
Chapter 5
Hashing

Introduction

2

hashing performs basic operations, such as insertion,
deletion, and finds in average time

Hashing

3

a hash table is merely an of some fixed size
hashing converts into locations in a hash
table

searching on the key becomes something like array
lookup

hashing is typically a many-to-one map: multiple keys are
mapped to the same array index

mapping multiple keys to the same position results in a
____________ that must be resolved

two parts to hashing:
a hash function, which transforms keys into array indices
a collision resolution procedure

Hashing Functions

4

let be the set of search keys
hash functions map into the set of in the
hash table

ideally, distributes over the slots of
the hash table, to minimize collisions
if we are hashing items, we want the number of items
hashed to each location to be close to

example: Library of Congress Classification System
hash function if we look at the first part of the call numbers
(e.g., E470, PN1995)

collision resolution involves going to the stacks and
looking through the books
almost all of CS is hashed to QA75 and QA76 (BAD)

Hashing Functions

5

suppose we are storing a set of nonnegative integers
given , we can obtain hash values between 0 and 1 with the
hash function

when is divided by
fast operation, but we need to be careful when choosing

example: if , is just the lowest-order bits of
are all the hash values equally likely?

choosing to be a not too close to a power of 2
works well in practice

Hashing Functions

6

we can also use the hash function below for floating point
numbers if we interpret the bits as an ______________

two ways to do this in C, assuming long int and double
types have the same length
first method uses C to accomplish this task

Hashing Functions

7

we can also use the hash function below for floating point
numbers if we interpret the bits as an integer (cont.)
second uses a , which is a variable that can hold
objects of different types and sizes

Hashing Functions

8

we can hash strings by combining a hash of each _________

is an additional parameter we get to choose
if is larger than any character value, then this approach is
what you would obtain if you treated the string as a base-

Hashing Functions

9

K&R suggest a slightly simpler hash function, corresponding
to

Weiss suggests

Hashing Functions

10

we can use the idea for strings if our search key has
_____________ parts, say, street, city, state:

hash = ((street * R + city) % M) * R + state) % M;

same ideas apply to hashing vectors

Hash Functions

11

the choice of parameters can have a ____________ effect
on the results of hashing
compare the text's string hashing algorithm for different
pairs of and

plot _______________ of the number of words hashed to
each hash table location; we use the American dictionary
from the aspell program as data (305,089 words)

Hash Functions

12

example:
good: words are __________________________

Hash Functions

13

example:
very bad

Hash Functions

14

example:
better

Hash Functions

15

example:
bad

Collision Resolution

16

hash table collision
occurs when elements hash to the __________________
in the table
various for dealing with collision

separate chaining
open addressing
linear probing
other methods

Separate Chaining

17

separate chaining
keep a list of all elements that to the same location
each location in the hash table is a _________________
example: first 10 squares

Separate Chaining

18

insert, search, delete in lists
all proportional to of linked list
insert

new elements can be inserted at of list
duplicates can increment ______________

other structures could be used instead of lists
binary search tree
another hash table

linked lists good if table is and hash function is
good

Separate Chaining

19

how long are the linked lists in a hash table?
value: where is the number of keys

and is the size of the table
is it reasonable to assume the hash table would exhibit
this behavior?

load factor
average length of a list
time to search: time to evaluate the hash
function + time to the list

unsuccessful search:
successful search:

Separate Chaining

20

observations
more important than table size

general rule: make the table as large as the number of
elements to be stored,
keep table size prime to ensure good ________________

Separate Chaining

21

declaration of hash structure

Separate Chaining

22

hash member function

Separate Chaining

23

routines for separate chaining

Separate Chaining

24

routines for separate chaining

Open Addressing

25

linked lists incur extra costs
time to for new cells
effort and complexity of defining second data structure

a different collision strategy involves placing colliding keys
in nearby slots

if a collision occurs, try cells until an empty
one is found
bigger table size needed with
load factor should be below

three common strategies
linear probing
quadratic probing
double hashing

Linear Probing

26

linear probing insert operation
when is hashed, if slot is open, place there
if there is a collision, then start looking for an empty slot
starting with location in the hash table, and
proceed through , , 0, 1, 2,

wrapping around the hash table, looking for
an empty slot

search operation is similar
checking whether a table entry is vacant (or is one we
seek) is called a ___________

Linear Probing

27

example: add 89, 18, 49, 58, 69 with and

Linear Probing

28

as long as the table is , a vacant cell can be found
but time to locate an empty cell can become large
blocks of occupied cells results in primary _____________

deleting entries leaves __________
some entries may no longer be found
may require moving many other entries

expected number of probes

for search hits:

for insertion and search misses:

for , these values are and , respectively

Linear Probing

29

performance of linear probing (dashed) vs. more random
collision resolution

adequate up to
Successful, Unsuccessful, Insertion

Quadratic Probing

30

quadratic probing
eliminates _______________________
collision function is quadratic
example: add 89, 18, 49, 58, 69 with and

