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Introduction
 Sets are one of the basic building blocks for the types 

of objects considered in discrete mathematics.

 Important for counting.

 Programming languages have set operations.

 Set theory is an important branch of mathematics.

 Many different systems of axioms have been used to 
develop set theory.

 Here we are not concerned with a formal set of axioms 
for set theory. Instead, we will use what is called naïve 
set theory.



Sets
 A set is an unordered collection of objects.

 the students in this class

 the chairs in this room

 The objects in a set are called the elements, or 
members of the set. A set is said to contain its 
elements.

 The notation  a ∈ A denotes that a is an element of the 
set A.

 If a is not a member of A, write a ∉ A



Describing a Set: Roster Method
 S = {a,b,c,d}

 Order not important 

S = {a,b,c,d} = {b,c,a,d}

 Each distinct object is either a member or not; listing 
more than once does not change the set.

S = {a,b,c,d} = {a,b,c,b,c,d}

 Elipses (…) may be used to describe a set without 
listing all of the members when the pattern is clear.

S = {a,b,c,d, ……,z }



Roster Method
 Set of all vowels in the English alphabet:

V = {a,e,i,o,u}

 Set of all  odd positive integers less than 10:

O = {1,3,5,7,9}

 Set of all positive integers less than 100:

S = {1,2,3,……..,99}

 Set of all integers less than 0:

S = {…., -3,-2,-1}



Some Important Sets
N = natural numbers = {0,1,2,3….}

Z = integers = {…,-3,-2,-1,0,1,2,3,…}

Z⁺ = positive integers = {1,2,3,…..}

R = set of real numbers

R+ = set of positive real numbers

C =  set of complex numbers.

Q = set of rational numbers



Set-Builder Notation
 Specify the property or properties that all members 

must satisfy:

S = {x | x is a positive integer less than 100}

O = {x | x is an odd positive integer less than 10}

O = {x ∈ Z⁺ | x is odd and x < 10}

 A predicate may be used: 

S = {x | P(x)}

 Example: S = {x | Prime(x)}

 Positive rational numbers:

Q+ = {x ∈ R | x = p/q, for some positive integers p,q}



Interval Notation

[a,b] = {x | a ≤ x ≤ b}

[a,b) = {x | a ≤ x < b}  

(a,b] = {x | a < x ≤ b}

(a,b) = {x | a < x < b}

closed interval  [a,b]

open interval     (a,b)



Universal Set and Empty Set
 The universal set U is the set containing everything 

currently under consideration. 

 Sometimes implicit

 Sometimes explicitly stated.

 Contents depend on the context.

 The empty set is the set with no

elements. Symbolized ∅, but

{} also used.

U

Venn Diagram
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V

John Venn (1834-1923)
Cambridge, UK



Russell’s Paradox
 Let S be the set of all sets which are not members of 

themselves. A paradox results from trying to answer 
the question “Is S a member of itself?”

 Related Paradox:

 Henry is a barber who shaves all people who do not 
shave themselves. A paradox results from trying to 
answer the question “Does Henry shave himself?”

Bertrand Russell (1872-1970)
Cambridge, UK
Nobel Prize Winner



Some things to remember
 Sets can be elements of sets.

{{1,2,3},a, {b,c}}

{N,Z,Q,R}

 The empty set is different from a set containing the 
empty set.

∅ ≠ { ∅ } 



Set Equality
Definition: Two sets are equal if and only if they have 
the same elements. 

 Therefore if A and B are sets, then A and B are equal if 
and only if                                         . 

 We write A = B if A and B are equal sets.

{1,3,5}   = {3, 5, 1}

{1,5,5,5,3,3,1} = {1,3,5}



Subsets
Definition:  The set A is a subset of B, if and only if 
every element of A is also an element of B.  

 The notation A ⊆ B is used to indicate that A is a subset 
of the set B. 

 A ⊆ B holds if and only if                                            is true. 

1. Because a ∈ ∅ is  always false, ∅ ⊆ S ,for every  set S.     

2. Because a ∈ S → a ∈ S, S ⊆ S, for every  set S. 



Showing a Set is or is not a Subset 
of Another Set
 Showing  that A is a Subset of B: To show that A ⊆ B, 

show that if x belongs to A, then x also belongs to B.

 Showing that A is not a Subset of B: To show that A
is not a subset of B, A ⊈ B, find an element x ∈ A with 
x ∉ B. (Such an x is a counterexample to the claim that 
x ∈ A implies x ∈ B.)

Examples:

1. The set of all computer science majors at your school is 
a subset of all students at your school.

2. The set of integers with squares less than 100 is not a 
subset of the set of nonnegative integers.



Another look at Equality of Sets
 Recall that two sets A and B are equal, denoted by         

A = B, iff

 Using logical equivalences we have that A = B iff

 This is equivalent to

A ⊆ B and      B ⊆ A



Proper Subsets
Definition: If A ⊆ B, but A ≠B, then we say A is a 
proper subset of B, denoted by A ⊂ B. If A ⊂ B, then

is true. 

Venn Diagram
U

B

A



Set Cardinality
Definition: If there are exactly n distinct elements in S 
where n is a nonnegative integer, we say that S is finite. 
Otherwise it is infinite. 

