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Abstract—Due to the smaller size of mobile devices, on-screen
keyboards become inefficient for text entry. In this paper, we
present CamK, a camera-based text-entry method, which uses
an arbitrary panel (e.g., a piece of paper) with a keyboard
layout to input text into small devices. CamK captures the
images during the typing process and uses the image processing
technique to recognize the typing behavior. The principle of
CamK is to extract the keys, track the user’s fingertips, detect
and localize the keystroke. To achieve high accuracy of keystroke
localization and low false positive rate of keystroke detection,
CamK introduces the initial training and online calibration.
Additionally, CamK optimizes computation-intensive modules to
reduce the time latency. We implement CamK on a mobile device
running Android. Our experimental results show that CamK
can achieve above 95% accuracy of keystroke localization, with
only 4.8% false positive keystrokes. When compared to on-screen
keyboards, CamK can achieve 1.25X typing speedup for regular
text input and 2.5X for random character input.

I. INTRODUCTION

Recently, mobile devices have converged to a relatively
small form factor (e.g., smartphones, Apple Watch), in order
to be carried everywhere easily, while avoiding carrying bulky
laptops all the time. Consequently, interacting with small
mobile devices involves many challenges, a typical example
is text input without a physical keyboard.

Currently, many visual keyboards are proposed. However,
wearable keyboards [1], [2] introduce additional equipments.
On-screen keyboards [3], [4] usually take up a large area
on the screen and only support single finger for text entry.
Projection keyboards [5]–[9] often need an infrared or visible
light projector to display the keyboard to the user. Audio signal
[10] or camera based visual keyboards [11]–[13] remove the
additional hardware. By leveraging the microphone to localize
the keystrokes, UbiK [10] requires the user to click keys with
their fingertips and nails to make an audible sound, which is
not typical of typing. For existing camera based keyboards,
they either slow the typing speed [12], or should be used in
controlled environments [13]. They can not provide a similar
user experience to using physical keyboards [11].

In this paper, we propose CamK, a more natural and
intuitive text-entry method, in order to provide a PC-like text-
entry experience. CamK works with the front-facing camera
of the mobile device and a paper keyboard, as shown in Fig. 1.
CamK takes pictures as the user types on the paper keyboard,
and uses image processing techniques to detect and localize

keystrokes. CamK can be used in a wide variety of scenarios,
e.g., the office, coffee shops, outdoors, etc.

Fig. 1. A typical use case of CamK.

There are three key technical challenges in CamK. (1) High
accuracy of keystroke localization: The inter-key distance in
the paper keyboard is only about two centimeters [10]. While
using image processing techniques, there may exist a position
deviation between the real fingertip and the detected fingertip.
To address this challenge, CamK introduces the initial training
to get the optimal parameters for image processing. Besides,
CamK uses an extended region to represent the detected
fingertip, aiming to tolerate the position deviation. In addition,
CamK utilizes the features (e.g., visually obstructed area
of the pressed key) of a keystroke to verify the validity
of a keystroke. (2) Low false positive rate of keystroke
detection: A false positive occurs when a non-keystroke (i.e.,
a period in which no fingertip is pressing any key) is treated
as a keystroke. To address this challenge, CamK combines
keystroke detection with keystroke localization. If there is
not a valid key pressed by the fingertip, CamK will remove
the possible non-keystroke. Besides, CamK introduces online
calibration to further remove the false positive keystrokes.
(3) Low latency: When the user presses a key on the
paper keyboard, CamK should output the character of the
key without any noticeable latency. Usually, the computation
in image processing is heavy, leading to large time latency
in keystroke localization. To address this challenge, CamK
changes the sizes of images, optimizes the image processing
process, adopts multiple threads, and removes the operations
of writing/reading images, in order to make CamK work on
the mobile device.

We make the following contributions in this paper.
• We propose a novel method CamK for text-entry. CamK

only uses the camera of the mobile device and a paper



keyboard. CamK allows the user to type with all the
fingers and provides a similar user experience to using
physical keyboards.

• We design a practical framework for CamK, which can
detect and localize the keystroke with high accuracy,
and output the character of the pressed key without
any noticeable time latency. Based on image processing,
CamK can extract the keys, track the user’s fingertips,
detect and localize keystrokes. Besides, CamK introduces
the initial training to optimize the image processing
result and utilizes online calibration to reduce the false
positive keystrokes. Additionally, CamK optimizes the
computation-intensive modules to reduce the time latency,
in order to make CamK work on the mobile devices.

• We implement CamK on a smartphone running Google’s
Android operating system (version 4.4.4). We first mea-
sure the performance of each module in CamK. Then,
we invite nine users1 to evaluate CamK in a variety of
real-world environments. We compare the performance
of CamK with other methods, in terms of keystroke
localization accuracy and text-entry speed.

