

Introduction

Hashing

-a hash table is merely an \qquad of some fixed size
-hashing converts \qquad into locations in a hash table
-searching on the key becomes something like array lookup
-hashing is typically a many-to-one map: multiple keys are mapped to the same array index
-mapping multiple keys to the same position results in a
\qquad that must be resolved
-two parts to hashing:
-a hash function, which transforms keys into array indices
-a collision resolution procedure
-hashing performs basic operations, such as insertion, deletion, and finds in \qquad average time
-better than other ADTs we've seen so far

Hashing Functions

- let K be the set of search keys
-hash functions map K into the set of M \qquad in the hash table

$$
h: K \rightarrow\{0,1, \ldots, M-1\}
$$

-ideally, h distributes K \qquad over the slots of the hash table, to minimize collisions
-if we are hashing N items, we want the number of items hashed to each location to be close to N / M

- example: Library of Congress Classification System
-hash function if we look at the first part of the call numbers (e.g., E470, PN1995)
-collision resolution involves going to the stacks and looking through the books
-almost all of CS is hashed to QA75 and QA76 (BAD)

Hashing Functions

-suppose we are storing a set of nonnegative integers
-given M, we can obtain hash values between 0 and 1 with the hash function

$$
h(k)=k \% M
$$

\qquad when k is divided by M
-fast operation, but we need to be careful when choosing M -example: if $M=2^{p}, h(k)$ is just the p lowest-order bits of k - are all the hash values equally likely?
-choosing M to be a \qquad not too close to a power of 2 works well in practice

Hashing Functions

-we can also use the hash function below for floating point numbers if we interpret the bits as an integer (cont.)
-second uses a \qquad , which is a variable that can hold objects of different types and sizes
long int hash $=u . k \% M$;
\qquad

```
union
```

union
long int k;
long int k;
double x;
double x;
} u;
} u;
u.x = 3.1416;

```
u.x = 3.1416;
```


Hashing Functions

-we can also use the hash function below for floating point numbers if we interpret the bits as an \qquad

$$
h(k)=k \% M
$$

-two ways to do this in C, assuming long int and double types have the same length
-first method uses C \qquad to accomplish this task
unsigned long $* k$; double x; $\mathrm{k}=$ (unsigned long*) \& ; long int hash $=k \% \mathrm{M}$;

Hashing Functions

-we can hash strings by combining a hash of each \qquad

```
char *s = "hello!";
unsigned long hash = 0;
for (int i = 0; i < strlen(s); i++) {
    unsigned char w = s[i];
    hash = (R * hash + w) % M;
}
\(-R\) is an additional parameter we get to choose
-if \(R\) is larger than any character value, then this approach is what you would obtain if you treated the string as a base- \(R\)
```


Hashing Functions

-K\&R suggest a slightly simpler hash function, corresponding to $R=31$

```
char *s;
    unsigned hash;
    for (hash = 0; *s != '\0'; s++) {
    hash = 31 * hash + *s;
}
hash = hash % M;
```

-Weiss suggests $R=37$

Hash Functions

-the choice of parameters can have a \qquad effect on the results of hashing
-compare the text's string hashing algorithm for different pairs of R and M
-plot \qquad of the number of words hashed to each hash table location; we use the American dictionary from the aspell program as data (305,089 words)

Hashing Functions

-we can use the idea for strings if our search key has ___ parts, say, street, city, state:

```
hash = ((street * R + city) % M) * R + state) % M;
```

-same ideas apply to hashing vectors

Hash Functions

-example: $R=31, M=1024$
-good: words are \qquad

Hash Functions

Hash Functions

-example: $R=32, M=1024$
-very bad

Hash Functions

-example: $R=32, M=1000$
-bad

-example: $R=31, M=1000$
-better

Collision Resolution

-hash table collision
-occurs when elements hash to the \qquad in the table
-various \qquad for dealing with collision
-separate chaining
-open addressing
-linear probing
-other methods

Separate Chaining

-separate chaining
-keep a list of all elements that \qquad to the same location

- each location in the hash table is a \qquad
- example: first 10 squares

Separate Chaining

-how long are the linked lists in a hash table?

