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Climbing an 
Infinite Ladder

Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can 

reach the next rung.

From (1), we can reach the first rung. Then by 
applying (2), we can reach the second rung. 
Applying (2) again, the third rung. And so on.  
We can apply (2) any number of times to reach 
any particular rung, no matter how high up.

This example motivates proof by 
mathematical induction.



Principle of Mathematical Induction
Principle of Mathematical Induction: To prove that P(n) is true for all 
positive integers n, we complete these steps:
 Basis Step: Show that P(1) is true.
 Inductive Step: Show that P(k) → P(k + 1) is true for all positive integers 

k.

To complete the inductive step, assuming the inductive hypothesis that 
P(k) holds for an arbitrary integer k, show that  must P(k + 1) be true.

Climbing an Infinite Ladder Example:
 BASIS STEP: By (1), we can reach rung 1.
 INDUCTIVE STEP: Assume the inductive hypothesis that we can reach 

rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach 
every rung on the ladder.



Important Points About Using 
Mathematical  Induction
 Mathematical induction can be expressed  as the 

rule of inference

where the domain is the set of positive integers.

 In a proof by mathematical induction, we don’t 
assume that P(k) is true for all positive integers! We 
show that if we assume that P(k) is true, then           
P(k + 1) must also  be true. 

 Proofs by mathematical induction do not always 
start at the integer 1. In such a case, the basis step 
begins at a starting point b where b is an integer. We 
will see examples of this soon.

(P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n),



Validity of Mathematical Induction
 Mathematical induction is valid because of the well ordering property, which 

states that every nonempty subset of the set of positive integers has a least 
element (see Section 5.2 and Appendix 1). Here is the proof:
 Suppose that P(1) holds and P(k)→ P(k + 1) is true for all positive integers 

k. 
 Assume there is at least one positive integer  n for which P(n) is false. Then 

the set S of positive integers for which P(n) is false is nonempty. 
 By the well-ordering property, S has a least element, say m.
 We know that m can not be 1 since  P(1) holds. 
 Since m is positive and greater than 1, m − 1 must be a positive integer. 

Since m − 1 < m, it is not in S, so P(m − 1) must be true. 
 But then, since the conditional P(k)→ P(k + 1) for every positive integer k

holds, P(m) must also be true. This contradicts P(m) being false. 
 Hence, P(n) must be true for every positive integer n.



Remembering How Mathematical 
Induction Works

Consider  an infinite 
sequence  of dominoes, 
labeled 1,2,3, …, where 
each domino is standing. 

We know that the first domino is 
knocked down, i.e., P(1) is true .

We also know that  if  whenever 
the kth domino is knocked over, 
it knocks over the (k + 1)st
domino, i.e, P(k) → P(k + 1) is 
true for all positive integers k. 

Let P(n) be the 
proposition that the 
nth domino is 
knocked over. 

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.



Proving a Summation Formula by 
Mathematical Induction

Example: Show that:  

Solution:

 BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

 INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,   

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.



Conjecturing and Proving Correct a 
Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n positive odd integers. 
Then prove your conjecture.
Solution: We have:   1= 1, 1 + 3 = 4, 1 + 3 + 5 = 9,  1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.
 We can conjecture that the sum of the first n positive odd integers is n2, 

 We prove the conjecture is proved correct with mathematical induction.
 BASIS STEP: P(1) is true since 12 = 1.
 INDUCTIVE STEP: P(k) → P(k + 1) for every positive integer k.

Assume the inductive hypothesis holds and then show that P(k + 1) holds has well.

 So, assuming P(k), it follows that:

 Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n positive odd 
integers is n2. 

1 + 3 + 5 + ∙∙∙+ (2n − 1) + (2n + 1) =n2 .  

Inductive Hypothesis: 1 + 3 + 5 + ∙∙∙+ (2k − 1)  =k2

1 + 3 + 5 + ∙∙∙+ (2k − 1) + (2k + 1) =[1 + 3 + 5 + ∙∙∙+ (2k − 1)] + (2k + 1)
= k2 + (2k + 1)  (by the inductive hypothesis)
= k2 + 2k + 1 
= (k + 1) 2



Proving Inequalities
Example: Use mathematical induction to prove that      
n < 2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

 BASIS STEP: P(1) is true since 1 < 21 = 2.

 INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for an 
arbitrary positive integer k.

 Must show that P(k + 1) holds. Since by the inductive 
hypothesis, k < 2k, it follows that:

k + 1 < 2k + 1 ≤ 2k + 2k = 2 ∙ 2k = 2k+1

Therefore n < 2n holds for all positive integers n.



Proving Inequalities
Example: Use mathematical induction to prove that 2n < n!, 
for every integer n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!.
 BASIS STEP: P(4) is true since 24 = 16  < 4! = 24.

 INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an 
arbitrary integer k ≥ 4. To show that P(k + 1) holds: 

2k+1 = 2∙2k  

< 2∙ k! (by the inductive hypothesis)

< (k + 1)k!

= (k + 1)!

Therefore, 2n < n! holds, for every integer n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.  



Proving Divisibility Results
Example: Use mathematical induction to prove that n3 − n is 
divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3 − n is divisible by 3.
 BASIS STEP: P(1) is true since 13 − 1 = 0, which is divisible by 3.

 INDUCTIVE STEP: Assume P(k) holds, i.e., k3 − k is divisible by 3, 
for an arbitrary positive integer k. To show that P(k + 1) follows: 

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) 

= (k3 − k) + 3(k2 + k)

By the inductive hypothesis, the first term (k3 − k) is divisible by 3
and the second term is divisible by 3 since it is an integer multiplied 
by 3. So by part (i) of Theorem 1 in Section 4.1 , (k + 1)3 − (k + 1) is 
divisible by 3. 

Therefore, n3 − n is divisible by 3, for every integer positive integer n.



Number of Subsets of a Finite Set
Example: Use mathematical induction to show that if 
S is a finite set with n elements, where n is a 
nonnegative integer, then S has 2n subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n
elements has 2n subsets.

 Basis Step: P(0) is true, because the empty set has only 
itself as a subset and  20 = 1.

 Inductive Step: Assume P(k) is true for an arbitrary 
nonnegative integer k.

continued →



Number of Subsets of a Finite Set

 Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a ∈ T and 
S = T − {a}.  Hence |S| = k.

 For each subset X of S, there are exactly two subsets of T, i.e., X and           
X ∪ {a}. 

 By the inductive hypothesis S has 2k subsets. Since there are two 
subsets of T  for each subset of S, the number of subsets of T is           
2 ∙2k = 2k+1 .

Inductive Hypothesis: For an arbitrary nonnegative integer k, 
every set with k elements has 2k subsets.



Tiling Checkerboards
Example: Show that every 2n ×2n checkerboard with one square removed can 
be tiled using right triominoes.

Solution: Let P(n) be the proposition that every 2n ×2n checkerboard with one 
square removed can be tiled using right triominoes. Use mathematical 
induction to prove that P(n) is true for all positive integers n.
 BASIS STEP:  P(1) is true, because each of the four 2 ×2 checkerboards with 

one square removed can be tiled using one right triomino.

 INDUCTIVE STEP:  Assume that  P(k) is true for every  2k ×2k checkerboard, for 
some positive integer k.

continued →

A right triomino is an L-shaped tile which covers 
three squares at a time.



Tiling Checkerboards

 Consider a 2k+1 ×2k+1 checkerboard with one square removed. Split this checkerboard into four 
checkerboards of size 2k ×2k,by dividing it in half in both directions.

 Remove a square from one of the four 2k ×2k checkerboards. By the inductive hypothesis, this board 
can be tiled.  Also by the inductive hypothesis, the other three boards can be tiled with the square 
from the corner of the center of the original board removed. We can then cover the three adjacent 
squares with a triominoe. 

 Hence, the entire 2k+1 ×2k+1 checkerboard with one square removed can be tiled using right 
triominoes.

Inductive Hypothesis: Every 2k ×2k checkerboard, for some 
positive integer k,  with one square removed can be tiled using 
right triominoes.