Definition: The  cardinality of  a finite set A, denoted by 
|A|,  is the number of (distinct) elements of A. 

Examples:

1. |ø| = 0

2. Let S be the letters of the English alphabet. Then |S| = 26

3. |{1,2,3}| = 3

4. |{ø}| = 1

5. The set of integers is infinite.



Power Sets
Definition: The set of all subsets of a set A, denoted 
P(A), is called the power set of A.

Example: If A = {a,b} then 

P(A) = {ø, {a},{b},{a,b}}

 If a set has n elements, then the cardinality of the 
power set is 2ⁿ. (In Chapters 5 and 6, we will discuss 
different ways to show this.)



Tuples
 The ordered n-tuple (a1,a2,…..,an) is the ordered 

collection that has  a1 as its first element and  a2 as its 
second element and so on until an as its last element.

 Two n-tuples are equal if and only if their 
corresponding elements are equal.

 2-tuples are called ordered pairs.

 The ordered pairs (a,b) and (c,d) are equal if and only 
if a = c and b = d.



Cartesian Product
Definition:  The Cartesian Product of two sets A and B, 
denoted by   A × B is the set of ordered pairs (a,b) where    
a ∈ A and b ∈ B .

Example:
A = {a,b}   B = {1,2,3}
A × B = {(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)}

 Definition: A subset R of the Cartesian product A × B is 
called a relation from the set A to the set B. (Relations 
will be covered in depth in Chapter 9. )

René Descartes 
(1596-1650)



Cartesian Product 
Definition: The cartesian products of the sets A1,A2,……,An, 
denoted by A1 × A2 × …… × An , is the set of ordered           
n-tuples (a1,a2,……,an)  where   ai belongs to Ai
for i = 1, … n. 

Example: What is A × B × C where A = {0,1}, B = {1,2} and    
C = {0,1,2}

Solution: A × B × C = {(0,1,0), (0,1,1), (0,1,2),(0,2,0), 
(0,2,1), (0,2,2),(1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), 
(1,2,2)}



Truth Sets of Quantifiers
 Given a predicate P and a domain D, we define the 

truth set of P to be the set of elements in D for which 
P(x) is true. The truth set of P(x) is denoted by 

 Example: The truth set of P(x) where the domain is 
the integers and P(x) is “|x| = 1” is the set {-1,1}



Section 2.2



Section Summary
 Set Operations

 Union

 Intersection

 Complementation

 Difference

 More on Set Cardinality

 Set Identities

 Proving Identities

 Membership Tables



Boolean Algebra
 Propositional calculus and set theory are both 

instances of an algebraic system called a Boolean 
Algebra. This is discussed in Chapter 12.

 The operators in set theory are analogous to the 
corresponding operator in propositional calculus.

 As always there must be a universal set  U. All sets are 
assumed to be subsets of U.



Union
 Definition: Let A and B be sets. The union of the sets 

A and B, denoted by A ∪ B, is the set:

 Example: What is   {1,2,3} ∪ {3, 4, 5}?

Solution: {1,2,3,4,5} U

A B

Venn Diagram for A ∪ B



Intersection
 Definition:  The intersection of sets A and B, denoted 

by   A ∩ B, is

 Note if the intersection is empty, then A and B are said 
to be disjoint.

 Example: What is?  {1,2,3} ∩ {3,4,5} ? 

Solution:   {3}

 Example:What is?  

{1,2,3} ∩ {4,5,6} ?    

Solution: ∅

U

A B

Venn Diagram for A ∩B



Complement
Definition: If A is a set, then the complement of the A
(with respect to U), denoted by Ā is the set  U - A

Ā = {x ∈ U | x ∉ A}

(The complement of A is sometimes denoted by Ac .)

Example: If U is the positive integers less than 100, 
what is the complement of {x | x > 70} 

Solution: {x | x ≤ 70} 

A

U

Venn Diagram for Complement

Ā



Difference
 Definition: Let  A and B be sets. The difference of A

and B, denoted by A – B, is the set containing the 
elements of A that are not in B. The difference of A
and B is also called the complement of B with respect 
to A.

A – B = {x | x ∈ A  x ∉ B}  =   A ∩B

U
A

B

Venn Diagram for A − B



The Cardinality of the Union of Two 
Sets

• Inclusion-Exclusion
|A ∪ B| = |A| + | B| − |A ∩ B|

• Example: Let A be the math majors in your class and B be the CS majors. To 
count the number of students who are either math majors or CS majors, add 
the number of math majors and the number of CS majors, and subtract the 
number of joint CS/math majors.

• We will return to this principle in Chapter 6 and Chapter 8 where we will derive 
a formula for the cardinality of the union of n sets, where n is a positive integer.

U

A B

Venn Diagram for A, B, A ∩ B, A ∪ B 



Review Questions
Example: U = {0,1,2,3,4,5,6,7,8,9,10}  A = {1,2,3,4,5},    B ={4,5,6,7,8}

1. A ∪ B

Solution: {1,2,3,4,5,6,7,8}

2. A ∩ B

Solution: {4,5}

3. Ā

Solution: {0,6,7,8,9,10}

4.