- \qquad value: N / M where N is the number of keys and M is the size of the table
- is it reasonable to assume the hash table would exhibit this behavior?
-load factor $\lambda=N / M$
-average length of a list $=\lambda$
-time to search: \qquad time to evaluate the hash function + time to \qquad the list
-unsuccessful search: $1+\lambda$
-successful search: $1+(\lambda / 2)$

Separate Chaining

-insert, search, delete in lists
-all proportional to \qquad of linked list
-insert
-new elements can be inserted at \qquad of list
-duplicates can increment \qquad

- other structures could be used instead of lists
-binary search tree
- another hash table
- linked lists good if table is \qquad and hash function is good

Separate Chaining

-observations

- \qquad more important than table size
- general rule: make the table as large as the number of elements to be stored, $\lambda \approx 1$
-keep table size prime to ensure good \qquad

Separate Chaining

-declaration of hash structure

```
template <typename Hashed0bj>
class HashTable
l
    public:
        explicit HashTable( int size - 101);
        bool contains(const HashedOhj & x ) const;
        void makeEmpty( );
        bool insert( const HashedObj & x);
        bool insert( Hashed0oj && x );
        bool renove( const HashedObj & x );
    private:
        vector<list<Hashed0hj>> thelists; // The array of Lists
        int currentSize;
    void rehash( );
    size t myhash( const HashedOhj & X ) const;
};
```


Separate Chaining

-hash member function

```
size_t myhash(const HashedObj & x ) cons
```

size_t myhash(const HashedObj \& x) cons
{
{
static hash<HashedObj> hf;
static hash<HashedObj> hf;
return hf(x) % theLists.size();
return hf(x) % theLists.size();
}

```
}
```


Separate Chaining

-routines for separate chaining

```
vold makeumpty(
for( auto & thislist : thel ists)
        thisList.clear();
    1
hool conlains(const. HashedOLyj & x ) consL
    1
    auto & whichList = theLists[ myhash( x ) ];
    return find( begin( whichList), end(whichList), x) !- end(whichList ):
    1
bool remove( const HashedObj & x )
l
    autos whichl ist = thel ists[ ryhash(x)];
    auto itr = find( begin('whichList), end(whichList ), x );
    if( ttr -- and(whichl 1st ))
        return false;
    nhichList.erase( itr );
    --currentsize;
    retarn Lrue;
```

1

Separate Chaining

-routines for separate chaining

```
bool insert( const Hashed0bj & x )
1
auto & whichList = theLists[ myhash( x ) ];
    if( find( hegin(whichl ist.), end(whichlist), x ) != end(whichl ist))
        relurn 「alse;
    whichList.push_back( x );
        // Rchash; see Sect1on b.b
    ir( ++currentSize = theLists.size())
        rchash();
    return true;
J
```


Linear Probing

- linear probing insert operation
- when k is hashed, if slot $h(k)$ is open, place k there
-if there is a collision, then start looking for an empty slot starting with location $h(k)+1$ in the hash table, and proceed \qquad through $h(k)+2, \ldots, m-1,0,1,2$, $\ldots, h(k)-1$ wrapping around the hash table, looking for an empty slot
-search operation is similar
-checking whether a table entry is vacant (or is one we seek) is called a \qquad
- linear probing
-quadratic probing
-double hashing

Linear Probing

-example: add $89,18,49,58,69$ with $h(k)=k \% 10$ and $f(i)=i$

	Empty lable	After y9	After 18	After 49	After 38
0			49	49	After 69
1				58	58
2					69
3					
4					
5					
6		18	18	18	18
7	89	89	89	89	89
8					

Linear Probing

-as long as the table is \qquad , a vacant cell can be found
-but time to locate an empty cell can become large
-blocks of occupied cells results in primary \qquad
-deleting entries leaves \qquad
-some entries may no longer be found
-may require moving many other entries
-expected number of probes
-for search hits: $\sim \frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$
-for insertion and search misses: $\sim \frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)$

- for $\lambda=0.5$, these values are $3 / 2$ and $5 / 2$, respectively

Linear Probing

- performance of linear probing (dashed) vs. more random collision resolution
-adequate up to $\lambda=0.5$
-Successful, Unsuccessful, Insertion

