

pi
ric

al
 C

D
F

 

 

Gesture radius 20cm
Gesture radius 40cm

Mean:2.15

Mean:0.86

Fig. 11: Angle errors against different moving
radius

Moving radius. We also tested the same triangle gesture
but with different radius. In this experiments, receivers were
placed in the center of a sender. First, the player is moved
the coordinates (0,0) to (-20,0) to (0,20) to (20,0) and back to
(0,0). Next, the moving radius increase from (0,0) to (-40,0)
to (0,40) to (40,0) and back to (0,0). Both experiments were
repeated 10 times. Fig. 11 depicts the CDF of angle errors, in
which a gesture with large radius has better accuracy.

C. Accuracy of determining position

To evaluate the accuracy of determining positions, we
conducted the following experiments in the hallway of our
department building. The player was moved from (0,0) to (-
30.5,0), to (0,30.5), to (30.5,0) and back to (0,0), and four
listeners were placed from (0, 122) to (0, 488) each spaced by
122cm. The experiments were tested for 10 times. Since there
are two types of error sources as mentioned in Section III,
we decided to investigate them separately. First, we assumed
that the motion trail was given in advance. In this way, we
can ignore the sensor errors and only estimate how much the
acoustic errors affect the localization accuracy. Next, we redid
the experiment with inertial sensors enabled to estimate the
displacement of our gesture. Last, we performed the same test
by drawing three triangles to improve the performance.

The results are shown in Fig. 12. From this figure, we
find that both errors of inertial sensor and beep detection
contribute to the localization errors. And it shows that the
displacement error adds more variations to the results. As the
distance between sender and receiver increases, both the mean
error and std becomes larger. For example, in (0,122) case, the
biggest error is within 30cm while in (0,488) we have an error
of almost 1 meter. By using three triangles, we can limit the
error to less than 50cm for all cases. Note that, except for the
488cm case, all other three have an error of 30cm.

D. Field test

To measure the overall accuracy of our system, we con-
ducted field tests in a 3m x 5m hallway. One player and twelve
targets (listeners) are located in a 2D plane. All the listeners
formed a grid with its cell size equal to 122 cm. The origin of
the coordinate system is the player. The listeners are marked
as in Fig. 13. Based on the previous discussion, we tested a
small-sized triangle starting from the origin and ending to the
same point. The side length of the triangle is 30.5cm.

Fig. 13 shows the visualized localization results. In this
figure, the actual location of each listener is denoted by
a unique solid and bold symbol. The estimated location is
plotted in the same symbol to indicate its relationship with
the ground-truth location. It is seen that when the listener is
near the player, all the estimations are close to the ground-truth
locations. It confirms our previous measurement observations
that AMIL can estimate angle within 3 degree errors and
differentiate targets accurately. However, when the distance
between listeners and the player are far (e.g., listeners on the
third row and fourth row), the accuracy decreases. There are
more overlapping results, but we can still differentiate targets
excepts that in the (-122,488) case.

To further improve the accuracy, we can use our localization
scheme in multiple rounds. Fig. 14 depicts the results when a
triangle was drawn three times. The maximal error is approx-
imately 50cm. From this figure, we can easily differentiate all
the targets, because there are no overlapping results.

E. Computation time

The finishing time of the localization process consists of two
main parts: the duration of movement and computation time.
When phone is moving, samples collected from microphone
and IMU sensors are stored in memory or disk (when memory
is full). The entire duration varies according to the shape and
radius of the gesture, but it typically can be finished within 5s.
The computation process is to calculate the moving trail from
sensor readings, beep intervals from microphone readings, and
the coordinates of receivers afterwards. To compare with full
cross-correlation method, we only investigated the duration for
computing beep intervals. Given all samples are in memory,
the full cross-correlation method is first tested then followed
by our method. Table II lists the results. It is seen that the
FFT-based correlation method used in AMIL can reduce the
finishing time by more than 90%.

F. Other considerations

Due to space limit, we briefly discuss other practical con-
siderations in our system implementation.