Solution: {0,1,2,3,9,10}

5. A – B

Solution: {1,2,3} 

6. B – A

Solution: {6,7,8} 



Symmetric Difference (optional)
Definition: The symmetric difference of A and B, 

denoted by                   is the set

Example:

U = {0,1,2,3,4,5,6,7,8,9,10}  

A = {1,2,3,4,5}   B ={4,5,6,7,8}

What is             :

 Solution: {1,2,3,6,7,8}

U

A B

Venn Diagram



Set Identities
 Identity laws

 Domination laws

 Idempotent laws

 Complementation law

Continued on next slide →



Set Identities
 Commutative laws

 Associative laws

 Distributive laws

Continued on next slide→



Set Identities
 De Morgan’s laws

 Absorption laws

 Complement laws



Proving Set Identities
 Different ways to prove set identities:

1. Prove that each set (side of the identity) is a subset of 
the other.

2. Use set builder notation and propositional logic.

3. Membership Tables: Verify that elements in the same 
combination of sets always either belong or do not 
belong to the same side of the identity.  Use 1 to 
indicate it is in the set and a 0 to indicate that it is not.



Proof of Second De Morgan Law
Example: Prove that

Solution:   We prove this identity by showing that:

1)                                           and

2)

Continued on next slide →



Proof of Second De Morgan Law 
These steps show that:                                       

Continued on next slide →



Proof of Second De Morgan Law 
These steps show that:                                       



Set-Builder Notation: Second De 
Morgan Law



Membership Table

A B C

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0

Example:

Solution:

Construct a membership table to show that the distributive law 
holds.



Generalized Unions and 
Intersections
 Let A1, A2 ,…, An be an indexed collection of sets.

We define:

These are well defined, since union and intersection 
are associative.

 For i = 1,2,…, let Ai = {i, i + 1, i + 2, ….}. Then,
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Functions
Definition: Let A and B be nonempty sets. A function f

from A to B, denoted f: A → B is an assignment of each 
element of A to exactly one element of B.  We write
f(a) = b if b is the unique element of B assigned by the 
function f to the element a of A. 

 Functions are sometimes

called mappings or 

transformations.

A

B

C

Students Grades

D

F
Kathy  Scott

Sandeep Patel

Carlota Rodriguez

Jalen Williams



Functions 
 A function f: A → B can also be defined as a subset of 

A×B (a relation). This subset is restricted to be a 
relation where no two elements of the relation have 
the same first element. 

 Specifically, a function f from A to B contains one, and 
only one ordered pair (a, b) for every element a∈ A. 

and



Functions
Given a function f: A → B:
 We say f maps A to B or 

f is a mapping from  A to B.
 A is called the domain of f.
 B is called the codomain of f.
 If f(a) = b, 

 then b is called the image of a under f.
 a is called the preimage of b.

 The range of f is the set of all images of points in A under f. We 
denote it by f(A).

 Two functions are equal when they have the same domain, the 
same codomain and map each element of the domain to the 
same element of the codomain. 



Representing Functions
 Functions may be specified in different ways:

 An explicit statement of the assignment.

Students and grades example.

 A formula. 

f(x) = x + 1

 A computer program.

 A Java program that when given an integer n, produces the nth 
Fibonacci Number (covered in the next section and also 
inChapter 5).



Questions
f(a) = ? A B

a

b

c

d

x

y

z

z

The image of d is ? z

The domain of f is ? A

The codomain of f is ? B

The preimage of y is ? b

f(A) = ?

{a,c,d}The preimage(s) of z is (are) ?

{y,z}



Question on Functions and Sets 
 If                         and  S is a subset of A, then 

A B
a

b

c

d

x

y

z

f {c,d} is ?

{y,z}f {a,b,c,} is ?

{z}



Injections
Definition: A function f is said to be one-to-one ,  or 
injective, if and only if f(a) = f(b) implies that  a = b for 
all a and b in the domain of f. A function is said to be 
an injection if it is one-to-one.

v

w

A B
a

b

c

d

x

y

z



Surjections
Definition: A function f from A to B is called onto or 
surjective, if and only if for every element               
there is an element               with                   .  A 
function f is called a surjection if it is onto.

A B
a

b

c

d

x

y

z



Bijections
Definition: A function f is a one-to-one 
correspondence, or a bijection, if it is both one-to-one 
and onto (surjective and injective).

A B
a

b

c

d

x

y

z

w



Showing that f is one-to-one or onto



Showing that f is one-to-one or onto
Example 1: Let f be the function from {a,b,c,d} to 
{1,2,3} defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 
3. Is f an onto function?

Solution: Yes, f is onto since all three elements of the 
codomain are images of elements in the domain. If the 
codomain were changed to {1,2,3,4}, f  would not be 
onto. 

Example 2: Is the function  f(x) = x2 from the set of 
integers to the set of integers onto?  

Solution: No, f is  not onto because there is no integer 
x with x2 = −1, for example. 



Inverse Functions
Definition: Let f be a bijection from A to B. Then the 
inverse of f, denoted          , is the function from B to A
defined as

No inverse exists unless f is a bijection. Why?



Inverse Functions 
A B

a

b

c

d

V

W

X

Y

f A B

a

b

c

d

V

W

X

Y



Questions
Example 1: Let f be the function from {a,b,c} to {1,2,3} 
such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible 
and if so what is its inverse?