Quadratic Probing

-in linear probing, letting table get nearly \qquad greatly hurts performance
-quadratic probing
-no \qquad of finding an empty cell once the table gets larger than half full
-at most, \qquad of the table can be used to resolve collisions
-if table is half empty and the table size is prime, then we are always guaranteed to accommodate a new element
-could end up with situation where all keys map to the same table location

Quadratic Probing

-quadratic probing
-eliminates \qquad
-collision function is quadratic
-example: add 89, 18, 49, 58, 69 with $h(k)=k \% 10$ and $f(i)=i^{2}$

Quadratic Probing

-quadratic probing
-collisions will probe the same alternative cells

- \qquad clustering
-causes less than half an extra probe per search

Double Hashing

-double hashing example
$-\operatorname{hash}_{2}(x)=R-(x \bmod R)$ with $R=7$
$-R$ is a prime smaller than table size
-insert 89, 18, 49, 58, 69

	Empty Table	After 89	After 18	After 49	After 58
0		After 69			
1					69
2					
3					
4			49	49	49
5		18	18	18	18
5		89	89	89	89
7					
8					
9					

Double Hashing

-double hashing example (cont.)

- note here that the size of the table (10) is not prime
-if 23 inserted in the table, it would collide with 58
-since hash $_{2}(23)=7-2=5$ and the table size is 10, only one alternative location, which is taken

Rehashing

-table may get \qquad

- run time of operations may take too long
-insertions may \qquad for quadratic resolution
-too many removals may be intermixed with insertions
- solution: build a new table \qquad (with a new hash function)
-go through original hash table to compute a hash value for each (non-deleted) element
-insert it into the new table

Rehashing

-example: insert 13, 15, 24, 6 into a hash table of size 7

- with $h(k)=k \% 7$

Rehashing

-example (cont.)
-insert 23
-table will be over 70% full; therefore, a new table is created

Rehashing

-example (cont.)
-new table is size 17
-new hash function $h(k)=k \% 17$
-all old elements are inserted into new table

Rehashing

-rehashing run time $O(N)$ since N elements and to rehash the entire table of size roughly $2 N$
-must have been $N / 2$ insertions since last rehash
-rehashing may run OK if in \qquad _
-if interactive session, rehashing operation could produce a slowdown
-rehashing can be implemented with \qquad
-could rehash as soon as the table is half full
-could rehash only when an insertion fails

- could rehash only when a certain \qquad is reached -may be best, as performance degrades as load factor increases

Hash Tables with Worst-Case O (1) Access

-hash tables so far

- O(1) average case for insertions, searches, and deletions
-separate chaining: worst case $\Theta(\log N / \log \log N)$ -some queries will take nearly logarithmic time
-worst-case O (1) time would be better
-important for applications such as lookup tables for routers and memory caches
-if N is known in advance, and elements can be , worst-case $O(1)$ time is achievable

Hash Tables with Worst-Case O (1) Access

-perfect hashing
-assume all N items known \qquad
-separate chaining
-if the number of lists continually increases, the lists will become shorter and shorter
-with enough lists, high probability of \qquad
-two problems
-number of lists might be unreasonably \qquad
-the hashing might still be unfortunate
$-M$ can be made large enough to have probability $\frac{1}{2}$ of no collisions
-if collision detected, clear table and try again with a different hash function (at most done 2 times)

Hash Tables with Worst-Case O (1) Access

-perfect hashing (cont.)
-how large must M be?
-theoretically, M should be N^{2}, which is \qquad
-solution: use N lists
-resolve collisions by using hash tables instead of linked lists
-each of these lists can have n^{2} elements
-each secondary hash table will use a different hash function until it is \qquad
-can also perform similar operation for primary hash table
-total size of secondary hash tables is at most $2 N$

Hash Tables with Worst-Case O (1) Access

-perfect hashing (cont.)
-example: slots 1, 3, 5, 7 empty; slots $0,4,8$ have 1 element each; slots 2,6 have 2 elements each; slot 9 has 3 elements

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing
$-\Theta(\log N / \log \log N)$ bound known for a long time
-researchers surprised in 1990s to learn that if one of two tables were \qquad chosen as items were inserted, the size of the largest list would be $\Theta(\log \log N)$, which is significantly smaller