II. OBSERVATIONS OF A KEYSTROKE

In order to show the feasibility of localizing the keystroke
based on image processing techniques, we first show the
observations of a keystroke. Fig. 2 shows the frames/images
captured by the camera during two consecutive keystrokes.
The origin of coordinates is located in the top left corner of
the image, as shown in Fig. 2(a). We call the hand located
in the left area of the image the left hand, while the other
is called the right hand, as shown in Fig. 2(b). From left to
right, the fingers are called finger i in sequence, i ∈ [1, 10],
as shown in Fig. 2(c). The fingertip pressing the key is called
StrokeTip. The key pressed by StrokeTip is called StrokeKey.
• The StrokeTip has the largest vertical coordinate among

the fingers on the same hand. An example is finger 9 in
Fig. 2(a). However this feature may not work well for
thumbs, which should be identified separately.

• The StrokeTip stays on the StrokeKey for a certain dura-
tion, as shown in Fig. 2(c) - Fig. 2(d). If the positions of
the fingertip keep unchanged, a keystroke may happen.

• The StrokeTip is located in the StrokeKey, as shown in
Fig. 2(a), Fig. 2(d).

• The StrokeTip obstructs the StrokeKey from the view
of the camera, as shown in Fig. 2(d). The ratio of the
visually obstructed area to the whole area of the key can
be used to verify whether the key is pressed.

• The StrokeTip has the largest vertical distance between
the remaining fingertips of the corresponding hand. As
shown in Fig. 2(a), the vertical distance dr between the
StrokeTip (i.e., Finger 9) and remaining fingertips in right
hand is larger than that (dl) in left hand. Considering the
difference caused by the distance between the camera
and the fingertip, sometimes this feature may not be

1All data collection in this paper has gone through the IRB approval

satisfied. Thus this feature is used to assist in keystroke
localization, instead of directly determining a keystroke.

III. SYSTEM DESIGN

As shown in Fig. 1, CamK works with a mobile device (e.g.,
a smartphone) with the embedded camera, a paper keyboard.
The smartphone uses the front-facing camera to watch the
typing process. The paper keyboard is placed on a flat surface.
The objective is to let the keyboard layout be located in the
camera’s view, while making the keys in the camera’s view
look as large as possible. CamK does not require the keyboard
layout is fully located in the camera’s view, because some
user may only want to input letters or digits. Even if the user
only place the concerned part of keyboard in the camera’s
view, CamK can still work. CamK consists of the following
four components: key extraction, fingertip detection, keystroke
detection and localization, and text-entry determination.
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Fig. 3. Architecture of CamK.

A. System Overview

The architecture of CamK is shown in Fig. 3. The input is
the image taken by the camera and the output is the character
of the pressed key. Before a user begins typing, CamK uses
Key Extraction to detect the keyboard and extract each key
from the image. When the user types, CamK uses Fingertip
Detection to extract the user’s hands and detect the fingertip
based on the shape of a finger, in order to track the fingertips.
Based on the movements of fingertips, CamK uses Keystroke
Detection and Localization to detect a possible keystroke
and localize the keystroke. Finally, CamK uses Text-entry
Determination to output the character of the pressed key.

B. Key Extraction

Without loss of generality, CamK adopts the common
QWERTY keyboard layout, which is printed in black and
white on a piece of paper, as shown in Fig. 1. In order to
eliminate background effects, we first detect the boundary of
the keyboard. Then, we extract each key from the keyboard.
Therefore, key extraction contains three parts: keyboard de-
tection, key segmentation, and mapping the characters to the
keys, as shown in Fig. 3.
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Fig. 2. Frames during two consecutive keystrokes

1) Keyboard detection: We use Canny edge detection algo-
rithm [14] to obtain the edges of the keyboard. Fig. 4(b) shows
the edge detection result of Fig. 4(a). However, the interference
edges (e.g., the paper’s edge / longest edge in Fig. 4(b)) should
be removed. Based on Fig. 4(b), the edges of the keyboard
should be close to the edges of the keys. We use this feature
to remove pitfall edges, the result is shown in Fig. 4(c).
Additionally, we adopt the dilation operation [15] to join the
dispersed edge points which are close to each other, in order to
get better edges/boundaries of the keyboard. After that, we use
the Hough transform [12] to detect the lines in Fig. 4(c). Then,
we use the uppermost line and the bottom line to describe
the position range of the keyboard, as shown in Fig. 4(d).
Similarly, we can use the Hough transform [12] to detect the
left/right edge of the keyboard. If there are no suitable edges
detected by the Hough transform, it is usually because the
keyboard is not perfectly located in the camera’s view. In this
case, we simply use the left/right boundary of the image to
represent the left/right edge of the keyboard. As shown in
Fig. 4(e), we extend the four edges (lines) to get four inter-
sections P1(x1, y1), P2(x2, y2), P3(x3, y3), P4(x4, y4), which
are used to describe the boundary of the keyboard.
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Fig. 4. Keyboard detection and key extraction

2) Key segmentation: With the known location of the key-
board, we can extract the keys based on color segmentation.
In YCrCb space, the color coordinate (Y, Cr, Cb) of a white
pixel is (255, 128, 128), while that of a black pixel is (0,
128, 128). Thus, we can only use the difference of the Y
value between the pixels to distinguish the white keys from the
black background. If a pixel is located in the keyboard, while
satisfying 255 − εy ≤ Y ≤ 255, the pixel belongs to a key.
The offsets εy ∈ N of Y is mainly caused by light conditions.
εy can be estimated in the initial training (see section IV-A).

