
1

The Pascal Programming Language

(with material from tutorialspoint.com)

2

Overview

 Background & History

 Features

 Hello, world!

 General Syntax

 Variables/Data Types

 Operators

 Conditional Statements

 Loops

 Functions and Procedures

 Arrays and Records

3

Why Pascal?

 well-structured, strongly typed

 explicit pass by value, pass by reference

 imperative, object-oriented

 easy to learn

 originally developed as a learning language

 surged in popularity in the 1980s

 notable systems in Pascal
 Skype

 TeX

 embedded systems

4

History

 developed by Niklaus Wirth in the early 1970s

 developed for teaching programming with a general-purpose, high-level
language

 named for Blaise Pascal, French mathematician and pioneer in computer
development

 Algol-based
 Algol-60 is a subset of Pascal

 block structure

 used in early Mac development

 historically cited as
 easy to learn

 structured

 producing transparent, efficient, reliable programs

 able to compile across multiple computer platforms

5

Features of Pascal

 strongly typed

 extensive error checking

 arrays, records, files, and sets

 highly structured

 supports object-oriented programming

Source: xkcd.com/571

6

Hello, world!

 heading, declaration, execution parts

 { } comments

 writeln – with newline

 program ends with .

program HelloWorld (output);

{ main program }

begin

 writeln ('Hello, World!');

end.

7

General Syntax

 comments

 { }

 {* *} for multiline comments

 {* this is a

 multiline comment *}

 case insensitivity
 x and X are the same variable

 reserved words: begin, Begin, and BEGIN all the same

8

General Syntax

 reserved words

9

Variables

 var keyword

 beginning of variable declarations

 before begin/end block

 names

 letters or digits beginning with a letter

 name1, name2 : type;

 examples

 x : integer;

 r : real = 3.77;

10

Data Types

11

Data Types

 constants

 before var section

 const

DAYS_IN_WEEK = 7;

NAME = 'Maria';

 enumerated types
 order significant

 type

 COLORS = (red, orange, yellow, green, blue, indigo, violet);

 MONTHS = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

12

Data Types

 subranges

 subset of type within a certain range

 grades on a test: 0..100

 can appear in any section

type

 summer = (Jun..Sep);

var

 gr : 1..100;

 user-defined types
 type

 days = integer;

 var

 d : days;

13

Example Program

program Welcome (input, output);

const

 intro = '***';

type

 name = string;

var

 firstname, lastname : name;

begin

 write ('Please enter your first name: ');

 readln (firstname); writeln (firstname);

 write ('Please enter your last name: ');

 readln (lastname); writeln (lastname);

 writeln;

 writeln (intro, 'Welcome, ', firstname, ' ', lastname);

end.

Please enter your first name: Christopher

Please enter your last name: Wren

***Welcome, Christopher Wren

14

Example Program

program Circumference (input, output);

const

 PI = 3.14159;

var

 radius, diameter, circ: real;

begin

 write ('Enter the radius of the circle: ');

 readln (radius); writeln (radius:4:2);

 diameter := 2 * radius;

 circ := PI * diameter;

 writeln ('The circumference is ', circ:7:2);

end.

Enter the radius of the circle: 2.70

The circumference is 16.96

15

Operators

program calculator (input, output);

var

 a, b, c: integer;

 d : real;

begin

 a := 21;

 b := 10;

 c := a + b;

 writeln ('Line 1 – Value of c is ', c);

 c := a - b;

 writeln ('Line 2 – Value of c is ', c);

 c := a * b;

 writeln ('Line 3 – Value of c is ', c);

 d := a / b;

 writeln ('Line 4 – Value of d is ', d:3:2);

 c := a mod b;

 writeln ('Line 5 – Value of c is ', c);

 c := a div b;

 writeln ('Line 6 – Value of c is ', c);

end.

Line 1 – Value of c is 31

Line 2 – Value of c is 11

Line 3 – Value of c is 210

Line 4 – Value of d is 2.10

Line 5 – Value of c is 1

Line 6 – Value of c is 2

16

Relational Operators

17

Logical Operators

18

Operator Precedence

19

Conditional Statements

 if-then

 if-then-else

20

Conditional Statements

21

Conditional Statements

 use begin/end blocks, if necessary

 different from above

22

Case Statements

23

Loops

24

Loops

 while-do

 break

 continue

25

Loops

 while-do

26

Loops

 for-do

27

Loops

 repeat-until

28

Loops

 nested loops

29

Functions and Procedures

 Pascal has explicit differentiation between functions and
procedures

 different reserved words

 functions must return a value

 procedures do not return a value

 recursion allowed

30

Functions

 please don’t write code formatted like this

31

Procedures

 please don’t write code formatted like this, either

32

Parameter Passing

 call by value and call by reference

 explicitly differentiated through var keyword

33

Parameter Passing: Call by Value

34

Parameter Passing: Call by Reference

35

Arrays

 aggregate of like types

 contiguous memory

 examples

 different types of subscripts allowed

 packed arrays store data, such as chars, side by side instead of
along the default 4-byte boundary

36

Arrays

 example

37

Records

 aggregate with differing types

 must use type declaration

 example

38

Records

39

Records

40

Other Topics

 pointers

 sets

 variants

 like unions in C/C++

 strings

 file I/O

 memory management

 classes