- main idea: use 2 tables
-neither more than \qquad full
-use a separate hash function for each
-item will be stored in one of these two locations
-collisions resolved by \qquad elements

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-insertion
-ensure item is not already in one of the tables
-use first hash function and if first table location is
\qquad , insert there
-if location in first table is occupied - \qquad element there and place current item in correct position in first table
-displaced element goes to its alternate hash position in the second table

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)

-example: 6 items; 2 tables of size 5 ; each table has randomly chosen hash function

- A can be placed at position 0 in Table 1 or position 2 in Table 2
-a search therefore requires at most 2 table accesses in this example
-item deletion is trivial

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-example: insert A

-insert B (displace A)

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-insert C

-insert D (displace C) and E

Table 1	
0	B
1	D
2	
3	E
4	

A: 0,2
B: 0,0
C: 1,4
D. 1,0

F: 3,2

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-insert G

table 1		Lable 2		A: 0.2
0	B	0	1	0,0
1	C	1		C. 1,4
2		2	A	
3	E	3		
4		4	F	1

-displacements are \qquad
-GDBAEFCG
-can try G's second hash value in second table, but it also results in a displacement cycle

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-insert F (displace E)

A: 0,2
B: 0,0
C: 1,4
D: 1,0
E: 3,2
F: 3,4
-(A displaces B)

Table 1		Table 2	
0	A	0	
1	D	1	
2		2	F
3	F	3	
4		4	C

A: 0,2
B: 0,0
C: 1,4
D: 1,0
E: 3,2
F: 3, 4

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-cycles
-if table's load value <0.5, probability of a cycle is very
-insertions should require $<O(\log N)$ displacements -if a certain number of displacements is reached on an insertion, tables can be \qquad with new hash functions
.

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)

- variations
-higher number of tables (3 or 4)
-place item in second hash slot immediately instead of
\qquad other items
-allow each cell to store \qquad keys -space utilization increased

	1 item per cell	2 items per cell	4 items per cell
2 hash functions	0.49	0.86	0.93
3 hash functions	0.91	0.97	0.98
4 hash functions	0.97	0.99	0.999

Hash Tables with Worst-Case O (1) Access

-hopscotch hashing
-improves on linear probing algorithm
-linear probing tries cells in sequential order, starting from hash location, which can be long due to primary and secondary clustering
-instead, hopscotch hashing places a bound on
\qquad of the probe sequence
-results in worst-case constant-time lookup
-can be parallelized

Hash Tables with Worst-Case O (1) Access

-cuckoo hashing (cont.)
-benefits
-worst-case \qquad lookup and deletion times
-avoidance of \qquad
-potential for \qquad
-potential issues
-extremely sensitive to choice of hash functions
-time for insertion increases rapidly as load factor approaches 0.5

Hash Tables with Worst-Case O (1) Access

-hopscotch hashing (cont.)
-if insertion would place an element too far from its hash location, go backward and \qquad other elements
-evicted elements cannot be placed farther than the maximal length
-each position in the table contains information about the current element inhabiting it, plus others that
\qquad to it

Hash Tables with Worst-Case O (1) Access

-hopscotch hashing (cont.)
-example: MAX_DIST = 4

	Item	Hop
...		
σ	C	1000
7	A	1100
8	D	0010
9	B	1000
10	E	0000
11	G	1000
12	F	1000
13		0000
14		0000
\ldots		

-each bit string provides 1 bit of information about the current position and the next 3 that follow
-1 : item hashes to current location; 0: no

Hash Tables with Worst-Case O (1) Access

-hopscotch hashing (cont.)
-example: insert I in 6

		Item	
		Hop	
σ	C	1000	
1	A	1100	
8	D	0010	
9	B	1010	
10	F	0000	
11	I1	0010	
12	F	1000	
13	G	0000	
14		0000	
\ldots			

-position 14 too far, so try positions 11, 12, 13
-G can move down one
-position 13 still too far; F can move down one

Hash Tables with Worst-Case O (1) Access

-hopscotch hashing (cont.)
-example: insert H in 9

-try in position 13, but too far, so try candidates for eviction (10, 11, 12)
-evict G in 11