The initial/default value of εy is εy = 50.
When we obtain the white pixels, we need to get the

contours of the keys and separate the keys from one another.
While considering the pitfall areas such as small white areas
which do not belong to any key, we estimate the area of a key
at first. Based on Fig. 4(e), we use P1, P2, P3, P4 to calculate
the area Sb of the keyboard as Sb = 1

2 · (|
−−−→
P1P2 ×

−−−→
P1P4| +

|
−−−→
P3P4 ×

−−−→
P3P2|). Then, we calculate the area of each key.

We use N to represent the number of keys in the keyboard.
Considering the size difference between keys, we treat larger
keys (e.g., the space key) as multiple regular keys (e.g., A-Z,
0-9). For example, the space key is treated as five regular keys.
In this way, we will change N to Navg . Then, we can estimate
the average area of a regular key as Sb/Navg . In addition to
size difference between keys, different distances between the
camera and the keys can also affect the area of a key in the
image. Therefore, we introduce αl, αh to describe the range of
a valid area Sk of a key as Sk ∈ [αl · Sb

Navg
, αh · Sb

Navg
]. We set

αl = 0.15, αh = 5 in CamK, based on extensive experiments.
The key segmentation result of Fig. 4(e) is shown in Fig. 4(f).
Then, we use the location of the space key (biggest key) to
locate other keys, based on the relative locations between keys.

C. Fingertip Detection
In order to detect keystrokes, CamK needs to detect the

fingertips and track the movements of fingertips. Fingertip de-
tection consists of hand segmentation and fingertip discovery.

1) Hand segmentation: Skin segmentation [15] is a com-
mon method used for hand detection. In YCrCb color space, a
pixel (Y, Cr, Cb) is determined to be a skin pixel, if it satisfies
Cr ∈ [133, 173] and Cb ∈ [77, 127]. However, the threshold
values of Cr and Cb can be affected by the surroundings
such as lighting conditions. It is difficult to choose suitable
threshold values for Cr and Cb. Therefore, we combine Otsu’s
method [16] and the red channel in YCrCb color space for skin
segmentation.

In YCrCb color space, the red channel Cr is essential to
human skin coloration. Therefore, for a captured image, we
use the grayscale image that is split based on Cr channel
as an input for Otsu’s method. Otsu’s method [16] can
automatically perform clustering-based image thresholding,
i.e., it can calculate the optimal threshold to separate the
foreground and background. Therefore, this skin segmentation
approach can tolerate the effect caused by environments such
as lighting conditions. For the input image Fig. 5(a), the hand
segmentation result is shown in Fig. 5(b), where the white
regions represent the hand regions, while the black regions



represent the background. However, around the hands, there
exist some interference regions, which may change the con-
tours of fingers, resulting in detecting wrong fingertips. Thus,
CamK introduces the erosion and dilation operations [17].
We first use the erosion operation to isolate the hands from
keys and separate each finger. Then, we use the dilation
operation to smooth the edge of the fingers. Fig. 5(c) shows
the optimized result of hand segmentation. Intuitively, if the
color of the user’s clothes is close to his/her skin color, the
hand segmentation result will become worse. At this time, we
only focus on the hand region located in the keyboard area.
Due to the color difference between the keyboard and human
skin, CamK can still extract the hands efficiently.

(a) An input image (b) Hand segmentation (c) Optimization

(d) Fingers’contour
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Fig. 5. Fingertip detection

2) Fingertip discovery: After we extract the fingers, we
need to detect the fingertips. As shown in Fig. 6(a), the
fingertip is usually a convex vertex of the finger. For a point
Pi(xi, yi) located in the contour of a hand, by tracing the
contour, we can select the point Pi−q(xi−q, yi−q) before Pi

and the point Pi+q(xi+q, yi+q) after Pi. Here, i, q ∈ N. We
calculate the angle θi between the two vectors

−−−−→
PiPi−q ,

−−−−→
PiPi+q ,

according to Eq. (1). In order to simplify the calculation for θi,
we map θi in the range θi ∈ [0◦, 180◦]. If θi ∈ [θl, θh], θl < θh,
we call Pi a candidate vertex. Considering the relative lo-
cations of the points, Pi should also satisfy yi > yi−q and
yi > yi+q . Otherwise, Pi will not be a candidate vertex. If
there are multiple candidate vertexes, such as P

′

i in Fig. 6(a),
we choose the vertex which has the largest vertical coordinate,
as Pi shown in Fig. 6(a). Because this point has the largest
probability to be a fingertip. Based on extensive experiments,
we set θl = 60◦, θh = 150◦, q = 20 in this paper.