Noise: We tested if our scheme can resist to ambient noise
through playing different videos in the process of localization.
AMIL can give accurate results most of time. However, in
some very noisy cases, the starting point of the beep can be
buried in random noise and results in big errors even though



122 244 366 488
−50

0

50

100

Distance (cm)

A
bs

ol
ut

e 
lo

ca
tio

n 
er

ro
r 

(c
m

)

 

 

w/o sensor, 1 round
w/ sensor, 1 round
w/ sensor, 3 rounds

Fig. 12: Localization error using triangle ges-
ture of 30.5cm radius. “w/o” means the exact
beep locations are given, while “w/” means
using sensor-estimated locations. The number
of rounds counts the gesture repetition.

−300 −200 −100 0 100 200 300

100

150

200

250

300

350

400

450

500

550

x cm

y 
cm

Fig. 13: Field test localization map. The
dotted circle has a reference radius as 61cm.
Each listener is located at the center of each
circle. Results are denoted using same maker
as the target’s ground truth location.

−300 −200 −100 0 100 200 300

100

150

200

250

300

350

400

450

500

x cm

y 
cm

Fig. 14: Field test using three triangles. The
dotted circle has a reference radius as 61cm.
Each listener is located at the center of each
circle. Results are denoted using same maker
as the target’s ground truth location.

TABLE II: Computation time of cross-correlation

Gesture Samples Finishing time (s)
Mean Std cross-corr. (mean) cross-corr. (std) AMIL(mean) AMIL(std)

Line (4 beeps) 389734 16249 46.06 1.78 3.09 0.07
Triangle (5 beeps) 427008 9523 50.40 1.16 3.68 0.05

previous works [1] and [4] claim that noise is not a problem for
their designs. To solve the problem, we have also implemented
a chirp in the inaudible frequency range of [18k, 22k]. The new
chirp is more noise resistant but suffers from shorter distance
and certain inaccuracy.

Phone orientation: We measured the 3D polar pattern
of Galaxy Nexus’s built-in speaker and microphone through
PCB 378B02 condenser microphone. As we expected, the rear
acoustic field is stronger than its front counterpart, because the
curvature near the bottom edge of Nexus causes a small angle
between the speaker front and the x-y plane. For different
phone orientation, the localization distance instead of the
accuracy is relatively affected.

3D localization: In our evaluation, we moved the phone
on the surface of the floor or a table for 2D localization. We
have tested our system by freely moving the phone in the air.
Unfortunately, the performance is not satisfactory due to the
noisy readings from IMUs. Therefore, we have not included
the data for free movements. In our future work, we will work
on extending our system to 3D space.

Multiple users: The current implementation assumes that
there is only one player at a time. However, it can be
easily extended to support multiple users by selecting different
frequency bands for beeps and employing a similar multiple
access protocol used in [7].

User Effort: 1) There is not much effort involved in
drawing those gestures. The user only needs to move the phone
in her hand to draw the gesture quickly. 2) AMIL can be
implemented as a system service in the Android framework
to avoid the installation effort. 3) It is possible to avoid the
network setup effort by relying on a service in Cloud providing
public APIs to applications.

VI. RELATED WORK

While GPS-based localization has been improved in recent
years [8], it can not be directly applied to indoor scenario.
How to locate without GPS has been studied over two decades,
which can be categorized into: Radio Frequency (RF) based
techniques and Acoustic techniques.

RF based techniques. In these techniques, location is deter-
mined by measuring the radio signals from Wi-Fi APs, RFID
or cellular towers. Some of those techniques are proximity-
based, which can only provide low accuracy [9]–[11]. By pro-
filing received signal strength (RSS) fingerprints for each loca-
tion, finer localization is performed by finding a location with
the matched fingerprint [12]–[15]. Besides that, FM radio [16]
and channel responses from multiple OFDM subcarriers [17]
are recently proposed as signatures. Different from signature-
based approaches, several techniques exist for deriving range,
angle and proximity information from radio signals, and then
positions can be inferred by applying geometric algorithms.
Time-of-arrival (TOA) systems such as [18] determine the
distance between devices by measuring RF propagation delays.
Time-difference-of-arrival (TDOA) systems such as [19] rely
on the signal difference in arrival time and phase on time-
synchronized devices to determine range. Angle-of-arrival
(AOA) systems [20] utilize the directions from which a signal
is received to derive positions. Through measuring the RSS
of RF signals, the location of devices can be also determined
by employing a radio propagation model [21], [22]. These
approaches do not provide provisions to accurately locate
nearby mobile users in any circumstance, since they typically
need profiling in advance, special hardware design, or only
provide coarse-grained precision (e.g., room-level).