An Incorrect “Proof” by 
Mathematical Induction

Example: Let P(n) be the statement that every set of n lines in 
the plane, no two of which are parallel, meet in a common point. 
Here is a “proof” that P(n) is true for all positive integers n ≥ 2.  
 BASIS STEP: The statement P(2) is true because any two lines in the 

plane that are not parallel meet in a common point.

 INDUCTIVE STEP: The inductive hypothesis is the statement that 
P(k) is true for the positive integer k ≥ 2, i.e., every set of k lines in 
the plane, no two of which are parallel, meet in a common point.

 We must show that if P(k) holds, then P(k + 1) holds, i.e.,  if every 
set of k lines in the plane, no two of which are parallel, k ≥ 2, meet 
in a common point, then every set of k + 1 lines in the plane, no two 
of which are parallel, meet in a common point. 

continued →



An Incorrect “Proof” by 
Mathematical Induction

 Consider a set  of k + 1 distinct lines in the plane, no two parallel. By the 
inductive hypothesis, the first k of these lines must meet in a common point p1. 
By the inductive hypothesis, the last k of these lines meet in a common point p2. 

 If p1 and p2 are different points, all lines containing both of them must be the 
same line since two points determine a line. This contradicts the assumption 
that the lines are distinct. Hence, p1 = p2 lies on all k + 1 distinct lines, and 
therefore P(k + 1) holds. Assuming that  k ≥2, distinct lines meet in a common 
point, then every k + 1 lines meet in a common point.

 There must be an error in this proof  since the conclusion is absurd. But where is 
the error?
 Answer: P(k)→ P(k + 1) only holds for  k ≥3. It is not the case that P(2) implies P(3). 

The first two lines must meet in a common point p1 and the second two must meet in a 
common point p2. They do not have to be the same point since only the second line is 
common to both sets of lines.

Inductive Hypothesis: Every set of k lines in the plane, where   
k ≥ 2, no two of which are parallel, meet in a common point.



Guidelines:
Mathematical Induction Proofs
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Strong Induction
 Strong Induction: To prove that P(n) is true for all 

positive integers n, where P(n) is a propositional 
function, complete two steps:

 Basis Step: Verify that the proposition P(1) is true.

 Inductive Step: Show the conditional statement                
[P(1) ∧ P(2) ∧∙∙∙ ∧ P(k)] → P(k + 1) holds for all positive 
integers k. 

Strong Induction is sometimes called 
the second principle of mathematical 
induction or complete induction.



Strong Induction and  
the Infinite Ladder

Strong induction tells us that we can reach all rungs if:
1. We can reach the first rung of the ladder.
2. For every integer k, if we can reach the first k rungs, then 

we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:
• BASIS STEP:  P(1) holds
• INDUCTIVE STEP:  Assume P(1) ∧ P(2) ∧∙∙∙ ∧ P(k)

holds for an arbitrary integer k, and show that  
P(k + 1) must also hold.

We  will have then shown by strong induction that for 
every positive integer n, P(n) holds, i.e., we can 
reach the nth rung of the ladder.



Proof using Strong Induction
Example: Suppose we can reach the first and second rungs 
of an infinite ladder, and we know that if we can reach a 
rung, then we can reach two rungs higher. Prove that we 
can reach every rung.

(Try this with mathematical induction.)

Solution: Prove the result using strong induction.
 BASIS STEP: We can reach the first step.

 INDUCTIVE STEP:  The inductive hypothesis is that we can 
reach the first k rungs, for any k ≥ 2. We can reach the             
(k + 1)st rung since we can reach the (k − 1)st rung by the 
inductive hypothesis.

 Hence, we can reach all rungs of the ladder. 



Which Form of Induction Should Be 
Used?
 We can always use strong induction instead of  

mathematical induction. But there is no reason to use 
it if it is simpler to use mathematical induction. (See 
page 335 of text.)

 In fact, the principles of mathematical induction, 
strong induction, and the well-ordering property are 
all equivalent. (Exercises 41-43)

 Sometimes it is clear how to proceed using one of the 
three methods, but not the other two. 