θi = arccos

−−−−→
PiPi−q ·

−−−−→
PiPi+q

|
−−−−→
PiPi−q| · |

−−−−→
PiPi+q|

(1)

Considering the specificity of thumbs, which may press the
key (e.g., space key) in a different way from other fingers,
the relative positions of Pi−q , Pi, Pi+q may change. Fig. 6(b)
shows the thumb in the left hand. Obviously, Pi−q , Pi, Pi+q

do not satisfy yi > yi−q and yi > yi+q . Therefore, we use
(xi−xi−q)·(xi−xi+q) > 0 to describe the relative locations of
Pi−q , Pi, Pi+q in thumbs. Then, we choose the vertex which
has the largest vertical coordinate as the fingertip.

i
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Fig. 6. Features of a fingertip

In fingertip detection, we only need to detect the points
located in the bottom edge (from the left most point to the
right most point) of the hand, such as the blue contour of
right hand in Fig. 5(d). The shape feature θi and the positions
in vertical coordinates yi along the bottom edge are shown
Fig. 5(e). If we can detect five fingertips in a hand with θi
and yi−q , yi, yi+q , we will not detect the thumb specially.
Otherwise, we detect the fingertip of the thumb in the right
most area of left hand or left most area of right hand according
to θi and xi−q , xi, xi+q . The detected fingertips of Fig. 5(a)
are marked in Fig. 5(f).

D. Keystroke Detection and Localization
When CamK detects the fingertips, it will track the fin-

gertips to detect a possible keystroke and localize it. The
keystroke localization result can be used to remove false pos-
itive keystrokes. We illustrate the whole process of keystroke
detection and localization together.

1) Candidate fingertip in each hand: CamK allows the
user to use all the fingers for text-entry, thus the keystroke
may be caused by the left or right hand. According to the
observations (see section II), the fingertip (i.e., StrokeTip)
pressing the key usually has the largest vertical coordinate in
that hand. Therefore, we first select the candidate fingertip with
the largest vertical coordinate in each hand. We respectively
use Cl and Cr to represent the points located in the contour
of left hand and right hand. For all points in Cl, if a point
Pl(xl, yl) satisfies yl ≥ yj , l 6= j, Pj , Pl ∈ Cl, then Pl will be
selected as the candidate fingertip in the left hand. Similarly,
we can get the candidate fingertip Pr(xr, yr) in the right hand.
In this step, we only need to get Pl and Pr to know the moving
states of hands. It is unnecessary to detect other fingertips.

2) Moving or staying: As described in the observations,
when the user presses a key, the fingertip will stay at that
key for a certain duration. Therefore, we can use the loca-
tion variation of the candidate fingertip to detect a possible
keystroke. In Frame i, we use Pli(xli , yli) and Pri(xri , yri)
to represent the candidate fingertips in the left hand and right
hand, respectively. Based on Fig. 5, the interference regions
around a fingertip may affect the contour of the fingertip, there
may exist a position deviation between the real fingertip and
the detected fingertip. Therefore, if the candidate fingertips in
frame i− 1, i satisfy Eq. (2), the fingertips can be treated as
static, i.e., a keystroke probably happens. Based on extensive
experiments, we set ∆r = 5 empirically.√

(xli − xli−1
)2 + (yli − yli−1

)2 ≤ ∆r,√
(xri − xri−1)2 + (yri − yri−1)2 ≤ ∆r.

(2)

3) Discovering the pressed key: For a keystroke, the finger-
tip is located at the key and a part of the key will be visually



obstructed by that fingertip, as shown in Fig. 2(d). We treat the
thumb as a special case, and also select it as a candidate fin-
gertip at first. Then, we get the candidate fingertip set Ctip =
{Pli , Pri , left thumb in frame i, right thumb in frame i}. Af-
ter that, we can localize the keystroke by using Alg. 1.

Eliminating impossible fingertips: For convenience, we
use Pi to represent the fingertip in Ctip, i.e., Pi ∈ Ctip, i ∈
[1, 4]. If a fingertip Pi is not located in the keyboard region,
CamK eliminates it from the candidate fingertips Ctip.
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Fig. 7. Candidate keys and Candidate fingertips

Selecting the nearest candidate keys: For each candidate
fingertip Pi, we first search the candidate keys which are
probably pressed by Pi. As shown in Fig. 7(a), although the
real fingertip is Pi, the detected fingertip is P̂i. We use P̂i to
search the candidate keys. We use Kcj(xcj , ycj) to represent
the centroid of key Kj . We get two rows of keys nearest the
location P̂i(x̂i, ŷi) (i.e., the rows with two smallest |ycj− ŷi|).
For each row, we select two nearest keys (i.e., the keys with
two smallest |xcj − x̂i|). In Fig. 7(a), the candidate key set
Ckey is consisted of K1,K2,K3,K4 . Fig. 8(a) shows the
candidate keys of the fingertip in each hand.