Solution: The function f is invertible because it is a 
one-to-one correspondence. The inverse function f-1

reverses the correspondence given by f, so f-1 (1) = c,    
f-1 (2) = a,  and f-1 (3) = b.



Questions
Example 2: Let f: Z → Z be such that f(x) = x + 1. Is f
invertible, and if so, what is its inverse? 

Solution: The function f is invertible because it is a 
one-to-one correspondence. The inverse function f-1

reverses the correspondence  so f-1 (y) = y – 1.   



Questions
Example 3: Let f: R → R be such that .    Is f
invertible, and if so, what is its inverse? 

Solution: The function f is not invertible because it 
is not one-to-one . 



Composition
 Definition: Let f: B → C, g: A → B. The composition of 

f with g, denoted            is the function from A to C 
defined by



Composition 

A C
a

b

c

d

i

j

h

A B C
a

b

c

d

V

W

X

Y

g

h

j

i

f



Composition
Example 1: If                         and                                  , 
then 

and  



Composition Questions
Example 2: Let g be the function from the set {a,b,c} to 
itself such that g(a) = b, g(b) = c, and g(c) = a. Let  f be the 
function from the set {a,b,c} to the set {1,2,3} such that     
f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the 
composition of g and f.

Solution:  The composition f∘g is defined by 
f∘g (a)= f(g(a)) = f(b) = 2.
f∘g (b)= f(g(b)) = f(c) = 1.
f∘g (c)= f(g(c)) = f(a) = 3.
Note that g∘f is not defined, because the range of f is not a 

subset of the domain of g. 



Composition Questions
Example 2: Let f and g be functions from the set of 
integers to the set of integers defined by  f(x) = 2x + 3
and g(x) = 3x + 2. 

What is the composition of f and g, and also the 
composition of g and f ?

Solution:

f∘g (x)= f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7

g∘f (x)= g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11



Graphs of Functions
 Let f be a function from the set A to the set B. The 

graph of the function f is the set of ordered pairs   
{(a,b) | a ∈A and f(a) = b}.

Graph of f(n) = 2n + 1 
from Z to Z

Graph of f(x) = x2

from Z to Z



Some Important Functions
 The floor function, denoted

is the largest integer less than or equal to x.

 The ceiling function, denoted

is the smallest integer greater than or  equal to x

Example:



Floor and Ceiling Functions 

Graph of (a) Floor and (b) Ceiling Functions 



Floor and Ceiling Functions 



Proving Properties of Functions 
Example: Prove that x is a real number, then

⌊2x⌋= ⌊x⌋ + ⌊x + 1/2⌋
Solution: Let x = n + ε, where n is an integer and 0 ≤ ε< 1. 

Case 1:   ε < ½
 2x = 2n + 2ε and  ⌊2x⌋ = 2n, since 0 ≤ 2ε< 1.
 ⌊x + 1/2⌋ = n, since x + ½ = n + (1/2 + ε ) and 0 ≤ ½ +ε < 1. 
 Hence, ⌊2x⌋ = 2n and ⌊x⌋ + ⌊x + 1/2⌋ = n + n = 2n.

Case 2:     ε ≥ ½ 
 2x = 2n + 2ε =  (2n + 1) +(2ε − 1)  and ⌊2x⌋ =2n + 1,                     

since 0 ≤ 2 ε - 1< 1. 
 ⌊x + 1/2⌋ = ⌊ n + (1/2 + ε)⌋ = ⌊ n + 1 +  (ε – 1/2)⌋ = n + 1 since       

0 ≤ ε – 1/2< 1. 
 Hence,  ⌊2x⌋ = 2n + 1 and ⌊x⌋ + ⌊x + 1/2⌋ = n + (n + 1)  = 2n + 1.           



Factorial Function 
Definition:  f: N → Z+ , denoted by f(n) = n! is the 
product of the first n positive integers when n is a 
nonnegative integer.

f(n) = 1 ∙ 2 ∙∙∙ (n – 1) ∙ n, f(0)  = 0! = 1

Examples:
f(1) = 1!  = 1

f(2) = 2! =  1 ∙ 2 = 2

f(6)  = 6! =  1 ∙ 2 ∙ 3∙ 4∙ 5 ∙ 6 = 720

f(20) = 2,432,902,008,176,640,000.

Stirling’s Formula:



Partial Functions (optional)
Definition: A partial function f  from a set A to a set B is an 
assignment to each element a in a subset of A, called the 
domain of definition of f, of a unique element b in B. 
 The sets A and B are called the domain and codomain of f, 

respectively. 
 We day that f is undefined for elements in A that are not in 

the domain of definition of f.  
 When the domain of definition of f equals A, we say that f is 

a total function. 

Example: f: N → R where f(n) = √n is a partial function 
from Z to R where the domain of definition is the set of 
nonnegative integers. Note that f is undefined for negative 
integers. 
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Introduction
 Sequences are ordered lists of elements. 

 1, 2, 3, 5, 8

 1, 3,  9, 27, 81, …….

 Sequences arise throughout mathematics, computer 
science, and in many other disciplines, ranging from 
botany to music.

 We will introduce the  terminology to represent 
sequences and sums of the terms in the sequences.