Acoustic techniques. Acoustic techniques can measure
the range more precisely, owing to its relatively slow speed
compared with RF signal. Hence, most acoustic localization
schemes leverage range-based approaches. Many systems such



as [23]–[26] adopt custom hardware to measures the time-of-
flight of modulated ultrasonic signals to estimate the range
between devices. The ENSBox system [27] leverages micro-
phone array to obtain orientation information for localization.
These approaches cannot be applied to mobile phones without
additional hardware. The BeepBeep system [1] designed to
work with ordinary mobile devices with speaker/microphone
introduces a novel way to measure the range based on the
elapsed time between two time-of-arrival (ETOA) of two audio
tones. Based on BeepBeep, the work [2] uses multiple speakers
and microphones to perform phone-to-phone localization in
3D space. SwordFight [4] improves BeepBeep by supporting
fast and continuous phone-to-phone ranging. Different from
those approaches, only a single device emits audio tones in our
work, thus eliminating the requirement of time synchronization
and significantly improve the scalability. Recent work [5]
proposes another acoustic TDOA-based ranging technique for
mobile phone self-localization with infrastructure support. In
addition, acoustic fingerprint is also used for indoor localiza-
tion such as the work [28].

Miscellaneous. There also has been research focused on
hybrid techniques of both RF based and acoustic localization.
WALRUS [29] can achieve room-level localization in office
environment by broadcasting the identity of the room through
sound and Wi-Fi channels. Centaur [6] improves the resolution
of localization by acoustic ranging plus Bayesian inference.
Acoustic ranging techniques are also leveraged to detect driver
phone use [30], and pair intended devices by a pointing
gesture [31], [32]. Other related works in the context expect
for localization is to leverage IMU sensors for the movement
recognition. The techniques proposed in the work [33] can
recognize human handwriting using phones. Those algorithms
relies on IMU sensors to extract the features of the movement,
while our targeted problem is more challenging that demands
measuring the precise displacement of the movement.

VII. CONCLUSION

In this paper, we consider the problem of efficiently and
securely grouping and locating mobile phone users in prox-
imity. A system called AMIL is proposed to leverage a simple
gesture to perform localization during network setup. By using
internal motion sensors and speakers/microphones, our scheme
combines gesture detection and acoustic techniques for a user
to locate other users in an efficient, low-cost and scalable
manner. We have designed, implemented and evaluated our
system on commercial smartphones. Extensive experiments
have shown that AMIL can achieve less than three degree
error in orientation and 50cm error in distance.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by US
National Science Foundation grant CNS-1320453.

REFERENCES

[1] C. Peng, G. Shen, Y. Zhang, and K. Li, Yanlin swand Tan, “Beepbeep:
a high accuracy acoustic ranging system using cots mobile devices,” in
SenSys ’07, pp. 1–14.

[2] J. Qiu, D. Chu, X. Meng, and T. Moscibroda, “On the feasibility of real-
time phone-to-phone 3d localization,” in SenSys ’11, 2011, pp. 190–203.

[3] J. Luo, H. V. Shukla et al., “Non-interactive location surveying for sensor
networks with mobility-differentiated toa,” in INFOCOM ’07.

[4] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda, “Swordfight: enabling
a new class of phone-to-phone action games on commodity phones,” in
MobiSys ’12, pp. 1–14.

[5] P. Lazik and A. Rowe, “Indoor pseudo-ranging of mobile devices using
ultrasonic chirps,” in SenSys ’12, pp. 99–112.

[6] R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan, “Centaur:
locating devices in an office environment,” in Mobicom ’12.

[7] G. E. Santagati and T. Melodia, “U-Wear: Software-defined ultrasonic
networking for wearable devices,” in Mobisys ’15.