Keeping candidate keys containing the candidate finger-
tip: If a key is pressed by the user, the fingertip will be
located in that key. Thus we use the location of the fingertip
P̂i(x̂i, ŷi) to verify whether a candidate key contains the
fingertip, in order to remove the invalid candidate keys. As
shown in Fig. 7(a), there exists a small deviation between
the real fingertip and the detected fingertip. Therefore, we
extend the range of the detected fingertip to Ri, as shown in
Fig. 7(a). If any point Pk(xk, yk) in the range Ri is located in
a candidate key Kj , P̂i is considered to be located in Kj . Ri

is calculated as {Pk ∈ Ri|
√

(x̂i − xk)2 + (ŷi − yk)2 ≤ ∆r},
we set ∆r = 5 empirically.

As shown in Fig. 7(b), a key is represented as a quadrangle
ABCD. If a point is located in ABCD, when we move
around ABCD clockwise, the point will be located in the
right side of each edge in ABCD. As shown in Fig. 2(a), the
origin of coordinates is located in the top left corner of the
image. Therefore, if the fingertip P ∈ Ri satisfy Eq. (3), it
is located in the key. CamK will keep it as a candidate key.
Otherwise, CamK removes the key from the candidate key set
Ckey . In Fig. 7(a), K1,K2 are the remaining candidate keys.
The candidate keys contain the fingertip in Fig. 8(a) is shown
in Fig. 8(b).

−−→
AB ×

−→
AP ≥ 0,

−−→
BC ×

−−→
BP ≥ 0,

−−→
CD ×

−−→
CP ≥ 0,

−−→
DA×

−−→
DP ≥ 0.

(3)

Calculating the coverage ratios of candidate keys: For

the pressed key, it is visually obstructed by the fingertip, as the
dashed area of key K1 shown in Fig. 7(a). We use the coverage
ratio to measure the visually obstructed area of a candidate key,
in order to remove the wrong candidate keys. For a candidate
key Kj , whose area is Skj , the visually obstructed area is Dkj ,
then its coverage ratio is ρkj

=
Dkj

Skj
. For a larger key (e.g., the

space key), we update the ρkj
by multiplying a key size factor

fj , i.e., ρkj
= min(

Dkj

Skj
·fj , 1), where fj = SKj/Sk. Here, Sk

means the average area of a key, as described in section III-B2.
If ρkj ≥ ρl, the key Kj is still a candidate key. Otherwise,
CamK removes it from the candidate key set Ckey . We set ρl =
0.25 in this paper. For each hand, if there is more than one
candidate key, we will keep the key with largest coverage ratio
as the final candidate key. For a candidate fingertip, if there
is no candidate key associated with it, the candidate fingertip
will be eliminated. Fig. 8(c) shows each candidate fingertip
and its associated key.

(a) Keys around the fingertip (b) Keys containing the fingertip

(c) Visually obstructed key (d) Vertical distance with re-
maining fingertips

Fig. 8. Candidate fingertips/keys in each step

4) Vertical distance with remaining fingertips: Until now,
there is one candidate fingertip in each hand at most. If there
are no candidate fingertips, then we infer that no keystroke
happens. If there is only one candidate fingertip, then the
fingertip is the StrokeTip, and the associated candidate key is
StrokeKey. However, if there are two candidate fingertips, we
will utilize the vertical distance between the candidate fingertip
and the remaining fingertips to choose the most probable
StrokeTip, as shown in Fig. 2(a).

We use Pl(xl, yl) and Pr(xr, yr) to represent the candidate
fingertips in the left hand and right hand, respectively. Then,
we calculate the distance dl between Pl and the remaining
fingertips in left hand, and the distance dr between Pr and
the remaining fingertips in right hand. Here, dl = |yl − 1

4 ·∑j=5
j=1 yj , j 6= l|, while dr = |yr − 1

4 ·
∑j=10

j=6 yj , j 6= r|. Here,
yj represents the vertical coordinate of fingertip j. If dl > dr,
we choose Pl as the StrokeTip. Otherwise, we choose Pr as the
StrokeTip. The associated key for the StrokeTip is the pressed
key StrokeKey. In Fig. 8(d), we choose fingertip 3 in the left
hand as the StrokeTip. However, based on the observations, the



distance between the camera and hands may affect the value of
dl (dr). Therefore, for the unselected candidate fingertip (e.g.,
fingertip 8 in Fig. 8(d)), we do not discard it. We display its
associated key as the candidate key. The user can select the
candidate key for text input (see Fig. 1).