Sequences
Definition: A sequence is a function from a subset of 
the integers (usually either the set {0, 1, 2, 3, 4, …..} or   
{1, 2, 3, 4, ….} ) to a set S.

 The notation  an is used to denote the image of the 
integer n.  We can think of an as the equivalent of 
f(n) where f is a function from  {0,1,2,…..} to S.  We call 
an a term of the sequence.



Sequences 
Example: Consider the sequence            where



Geometric Progression
Definition: A geometric progression is a sequence of the 
form:
where the initial term a and the common ratio r are real 
numbers.

Examples:
1. Let a = 1 and r = −1. Then:

2. Let  a = 2 and r = 5. Then:

3. Let a = 6 and r = 1/3. Then:



Arithmetic Progression
Definition: A arithmetic progression is a sequence of the 
form:
where the initial term a and the common difference  d are 
real numbers.
Examples:
1. Let a = −1 and d = 4: 

2. Let  a = 7 and d = −3: 

3. Let a = 1 and d = 2: 



Strings
Definition: A string is a finite sequence of characters 
from a finite set (an alphabet).

 Sequences of characters or bits  are important in 
computer science.

 The empty string is represented by λ.

 The string  abcde has length 5.



Recurrence Relations
Definition: A recurrence relation for the sequence {an}

is an equation that expresses an in terms of one or 
more of the previous terms of the sequence, namely, 
a0, a1, …, an-1, for all integers n with n ≥ n0, where n0 is a 
nonnegative integer. 

 A sequence is called a solution of a recurrence relation 
if its terms satisfy the recurrence relation.

 The initial conditions for a sequence specify the terms 
that precede the first term where the recurrence 
relation takes effect. 



Questions about Recurrence Relations
Example 1: Let {an} be a sequence that satisfies the 
recurrence relation an = an-1 + 3 for n = 1,2,3,4,….  and 
suppose that a0 = 2. What are a1 , a2 and a3? 

[Here a0 = 2 is the initial condition.]

Solution: We see from the recurrence relation that

a1 = a0  + 3 = 2 + 3 = 5

a2 = 5 + 3 = 8

a3 = 8 + 3 = 11



Questions about Recurrence Relations
Example 2: Let {an} be a sequence that satisfies the 
recurrence relation an = an-1 – an-2 for n = 2,3,4,…. and 
suppose that a0 = 3 and a1 = 5. What are a2 and a3? 

[Here the initial conditions are a0 = 3 and a1 = 5. ]

Solution: We see from the recurrence relation that

a2 = a1 - a0  = 5 – 3 = 2

a3 = a2 – a1  = 2 – 5 = –3



Fibonacci Sequence
Definition: Define the  Fibonacci sequence, f0 ,f1 ,f2,…, by:

 Initial Conditions: f0 = 0, f1 = 1
 Recurrence Relation: fn = fn-1 + fn-2

Example: Find  f2 ,f3 ,f4 , f5 and f6 .

Answer:
f2 = f1 + f0  = 1 + 0 = 1,
f3 = f2 + f1  = 1 + 1 = 2,
f4 = f3 + f2 = 2 + 1 = 3,
f5 = f4 + f3  = 3 + 2 = 5,
f6 = f5 + f4  = 5 + 3 = 8.



Solving Recurrence Relations
 Finding a formula for the nth term of the sequence 

generated by a recurrence relation is called solving the 
recurrence relation. 

 Such a formula is called a closed formula.

 Various methods for solving recurrence relations will 
be covered in Chapter 8 where recurrence relations 
will be studied in greater depth.

 Here we illustrate by example the method of iteration 
in which we need to guess the formula. The guess can 
be proved correct by the method of induction 
(Chapter 5).



Iterative Solution Example
Method 1: Working upward, forward substitution

Let {an} be a sequence that satisfies the recurrence relation 
an = an-1 + 3 for n = 2,3,4,….  and suppose that a1 = 2.

a2 = 2 + 3

a3 = (2 + 3) + 3 = 2 + 3 ∙ 2 

a4 = (2 + 2 ∙ 3) + 3 = 2 + 3 ∙ 3

.

.

.

an = an-1 + 3  = (2 + 3 ∙ (n – 2)) + 3 = 2 + 3(n – 1)



Iterative Solution Example
Method 2: Working downward, backward substitution
Let {an} be a sequence that satisfies the recurrence relation                    
an = an-1 + 3 for n = 2,3,4,….  and suppose that a1 = 2.

an = an-1 + 3
= (an-2 + 3) + 3 = an-2 + 3 ∙ 2 
= (an-3 + 3 )+ 3 ∙ 2  = an-3 + 3 ∙ 3

.

.

.

= a2 + 3(n – 2)   = (a1 + 3) + 3(n – 2) = 2 + 3(n – 1)



Financial Application
Example: Suppose that a person deposits $10,000.00 in 
a savings account at a bank yielding 11% per year with 
interest compounded annually. How much will be in 
the account after 30 years?