[8] X. Zhu, Q. Li, and G. Chen, “Apt: Accurate outdoor pedestrian tracking
with smartphones,” in INFOCOM ’13, pp. 2508–2516.

[9] C. C. Tan, Q. Li, and L. Xie, “Privacy protection for rfid-based tracking
systems,” in RFID ’10. IEEE, pp. 53–60.

[10] H. Han, F. Xu, C. C. Tan, Y. Zhang, and Q. Li, “Vr-defender: Self-
defense against vehicular rogue aps for drive-thru internet,” Vehicular
Technology, IEEE Transactions on, vol. 63, no. 8, 2014.

[11] Y. Zhang, C. C. Tan, F. Xu, H. Han, and Q. Li, “Vproof: Lightweight
privacy-preserving vehicle location proofs,” Vehicular Technology, IEEE
Transactions on, vol. 64, no. 1, pp. 378–385, 2015.

[12] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user
location and tracking system,” in INFOCOM ’00, pp. 775–784.

[13] M. Youssef and A. Agrawala, “The horus wlan location determination
system,” in MobiSys ’05, pp. 205–218.

[14] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: Indoor location
sensing using active rfid,” Wireless Networks, vol. 10, 2004.

[15] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless
indoor localization with little human intervention,” in Mobicom ’12.

[16] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “Fm-based indoor
localization,” in MobiSys ’12, pp. 169–182.

[17] S. Sen, B. Radunovic et al., “You are facing the mona lisa: spot
localization using phy layer information,” in MobiSys ’12, pp. 183–196.

[18] M. Youssef and U. Shankar, “Pinpoint: An asynchronous time-based
location determination system,” in MobiSys ’06, pp. 165–176.

[19] B. Kusy, J. Sallai, G. Balogh, A. Ledeczi, V. Protopopescu, J. Tolliver,
F. DeNap, and M. Parang, “Radio interferometric tracking of mobile
wireless nodes,” in MobiSys ’07, pp. 139–151.

[20] J. Friedman, Z. Charbiwala, T. Schmid, Y. Cho, and M. Srivastava,
“Angle-of-arrival assisted radio interferometry (ari) target localization,”
in MILCOM ’08, pp. 1–7.

[21] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “Indoor
localization without the pain,” in MobiCom ’10, pp. 173–184.

[22] N. Banerjee, S. Agarwal, P. Bahl et al., “Virtual compass: relative
positioning to sense mobile social interactions,” in Pervasive ’10.

[23] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” in MobiCom ’99, pp. 59–68.

[24] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in MobiCom ’00, pp. 32–43.

[25] M. Hazas and A. Ward, “A novel broadband ultrasonic location system,”
in Ubicomp ’02, pp. 264–280.

[26] K. Liu, X. Liu, and X. Li, “Guoguo: Enabling fine-grained indoor
localization via smartphone,” in MobiSys ’13, pp. 235–248.

[27] L. Girod, M. Lukac et al., “The design and implementation of a self-
calibrating distributed acoustic sensing platform,” in SenSys ’06.

[28] S. P. Tarzia, P. A. Dinda et al., “Indoor localization without infrastructure
using the acoustic background spectrum,” in MobiSys ’11, pp. 155–168.

[29] G. Borriello, A. L. Liu, T. Offer et al., “Walrus: wireless acoustic
location with room-level resolution using ultrasound,” in MobiSys ’05.

[30] J. Yang, S. Sidhom, G. Chandrasekaran et al., “Detecting driver phone
use leveraging car speakers,” in MobiCom ’11, pp. 97–108.

[31] C. Peng, G. Shen, Y. Zhang, and S. Lu, “Point&connect: intention-based
device pairing for mobile phone users,” in MobiSys ’09, pp. 137–150.

[32] Z. Sun, A. Purohit et al., “Spartacus: Spatially-aware interaction for
mobile devices through energy-efficient audio sensing,” in Mobisys ’13.

[33] S. Agrawal, I. Constandache, S. Gaonkar, R. Roy Choudhury, K. Caves,
and F. DeRuyter, “Using mobile phones to write in air,” in MobiSys ’11.