Algorithm 1: Keystroke localization
Input: Candidate fingertip set Ctip in frame i.
Remove fingertips out of the keyboard from Ctip .
for Pi ∈ Ctip do

Obtain candidate key set Ckey with four nearest keys
around Pi.
for Kj ∈ Ckey do

if Pi is located in Kj then
Calculate the coverage ratio ρkj

of Kj .
if ρkj

< ρl then
Remove Kj from Ckey .

if Ckey 6= ∅ then
Select Kj with largest ρkj

from Ckey .
Pi and Kj form a combination < Pi,Kj >.

else Remove Pi from Ctip ;

if Ctip = ∅ then No keystroke occurs, return ;
if |Ctip| = 1 then

Return the associated key of the only fingertip.
For each hand, select < Pi,Kj > with largest ratio ρkj

.
Use < Pl,Kl > (< Pr,Kr >) to represent the fingertip
and its associated key in left (right) hand.
Calculate dl (dr) between Pl (Pr) with the remaining
fingertips in left (right) hand.
if dl > dr then Return Kl ;
else Return Kr;
Output: The pressed key.

IV. OPTIMIZATIONS FOR KEYSTROKE LOCALIZATION AND
IMAGE PROCESSING

A. Initial Training

Optimal parameters for image processing: For key seg-
mentation (see section III-B2), εy is used for tolerating the
change of Y caused by environments. Initially, εy = 50. CamK
updates εyi = εyi−1 + 1, when the number of extracted keys
decreases, it stops. Then, CamK sets εy to 50 and updates
εyi

= εyi−1
−1, when the number of extracted keys decreases,

it stops. In the process, when CamK gets maximum number
of keys, the corresponding value εyi

is selected as the optimal
value for εy .

In hand segmentation, CamK uses erosion and dilation
operations, which respectively use a kernel B [17] to process
images. In order to get the suitable size of B, the user first
puts his/her hands on the home row of the keyboard, as shown
in Fig. 5(a). For simplicity, we set the kernel sizes for erosion
and dilation to be equal. The initial kernel size is z0 = 0.
Then, CamK updates zi = zi−1 +1. When CamK can localize
each fingertip in the correct key with zi, then CamK sets the
kernel size as z = zi.

Frame rate selection: CamK sets the initial/default frame
rate of the camera to be f0 = 30fps (frames per second),
which is usually the maximal frame rate of many smartphones.
For the ith keystroke, the number of frames containing the
keystroke is represented as n0i

. When the user has pressed
u keys, we can get the average number of frames during
a keystroke as n̄0 = 1

u ·
∑i=u

i=1 n0i
. In fact, n̄0 reflects the

duration of a keystroke. When the frame rate f changes, the
number of frames in a keystroke n̄f changes. Intuitively, a
smaller value of n̄f can reduce the image processing time,
while a larger value of n̄f can improve the accuracy of
keystroke localization. Based on extensive experiments (see
section V-C), we set n̄f = 3, thus f =

⌈
f0 · n̄f

n̄0

⌉
.

B. Online Calibration

Removing false positive keystrokes: Sometimes, the fin-
gers may keep still, even the user does not type any key.
CamK may treat the non-keystroke as a keystroke by chance,
leading to an error. Thus we introduce a temporary character
to mitigate this problem.

In the process of pressing a key, the StrokeTip moves
towards the key, stays at that key, and then moves away. The
vertical coordinate of the StrokeTip first increases, then pauses,
then decreases. If CamK has detected a keystroke in the n̄f
consecutive frames, it will display the current character on
the screen as a temporary character. In the next frame(s), if
the position of the StrokeTip does not satisfy the features of
a keystroke, CamK will cancel the temporary character. This
does not have much impact on the user’s experience, because
of the very short time during two consecutive frames. Besides,
CamK also displays the candidate keys around the StrokeTip,
the user can choose them for text input.

Movement of smartphone or keyboard: CamK presumes
that the smartphone and the keyboard are kept at stable
positions during its usage life-cycle. For best results, we
recommend the user tape the paper keyboard on the panel.
However, to alleviate the effect caused by the movements of
the mobile device or the keyboard, we offer a simple solution.
If the user uses the Delete key on the screen multiple times
(e.g., larger than 3 times), it may indicate CamK can not output
the character correctly. The movements of the device/keyboard
may happen. Then, CamK informs the user to move his/her
hands away from the keyboard for relocation. After that, the
user can continue the typing process.

C. Real Time Image Processing
Because image processing is rather time-consuming, it is

difficult to make CamK work on the mobile device. Take
the Samsung GT-I9100 smartphone as an example, when the
image size is 640 ∗ 480 pixels, it needs 630ms to process this
image to localize the keystroke. When considering the time
cost for taking images, processing consecutive images to track
fingertips for keystroke detection, the time cost for localizing
a keystroke will increase to 1320ms, which will lead to a very
low input speed and a bad user experience. Therefore, we
introduce the following optimizations for CamK.



Adaptively changing image sizes: We use small images
(e.g., 120 ∗ 90 pixels) during two keystrokes to track the
fingertips, and use a large image (e.g., 480 ∗ 360 pixels)
for keystroke localization. Optimizing the large-size image
processing: When we detect a possible keystroke in (xc, yc) of
frame i−1, then we focus on a small area Sc = {Pi(xi, yi) ∈
Sc| |xi − xc| ≤ ∆x, |yi − yc| ≤ ∆y} of frame i to localize
the keystroke. We set ∆x = 40, ∆y = 20 by default. Multi-
thread Processing: CamK adopts three threads to detect and
localize the keystroke in parallel, i.e., capturing thread to take
images, tracking thread for keystroke detection, and localizing
thread for keystroke localization. Processing without writing
and reading images: CamK directly stores the bytes of
the source data to the text file in binary mode, instead of
writing/reading images.