Let Pn denote the amount in the account after 30
years. Pn satisfies the following recurrence relation:

Pn = Pn-1 + 0.11Pn-1 = (1.11) Pn-1

with the initial condition  P0  = 10,000

Continued on next slide →



Financial Application
Pn = Pn-1 + 0.11Pn-1 = (1.11) Pn-1

with the initial condition  P0  = 10,000

Solution: Forward Substitution

P1 = (1.11)P0

P2 = (1.11)P1 = (1.11)2P0

P3 = (1.11)P2 = (1.11)3P0

:

Pn = (1.11)Pn-1 = (1.11)nP0 =     (1.11)n 10,000

Pn = (1.11)n 10,000 (Can prove by induction, covered in Chapter 5)

P30 = (1.11)30 10,000 = $228,992.97



Special Integer Sequences (opt)
 Given a few terms of a sequence, try to identify the 

sequence. Conjecture a formula, recurrence relation, 
or some other rule.

 Some questions to ask?
 Are there repeated terms of the same value?

 Can you obtain a term from the previous term by adding 
an amount or multiplying by an amount?

 Can you obtain a term by combining the previous terms 
in some way?

 Are they cycles among the terms?

 Do the terms match those of a well known sequence?



Questions on Special Integer 
Sequences (opt)

Example 1: Find formulae for the sequences with the 
following first five terms: 1, ½, ¼, 1/8, 1/16
Solution:  Note that the denominators are powers of 2. The 
sequence with an = 1/2n is a possible match. This is a 
geometric progression with a = 1 and r = ½.
Example 2: Consider 1,3,5,7,9
Solution: Note that each term is obtained by adding 2 to 
the previous term.  A possible formula is an =  2n + 1.  This 
is an arithmetic progression with a =1 and d = 2.
Example 3: 1, -1, 1, -1,1
Solution: The terms alternate between 1 and -1. A possible 
sequence is an = (−1)n . This is a geometric progression 
with a = 1 and r = −1.



Useful Sequences



Guessing Sequences (optional)
Example: Conjecture a simple formula for an if the first 
10 terms of the sequence {an} are 1, 7, 25, 79, 241, 727, 
2185, 6559, 19681, 59047.

Solution: Note the ratio of each term to the previous 
approximates 3. So now compare with the  sequence   
3n .  We notice that the nth term is 2 less than the 
corresponding power of 3.  So a good conjecture is   
that an = 3n − 2.



Integer Sequences (optional) 
 Integer sequences appear in a wide range of contexts. Later 

we will see the sequence of prime numbers (Chapter 4), the 
number of ways to order n discrete objects (Chapter 6), the 
number of moves needed to solve the Tower of Hanoi 
puzzle with n disks (Chapter 8), and the number of rabbits 
on an island after n months (Chapter 8).

 Integer sequences are useful in many fields such as biology, 
engineering, chemistry and physics.

 On-Line Encyclopedia of Integer Sequences (OESIS) 
contains over 200,000 sequences. Began by Neil Stone in 
the 1960s (printed form). Now found at 
http://oeis.org/Spuzzle.html

http://oeis.org/Spuzzle.html


Integer Sequences (optional)
 Here are three interesting sequences to try from the  OESIS site. To 

solve each puzzle, find a rule that determines the terms of the 
sequence.

 Guess the rules for forming for the following sequences:
 2, 3, 3, 5, 10, 13, 39, 43, 172, 177, ...

 Hint: Think of adding and multiplying by numbers to generate this sequence.

 0, 0, 0, 0, 4, 9, 5, 1, 1, 0, 55, ...
 Hint: Think of the English names for the numbers representing the position in the 

sequence and the Roman Numerals for the same number.

 2, 4, 6, 30, 32, 34, 36, 40, 42, 44, 46, ...
 Hint: Think of the English names for numbers, and whether or not they have the 

letter ‘e.’

 The answers and many more can be found at
http://oeis.org/Spuzzle.html

http://oeis.org/Spuzzle.html


Summations
 Sum of the terms       

from the sequence
 The notation:

represents

 The variable j is called the index of summation. It runs 
through all the integers starting with its lower  limit  m and 
ending with its upper limit n. 



Summations
 More generally for a set S:

 Examples:



Product Notation (optional)
 Product of the terms 

from the sequence

 The notation:

represents



Geometric Series
Sums of terms of geometric progressions

Proof: Let
To compute Sn , first multiply both sides of the 
equality by r and then manipulate the resulting sum 
as follows: 

Continued on next slide →



Geometric Series

Shifting the index of summation with k = j + 1.

Removing k = n + 1 term and 
adding k = 0 term.

Substituting S for summation formula

∴

if r ≠1

if r = 1

From previous slide.



Some Useful Summation Formulae 

Later we 
will prove 
some of 
these by 
induction.

Proof in text 
(requires calculus)

Geometric Series: We 
just proved this.



Section 2.5



Section Summary
 Cardinality

 Countable Sets

 Computability



Cardinality
Definition: The cardinality of a set A is equal to the 
cardinality of a set B, denoted 

|A| = |B|,

if and only if there is a one-to-one correspondence (i.e., a 
bijection)  from A to B. 

 If there is a one-to-one function (i.e., an injection) from A
to B, the cardinality of A is less than or the same as the 
cardinality of B and we write     |A| ≤ |B|. 

 When |A| ≤ |B| and A and B have different cardinality, we 
say that the cardinality of A is less than the cardinality of B
and write |A| < |B|. 



Cardinality 
 Definition: A set that is either finite or has the same 

cardinality as the set of positive integers (Z+) is called 
countable. A set that is not countable is uncountable.