Hash Tables with Worst-Case O (1) Access

-hopscotch hashing (cont.)
-example: insert I in 6

		Item	
Hop			
0	C	1000	
7	A	1100	
8	D	0010	
9	B	1010	
10	F	0000	
11	H	0001	
12		0100	
13	F	0000	
14	G	0000	
\ldots			

Item		Hop		
\ldots				
0	C	1000		
7	A	1100		
8	D	0010		
9		0011		
10	F	0000		
11	H	0001		
12	B	0100		
13	F	0000		
14	G	0000		
\ldots				

	ltem	Hop
\ldots		
6	C	1001
7	A	1100
8	D	0010
9	1	0011
10	F	0000
11	H	0001
12	H	01001
13	F	0000
14	G	0000
\ldots		

A: 1
B: 9
C: 6
D: 7
E: 8
F: 12
G: 11
1I: 9
I: 6
-position 12 still too far, so try positions $9,10,11$
-B can move down three
-now slot is open for I, fourth from 6

Hash Tables with Worst-Case O (1) Access

-universal hashing
-in principle, we can end up with a situation where all of our keys are hashed to the \qquad in the hash table (bad)
-more realistically, we could choose a hash function that does not \qquad distribute the keys
-to avoid this, we can choose the hash function
\qquad so that it is independent of the keys being stored
-yields provably good performance on average

Hash Tables with Worst-Case O (1) Access

- universal hashing (cont.)
-let H be a finite collection of \qquad functions mapping our set of keys K to the range $\{0,1, \ldots, M-1\}$
$-H$ is a \qquad collection if for each pair of distinct keys $k, l \in K$, the number of hash functions $h \in H$ for which $h(k)=h(l)$ is at most $|H| / M$
-that is, with a randomly selected hash function $h \in H$, the chance of a \qquad between distinct k and l is not more than the probability $(1 / M)$ of a collision if $h(k)$ and $h(l)$ were chosen randomly and independently from $\{0,1, \ldots, M-1\}$

Hash Tables with Worst-Case O (1) Access

-universal hashing (cont.)
-example: choose a prime p sufficiently large that every
key k is in the range 0 to $p-1$ (inclusive)
-let $A=\{0,1, \ldots, p-1\}$ and $B=\{1, \ldots, p-1\}$
then the family
$h_{a, b}(k)=((a k+b) \bmod p) \bmod M a \in A, b \in B$
is a universal class of hash functions

Hash Tables with Worst-Case O (1) Access

-extendible hashing
-amount of data too large to fit in \qquad
-main consideration is then the number of disk accesses
-assume we need to store N records and $M=4$ records fit in one disk block
-current problems
-if probing or separate chaining is used, collisions could cause \qquad to be examined during a search
-rehashing would be expensive in this case

Hash Tables with Worst-Case O (1) Access

-extendible hashing (cont.)
-allows search to be performed in \qquad disk accesses
-insertions require a bit more
-use B-tree
-as M increases, height of B-tree \qquad
-could make height $=1$, but multi-way branching would be extremely high

Hash Tables with Worst-Case O (1) Access

-extendible hashing (cont.)
-example: 6-bit integers

-root contains 4 pointers determined by first 2 bits
-each leaf has up to 4 elements

Hash Tables with Worst-Case O (1) Access

-extendible hashing (cont.)
-example: insert 100100
-place in third leaf, but full
-split leaf into 2 leaves, determined by 3 bits

Hash Tables with Worst-Case O (1) Access

-extendible hashing (cont.)
-example: insert 000000
-first leaf split

Hash Tables with Worst-Case O (1) Access

-extendible hashing (cont.)
-considerations
-several directory \qquad may be required if the elements in a leaf agree in more than $D+1$ leading bits
-number of bits to distinguish bit strings -does not work well with \qquad (> M duplicates: does not work at all)

Hash Tables with Worst-Case O (1) Access

-final points
-choose hash function carefully
-watch \qquad _
-separate chaining: close to 1
-probing hashing: 0.5
-hash tables have some \qquad
-not possible to find \min / \max
-not possible to \qquad for a string unless the exact string is known
-binary search trees can do this, and $O(\log N)$ is only slightly worse than $O(1)$

Hash Tables with Worst-Case O (1) Access

-final points (cont.)
-hash tables good for
-symbol table
-gaming
-remembering locations to avoid recomputing through transposition table
-spell checkers