Quadratic Probing

31

in linear probing, letting table get nearly greatly
hurts performance
quadratic probing

no of finding an empty cell once the
table gets larger than half full
at most, of the table can be used to resolve
collisions
if table is half empty and the table size is prime, then we
are always guaranteed to accommodate a new element
could end up with situation where all keys map to the
same table location

Quadratic Probing

32

quadratic probing
collisions will probe the same alternative cells

clustering
causes less than half an extra probe per search

Double Hashing

33

double hashing

apply a second hash function to and probe across

function must never evaluate to ____
make sure all cells can be probed

Double Hashing

34

double hashing example
with

is a prime smaller than table size
insert 89, 18, 49, 58, 69

Double Hashing

35

double hashing example (cont.)
note here that the size of the table (10) is not prime
if 23 inserted in the table, it would collide with 58

since and the table size is 10,
only one alternative location, which is taken

Rehashing

36

table may get _______________
run time of operations may take too long
insertions may for quadratic resolution

too many removals may be intermixed with insertions
solution: build a new table (with a new
hash function)

go through original hash table to compute a hash value
for each (non-deleted) element
insert it into the new table

Rehashing

37

example: insert 13, 15, 24, 6 into a hash table of size 7
with

Rehashing

38

example (cont.)
insert 23
table will be over 70% full; therefore, a new table is
created

Rehashing

39

example (cont.)
new table is size 17
new hash function
all old elements are inserted into new
table

Rehashing

40

rehashing run time since elements and to rehash
the entire table of size roughly

must have been insertions since last rehash
rehashing may run OK if in ________________

if interactive session, rehashing operation could produce
a slowdown

rehashing can be implemented with _________________
could rehash as soon as the table is half full
could rehash only when an insertion fails
could rehash only when a certain ______ ___ is reached

may be best, as performance degrades as load factor
increases

Hash Tables with Worst-Case Access

41

hash tables so far
average case for insertions, searches, and

deletions
separate chaining: worst case

some queries will take nearly logarithmic time
worst-case time would be better

important for applications such as lookup tables for
routers and memory caches
if is known in advance, and elements can be
_______________, worst-case time is
achievable

Hash Tables with Worst-Case Access

42

perfect hashing
assume all items known _________________
separate chaining

if the number of lists continually increases, the lists will
become shorter and shorter
with enough lists, high probability of ______________
two problems

number of lists might be unreasonably __________
the hashing might still be unfortunate

can be made large enough to have probability
of no collisions
if collision detected, clear table and try again with a
different hash function (at most done 2 times)

Hash Tables with Worst-Case Access

43

perfect hashing (cont.)
how large must be?

theoretically, should be , which is ____________
solution: use lists

resolve collisions by using hash tables instead of
linked lists

each of these lists can have elements
each secondary hash table will use a different hash
function until it is ______________________

can also perform similar operation for primary hash
table

total size of secondary hash tables is at most

Hash Tables with Worst-Case Access

44

perfect hashing (cont.)
example: slots 1, 3, 5, 7 empty; slots 0, 4, 8 have 1
element each; slots 2, 6 have 2 elements each; slot 9
has 3 elements

Hash Tables with Worst-Case Access

45

cuckoo hashing
bound known for a long time

researchers surprised in 1990s to learn that if one of two
tables were chosen as items were inserted,
the size of the largest list would be , which is
significantly smaller
main idea: use 2 tables

neither more than full
use a separate hash function for each
item will be stored in one of these two locations
collisions resolved by elements

Hash Tables with Worst-Case Access

46

cuckoo hashing (cont.)
example: 6 items; 2 tables of size 5; each table has
randomly chosen hash function

A can be placed at position 0 in Table 1 or position 2 in
Table 2
a search therefore requires at most 2 table accesses in
this example
item deletion is trivial

Hash Tables with Worst-Case Access

47

cuckoo hashing (cont.)
insertion

ensure item is not already in one of the tables
use first hash function and if first table location is
___________, insert there
if location in first table is occupied

____________ element there and place current item
in correct position in first table
displaced element goes to its alternate hash position
in the second table

Hash Tables with Worst-Case Access

48

cuckoo hashing (cont.)
example: insert A

insert B (displace A)

Hash Tables with Worst-Case Access

49

cuckoo hashing (cont.)
insert C

insert D (displace C) and E

Hash Tables with Worst-Case Access

50

cuckoo hashing (cont.)
insert F (displace E) (E displaces A)

(A displaces B) (B relocated)