 The  set of real numbers R is an uncountable set.

 When an infinite set is countable (countably infinite) 
its cardinality is ℵ0 (where ℵ is aleph, the 1st letter of 
the Hebrew alphabet). We write |S| = ℵ0 and say that S 
has cardinality “aleph null.”



Showing that a Set is Countable
 An infinite set is countable if and only if it is possible 

to list the elements of the set in a sequence (indexed 
by the positive integers). 

 The reason for this is that a one-to-one 
correspondence f from the set of positive integers to a 
set S can be expressed in terms of a sequence         
a1,a2,…, an ,… where a1 = f(1), a2 = f(2),…, an = f(n),… 



Hilbert’s Grand Hotel
The Grand Hotel (example due to David Hilbert) has countably infinite number of 

rooms, each occupied by a guest. We can always  accommodate a new guest at this 
hotel. How is this possible?

David Hilbert

Explanation: Because the rooms of Grand 
Hotel are countable, we can list them as Room 
1, Room 2, Room  3, and so on. When a new 
guest arrives, we move the guest in Room 1 to 
Room 2, the guest in Room 2 to Room 3, and 
in general the guest in Room n to Room n + 1, 
for all positive integers n.   This frees up Room 
1, which we assign to the new guest, and all 
the current guests still have rooms. The hotel can also accommodate a 

countable number of new guests, all the 
guests on a countable number of buses 
where each bus contains a countable 
number of guests (see exercises).



Showing that a Set is Countable
Example 1: Show that the set of positive even integers E is 
countable set.

Solution: Let f(x) = 2x. 

1    2    3    4    5     6  …..

2    4    6    8    10  12  ……

Then f is a bijection from N to E since f is both one-to-one 
and onto.  To show that it is one-to-one, suppose that     
f(n) = f(m).   Then 2n  = 2m, and so n = m. To see that it is 
onto, suppose that t is an even positive integer. Then            
t = 2k for some positive integer k and f(k) = t. 



Showing that a Set is Countable
Example 2: Show that the set of integers Z is 
countable.

Solution: Can list in a sequence:

0, 1, − 1, 2, − 2, 3, − 3 ,………..

Or can define a bijection from N to Z:

 When n is even:    f(n) = n/2

 When n is odd:     f(n) = −(n−1)/2



The Positive Rational Numbers are 
Countable
 Definition: A rational number can be expressed as the 

ratio of two integers p and q such that q ≠ 0.
 ¾ is a rational number

 √2 is not a rational number.

Example 3: Show that the positive rational numbers 
are countable.

Solution:The positive rational numbers are countable 
since they can be arranged in a sequence:

r1 , r2 , r3 ,…   

The next slide shows how this is done.                →



The Positive Rational Numbers are 
Countable

Constructing  the List

First list p/q with p + q = 2.
Next list p/q with p + q = 3

And so on.

First row q = 1.
Second row q = 2.
etc.

1, ½, 2, 3, 1/3,1/4, 2/3, ….



Strings
Example 4: Show that the set of finite strings S over a finite 
alphabet A is countably infinite.

Assume an alphabetical ordering of symbols in A

Solution: Show that the strings can be listed in a 
sequence. First list
1. All the strings of length 0 in alphabetical order.

2. Then all the strings of length 1 in lexicographic (as in a 
dictionary) order.

3. Then all the strings of length 2 in lexicographic order. 

4. And so on.

This implies a bijection from N to S and hence it is a 
countably infinite set.



The set of all Java programs is 
countable.

Example 5:  Show that the set of all Java programs is countable.

Solution: Let S be the set of  strings constructed from the 
characters which can appear in a Java program. Use the ordering 
from the previous example. Take each string in turn:
 Feed the string into a Java compiler. (A Java compiler will determine 

if the input program is a syntactically correct Java program.)

 If the compiler says YES, this is a syntactically correct Java program, 
we add the program to the list.

 We move on to the next string.

In this way we construct an implied bijection from N to the set of 
Java programs. Hence, the set of Java programs is countable.



The Real Numbers are Uncountable
Example: Show that the set of real numbers is uncountable.
Solution: The   method is called the Cantor  diagnalization argument, and is a proof by 

contradiction.
1. Suppose R is countable. Then the real numbers between 0 and 1 are also countable 

(any subset of a countable set is countable - an exercise in the text).
2. The real numbers between 0 and 1 can be listed in order r1 , r2 , r3 ,… .
3. Let the decimal representation of this listing be

4. Form a new real number with the decimal expansion
where

5. r is not equal to any of the r1 , r2 , r3 ,...  Because it differs from ri in its ith position after 
the decimal point. Therefore there is a real number between 0 and 1 that is not on the 
list since every real number has a unique decimal expansion. Hence, all the real 
numbers between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1
is uncountable.

6. Since a set with an uncountable subset is uncountable (an exercise), the set of real 
numbers is uncountable.

Georg Cantor
(1845-1918)



Computability (Optional)
 Definition: We say that a function is computable if 

there is a computer program in some programming 
language that finds the values of this function. If a 
function is not computable we say it is 
uncomputable. 