V. PERFORMANCE EVALUATION

We implement CamK on the Samsung GT-I9100 smart-
phone running Google’s Android operating system (version
4.4.4). Samsung GT-I9100 has a 2 million pixels front-facing
camera. We use the layout of AWK (Apple Wireless Keyboard)
as the default keyboard layout, which is printed on a piece of
US Letter sized paper. Unless otherwise specified, the frame
rate is 15fps, the image size is 480∗460 pixels. CamK works in
the office. We first evaluate each component of CamK. Then,
we invite 9 users to use CamK and compare the performance
of CamK with other text-entry methods.

A. Localization accuracy for known keystrokes

In order to verify whether CamK has obtained the optimal
parameters for image processing, we measure the accuracy
of keystroke localization, when CamK knows a keystroke is
happening. The user presses the 59 keys (excluding the PC
function keys: first row, five keys in last row) on the paper
keyboard sequentially. We press each key fifty times. The
localization result is shown in Fig. 9. the localization accuracy
is close to 100%. It means that CamK can adaptively select
suitable values of the parameters used in image processing.

B. Accuracy of keystroke localization and false positive rate
of keystroke detection

In order to verify whether CamK can utilize the features
of a keystroke and online calibration for keystroke detection
and localization. We conduct the experiments in three typical
scenarios; an office environment, a coffee shop, and outdoors.
Usually, in the office, the color of the light is close to white. In
the coffee shop, the red part of light is similar to that of human
skin. In outdoors, the sunlight is basic/pure light. In each test,
a user randomly makes Nk = 500 keystrokes. Suppose CamK
localizes Na keystrokes correctly and treats Nf non-keystrokes
as keystrokes wrongly. We define the accuracy as pa = Na

Nk
,

and the false positive rate as pf = min(
Nf

Nk
, 1). We show

the results of these experiments in Fig. 10, which shows that
CamK can achieve high accuracy (larger than 90%) with low
false positive rate (about 5%). In the office, the localization
accuracy can achieve 95%.

C. Frame rate
As described in section IV-A, the frame rate affects the

number of images n̄f during a keystroke. Obviously, with the
larger value of n̄f , CamK can easily detect the keystroke and
localize it. On the contrary, CamK may miss the keystrokes.
Based on Fig. 11, when n̄f ≥ 3, CamK has good performance.
When n̄f > 3, there is no obvious performance improvement.
However, increasing n̄f means introducing more images for
processing. It may increase the time latency. While considering
the accuracy, false positive, and time latency, we set n̄f = 3.

Besides, we invite 5 users to test the duration ∆t of a
keystroke. ∆t represents the time when the StrokeTip is located
in the StrokeKey from the view of the camera. Based on
Fig. 12, ∆t is usually larger than 150ms. When n̄f = 3, the
frame rate is less than the maximum frame rate (30fps). CamK
can work under the frame rate limitation of the smartphone.
Therefore, n̄f = 3 is a suitable choice.

D. Impact of image size
We first measure the performance of CamK by adopting a

same size for each image. Based on Fig. 13, as the size of
image increases, the performance of CamK becomes better.
When the size is smaller than 480 ∗ 360 pixels, CamK can
not extract the keys correctly, the performance is rather bad.
When the size of image is 480 ∗ 360 pixels, the performance
is good. Keeping increasing the size does not cause obvious
improvement. However, increasing the image size will increase
the image processing time and power consumption ( measured
by a Monsoon power monitor [18]) for processing an image,
as shown in Fig. 14. Based on section IV-C, CamK adaptively
change the sizes of the images. In order to guarantee high
accuracy and low false positive rate, and reduce the time
latency and power consumption, the size of the large image is
set 480 ∗ 380 pixels.

In Fig. 15, the size of the small image decreases from
480 ∗ 360 to 120 ∗ 90, CamK keeps the high accuracy with
low false rate. When the size of small images continuously
changes, the accuracy decreases a lot, and the false positive
rate increases a lot. When the image size decreases, the time
cost / power consumption for locating a keystroke keeps
decreasing, as shown in Fig. 16. Combining Fig. 15 and Fig.
16, the size of the small image is set 120 ∗ 90 pixels.

E. Time latency and power consumption
Based on Fig. 16, the time cost for locating a keystroke

is about 200ms, which is comparable to the duration of a
keystroke, as shown in Fig. 12. It means when the user
stays in the pressed key, CamK can output the text without
noticeable time latency. The time latency is within 50ms, or
even smaller, which is well below human response time [10].
In addition, we measure the power consumption of Samsung
GT-I9100 smartphone in the following states: (1) idle with
the screen on; (2) writing an email; (3) keeping the camera
on the preview mode (frame rate is 15fps); (4) running CamK
(frame rate is 15fps) for text-entry. The power consumption
in each state is 516mW, 1189mW, 1872mW, 2245mW. The
power consumption of CamK is a little high. Yet as a new
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technique, the power consumption is acceptable. In future, we
will try to reduce the energy cost.