Hash Tables with Worst-Case Access

51

cuckoo hashing (cont.)
insert G

displacements are _______________
G D B A E F C G

also results in a displacement cycle

Hash Tables with Worst-Case Access

52

cuckoo hashing (cont.)
cycles

insertions should require < displacements

if a certain number of displacements is reached on an
insertion, tables can be with new hash
functions

Hash Tables with Worst-Case Access

53

cuckoo hashing (cont.)
variations

higher number of tables (3 or 4)
place item in second hash slot immediately instead of
________________ other items
allow each cell to store keys

space utilization increased

Hash Tables with Worst-Case Access

54

cuckoo hashing (cont.)
benefits

worst-case lookup and deletion times
avoidance of _____________________
potential for __________________

potential issues
extremely sensitive to choice of hash functions
time for insertion increases rapidly as load factor
approaches 0.5

Hash Tables with Worst-Case Access

55

hopscotch hashing
improves on linear probing algorithm

linear probing tries cells in sequential order, starting
from hash location, which can be long due to primary
and secondary clustering
instead, hopscotch hashing places a bound on
__________________ of the probe sequence

results in worst-case constant-time lookup
can be parallelized

Hash Tables with Worst-Case Access

56

hopscotch hashing (cont.)
if insertion would place an element too far from its
hash location, go backward and other
elements

evicted elements cannot be placed farther than the
maximal length

each position in the table contains information about
the current element inhabiting it, plus others that
________ to it

Hash Tables with Worst-Case Access

57

hopscotch hashing (cont.)
example: MAX_DIST = 4

each bit string provides 1 bit of information about the
current position and the next 3 that follow

1: item hashes to current location; 0: no

Hash Tables with Worst-Case Access

58

hopscotch hashing (cont.)
example: insert H in 9

try in position 13, but too far, so try candidates for
eviction (10, 11, 12)
evict G in 11

Hash Tables with Worst-Case Access

59

hopscotch hashing (cont.)
example: insert I in 6

position 14 too far, so try positions 11, 12, 13
G can move down one
position 13 still too far; F can move down one

Hash Tables with Worst-Case Access

60

hopscotch hashing (cont.)
example: insert I in 6

position 12 still too far, so try positions 9, 10, 11
B can move down three
now slot is open for I, fourth from 6

Hash Tables with Worst-Case Access

61

universal hashing
in principle, we can end up with a situation where all of
our keys are hashed to the in the
hash table (bad)
more realistically, we could choose a hash function
that does not distribute the keys
to avoid this, we can choose the hash function
______________ so that it is independent of the keys
being stored
yields provably good performance on average

Hash Tables with Worst-Case Access

62

universal hashing (cont.)
let be a finite collection of functions mapping
our set of keys to the range }

is a collection if for each pair of
distinct keys , the number of hash functions

for which is at most
that is, with a randomly selected hash function ,
the chance of a between distinct and
is not more than the probability of a collision if

and were chosen randomly and
independently from }

Hash Tables with Worst-Case Access

63

universal hashing (cont.)
example: choose a prime sufficiently large that every
key is in the range 0 to (inclusive)
let and
then the family

is a universal class of hash functions

Hash Tables with Worst-Case Access

64

extendible hashing
amount of data too large to fit in _____________

main consideration is then the number of disk
accesses

assume we need to store records and
records fit in one disk block
current problems

if probing or separate chaining is used, collisions
could cause to be examined
during a search
rehashing would be expensive in this case

Hash Tables with Worst-Case Access

65

extendible hashing (cont.)
allows search to be performed in disk accesses

insertions require a bit more
use B-tree

as increases, height of B-tree ______________
could make height = 1, but multi-way branching
would be extremely high

Hash Tables with Worst-Case Access

66

extendible hashing (cont.)
example: 6-bit integers

root contains 4 pointers determined by first 2 bits
each leaf has up to 4 elements

Hash Tables with Worst-Case Access

67

extendible hashing (cont.)
example: insert 100100

place in third leaf, but full
split leaf into 2 leaves, determined by 3 bits

Hash Tables with Worst-Case Access

68

extendible hashing (cont.)
example: insert 000000

first leaf split

Hash Tables with Worst-Case Access

69

extendible hashing (cont.)
considerations

several directory may be required if the
elements in a leaf agree in more than D+1 leading
bits

number of bits to distinguish bit strings
does not work well with (
duplicates: does not work at all)

Hash Tables with Worst-Case Access

70

final points
choose hash function carefully
watch _________________

separate chaining: close to 1
probing hashing: 0.5

hash tables have some _______________
not possible to find min/max
not possible to for a string unless the
exact string is known

binary search trees can do this, and is only
slightly worse than

Hash Tables with Worst-Case Access

71

final points (cont.)
hash tables good for

symbol table
gaming

remembering locations to avoid recomputing
through transposition table

spell checkers