 There are uncomputable functions. We have shown 
that the set of Java programs is countable. Exercise 38
in the text shows that there are uncountably many 
different functions from a particular countably infinite 
set (i.e., the positive integers) to itself. Therefore 
(Exercise 39) there must be uncomputable functions.
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Section Summary
 Definition of a Matrix

 Matrix Arithmetic

 Transposes and Powers of Arithmetic

 Zero-One matrices



Matrices
 Matrices are useful discrete structures that can be used in many 

ways. For example, they are used to:
 describe certain types of functions known as linear transformations.

 Express which vertices of a graph are connected by edges (see 
Chapter 10).

 In later chapters, we will see matrices used to build models of:
 Transportation systems.

 Communication networks.

 Algorithms based on matrix models will be presented in later 
chapters.

 Here we cover the aspect of matrix arithmetic that will be needed 
later. 



Matrix
Definition: A matrix is a rectangular array of 
numbers. A matrix with m rows and n columns is 
called an m  n matrix. 
 The plural of matrix is matrices.

 A matrix with the same number of rows as columns is called 
square. 

 Two matrices are equal if they have the same number of rows and 
the same number of columns and the corresponding entries in 
every position are equal. 

3 2 matrix



Notation
 Let m and n be positive integers and let

 The ith row of A is the 1 n matrix [ai1, ai2,…,ain]. The jth
column of A is the m 1 matrix:

 The (i,j)th element or entry of A is the 

element aij. We can use A = [aij ] to denote the matrix  with 
its (i,j)th element equal to aij.



Matrix Arithmetic: Addition
Defintion: Let A = [aij] and B = [bij] be m n matrices. 
The sum of A and B, denoted by A + B, is the m  n
matrix that has aij + bij as its (i,j)th element. In other 
words, A + B = [aij + bij].

Example:

Note that matrices of different sizes can not be added.



Matrix Multiplication
Definition: Let A be an m   k matrix and B be a k  n
matrix. The product of A and B, denoted by AB, is the        
m n matrix that has its (i,j)th element equal to the sum of 
the products of the corresponding elements from the ith
row of A and the jth column of B. In other words,  if AB = 
[cij] then cij = ai1b1j + ai2b2j + … + akjb2j.

Example:

The product of two matrices is undefined when the number 
of columns in the first matrix is not the same as the number 
of rows in the second.



Illustration of Matrix Multiplication 
 The Product of A = [aij] and B = [bij] 



Matrix Multiplication is not 
Commutative

Example: Let

Does AB = BA?

Solution:

AB ≠ BA



Identity Matrix and Powers of Matrices
Definition: The identity matrix of order n is the m n
matrix In = [ij], where ij = 1 if i = j and ij = 0 if i≠j.

AIn = ImA = A

when A is an m n matrix

Powers of square matrices can be defined. When A is an 
n  n matrix, we have:

A0  = In Ar = AAA∙∙∙A

r times



Transposes of Matrices
Definition: Let A = [aij] be an m n matrix. The 
transpose of A, denoted by At ,is the n m matrix 
obtained by interchanging the rows and columns of A.  

If At = [bij], then  bij = aji for i =1,2,…,n
and j = 1,2, ...,m. 



Transposes of Matrices
Definition: A square matrix A is called symmetric if  
A = At. Thus A = [aij] is symmetric if  aij = aji for i and j
with  1≤ i≤ n and 1≤ j≤ n. 

Square matrices do not change when their rows and 
columns are interchanged.



Zero-One Matrices
Definition: A matrix all of whose entries are either 0
or 1 is called a zero-one matrix. (These will be used in 
Chapters 9 and 10.)

Algorithms operating on discrete structures 
represented by zero-one matrices are based on 
Boolean arithmetic defined by the following Boolean 
operations:



Zero-One Matrices
Definition: Let A = [aij]  and B = [bij] be an m  n
zero-one matrices. 

 The join of A and B is the zero-one matrix with (i,j)th
entry  aij ∨ bij. The join of A and B is denoted by A ∨ B. 

 The meet of of A and B is the zero-one matrix with 
(i,j)th entry aij ∧ bij. The meet of A and B is denoted       
by A ∧ B. 



Joins and Meets of Zero-One Matrices
Example: Find the join and meet of the zero-one 
matrices

Solution: The join of  A and B is

The meet of A and B is



Boolean Product of Zero-One Matrices
Definition: Let A = [aij]  be an m k zero-one 
matrix and B = [bij] be a k n zero-one matrix. The 
Boolean product of A and B, denoted by A ⊙ B, is the 
m n zero-one matrix with(i,j)th entry

cij = (ai1 ∧ b1j)∨ (ai2 ∧ b2j) ∨ … ∨ (aik ∧ bkj).

Example: Find the Boolean product of A and B, where

Continued on next slide →



Boolean Product of Zero-One Matrices
Solution: The Boolean product A ⊙ B is given by



Boolean Powers of Zero-One Matrices
Definition: Let A be a square zero-one matrix and 
let r be a positive integer. The rth Boolean power of  
A is the Boolean product of r factors of A, denoted 
by A[r] .  Hence,

We define A[r] to be  In.

(The Boolean product is  well defined because the     
Boolean product of matrices is associative.)



Boolean Powers of Zero-One Matrices
Example: Let

Find An for all positive integers n.

Solution: 