F. User study
In order to evaluate the usability of CamK in practice, we

invite 9 users to test CamK in different environments. We
use the input speed and the error rate pe = (1− pa) + pf as
metrics. Each user tests CamK by typing regular text sentences
and random characters. We compare CamK with the following
three input methods: typing with an IBM style PC keyboard,
typing on Google’s Android on-screen keyboard, and typing
on Swype keyboard [19], which allows the user to slide a
finger across the keys and use the language mode to guess
the word. For each input method, the user has ten minutes to
familiarize with the keyboard before using it.

1) Regular text input: Fig. 17 shows the input speed of each
user when they input the regular text. Each user achieves the
highest input speed when he/she uses the PC keyboard. This
is because the user can locate the keys on a physical keyboard
by touch, while the user tends to look at the paper keyboard
to find a key. CamK can achieve 1.25X typing speedup, when
compared to the on-screen keyboard. In CamK, the user can
type 1.5-2.5 characters per second. When compared with UbiK
[10], which requires the user to type with the finger nail

(which is not typical), CamK improves the input speed about
20%. Fig. 18 shows the error rate of each method. Although
CamK is relatively more erroneous than other methods, as
a new technique, the error rate is comparable and tolerable.
Usually, the error rate of CamK is between 5%− 9%, which
is comparable to that of UbiK (about 4%− 8%).

2) Random character input: Fig. 19 shows the input speed
of each user when they input the random characters, which
contain a lot of digits and punctuations. The input speed of
CamK is comparable to that of a PC keyboard. CamK can
achieve 2.5X typing speedup, when compared to the on-screen
keyboard and Swype. Because the latter two keyboards need
to switch between different screens to find letters, digits and
punctuations. For random character input, UbiK [10] achieves
2X typing speedup, compared to that of on-screen keyboards.
Therefore, our solution can improve more input speed, when
compared to UbiK. Fig. 20 shows the error rate of each
method. Due to the randomness of the characters, the error rate
increases, especially for typing with the on-screen keyboard
and Swype. The error rate of CamK does not increase much,
because the user can input the characters just like he/she uses
the PC keyboard. The error rate in CamK (6% − 10%) is
comparable to that of UbiK [10] (about 4%− 10%).



VI. RELATED WORK

Due to small sizes of mobile devices, existing research work
has focused on redesigning visual keyboards for text entry,
such as wearable keyboards, modified on-screen keyboards,
projection keyboards, camera based keyboard, and so on.

Wearable keyboards: Among the wearable keyboards,
FingerRing [1] puts a ring on each finger to detect the finger’s
movement to produce a character based on the accelerom-
eter. Similarly, Samsung’s Scurry [20] works with the tiny
gyroscopes. Thumbcode method [21], finger-Joint keypad [22]
work with a glove equipped with the pressure sensors for each
finger. The Senseboard [2] consists of two rubber pads which
slip onto the user’s hands. It senses the movements in the palm
to get keystrokes.

Modified on-screen keyboards: Among the modified on-
screen keyboards, BigKey [3] and ZoomBoard [4] adaptively
change the size of keys. ContextType [23] leverages the infor-
mation about a user’s hand posture to improve mobile touch
screen text entry. While considering using multiple fingers,
Sandwich keyboard [24] affords ten-finger touch typing by
utilizing a touch sensor on the back side of a device.

Projection keyboards: Considering the advantages of the
current QWERTY keyboard layout, projection keyboards are
proposed. However, they either need a visible light projector
to cast a keyboard [5], [6], [7], or use the infrared projector to
produce a keyboard [8] [9]. They use optical ranging or image
recognition methods to identify the keystroke.

Camera based keyboards: Camera based visual keyboards
do not need additional hardware. In [11], the system gets the
input by recognizing the gestures of user’s fingers. It needs
users to remember the mapping between the keys and the
fingers. In [12], the visual keyboard is printed on a piece of
paper. The user can only use one finger and needs to wait for
one second before each keystroke. Similarly, the iPhone app
paper keyboard [25] only allows the user to use one finger
in a hand. In [13], the system detects the keystroke based on
shadow analysis, which is easy affected by light conditions.

In addition, Wang et al. [10] propose UbiK, which leverages
the microphone on a mobile device to localize the keystrokes.
However, it requires the user to click the key with fingertip
and nail margin, which is not typical.

VII. CONCLUSION

In this paper, we propose CamK for inputting text into small
mobile devices. By using image processing techniques, CamK
can achieve above 95% accuracy for keystroke localization,
with only 4.8% false positive keystrokes. Based on our exper-
iment results, CamK can achieve 1.25X typing speedup for
regular text input and 2.5X for random character input, when
compared to on-screen keyboards.
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