Completion of the proof of the 
Fundamental Theorem of Arithmetic

Example: Show that if n is an integer greater than 1, then n can be 
written as the product of primes.

Solution: Let P(n) be the proposition that n can be written as a product 
of primes.
 BASIS STEP: P(2) is true since 2 itself is prime.
 INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all 

integers j with 2 ≤ j ≤ k. To show that P(k + 1) must be true under this 
assumption, two cases need to be considered:
 If k + 1  is prime, then P(k + 1) is true.
 Otherwise, k + 1  is composite and can be written as the product of two positive 

integers a and b with 2 ≤ a ≤ b < k + 1. By the inductive hypothesis a and b can 
be written as the product of primes and therefore k + 1 can also be written as the 
product of those primes.

Hence, it has been shown that every integer greater than 1 can be 
written as the product of primes.

(uniqueness proved in Section 4.3) 



Proof using Strong Induction
Example: Prove that every amount of postage of 12 cents or more can 
be formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents can be 
formed using 4-cent and 5-cent stamps.
 BASIS STEP: P(12), P(13), P(14), and P(15) hold.

 P(12) uses three 4-cent stamps.
 P(13) uses two 4-cent stamps and one 5-cent stamp.
 P(14) uses one 4-cent stamp and two 5-cent stamps.
 P(15) uses three 5-cent stamps.

 INDUCTIVE STEP: The inductive hypothesis  states that P(j) holds for 
12 ≤ j ≤ k, where k ≥ 15.  Assuming the inductive hypothesis, it can be 
shown that P(k + 1) holds. 

 Using the inductive hypothesis, P(k − 3) holds since k − 3 ≥ 12. To 
form postage of  k + 1 cents, add a 4-cent stamp to the postage for k − 3 
cents.

Hence, P(n) holds for all n ≥ 12.



Proof of Same Example using 
Mathematical Induction

Example: Prove that every amount of postage of 12 cents or 
more can be formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents can 
be formed using 4-cent and 5-cent stamps.
 BASIS STEP: Postage of 12 cents can be formed using three 4-cent 

stamps. 
 INDUCTIVE STEP: The inductive hypothesis P(k) for any positive 

integer k is that postage of k cents can be formed using 4-cent and 
5-cent stamps. To show P(k + 1) where   k ≥ 12 , we consider two 
cases:
 If at least one 4-cent stamp has been used, then a 4-cent stamp can be 

replaced with a 5-cent stamp to yield a total of k + 1 cents.
 Otherwise, no  4-cent stamp have been used and at least three 5-cent 

stamps were used. Three 5-cent stamps can be replaced by four 4-cent 
stamps to yield a total of k + 1 cents.

Hence, P(n) holds for all n ≥ 12.



Well-Ordering Property
 Well-ordering property: Every nonempty set of nonnegative 

integers has a least element.
 The well-ordering property is one of the axioms of the 

positive integers listed in Appendix 1. 
 The well-ordering property can be used directly in proofs, 

as the next example illustrates.
 The well-ordering property can be generalized. 

 Definition: A set is well ordered if every subset has a least 
element.
 N is well ordered under ≤.
 The set of finite strings over an alphabet using lexicographic 

ordering is well ordered.

 We will see a generalization of induction to sets other than 
the integers in the next section. 



Well-Ordering Property
Example: Use the well-ordering property to prove the 
division algorithm, which states that if a is an integer and d
is a positive integer, then there are unique integers q and r
with 0 ≤ r < d, such that   a = dq + r.
Solution: Let S be the set of nonnegative integers of the 
form  a − dq, where q is an integer. The set is nonempty 
since  −dq can be made as large as needed. 
 By the well-ordering property, S has a least element                    

r = a − dq0. The integer r is nonnegative. It also must be the 
case that r < d. If it were not, then there would be a smaller 
nonnegative element in S, namely,                                                     
a − d(q0 + 1) = a − dq0 − d = r − d  > 0.

 Therefore, there are integers q and r with 0 ≤ r < d.

(uniqueness of q and r is Exercise 37)

− 2
 . 
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Recursively Defined Functions
Definition:  A recursive or inductive definition  of a 
function consists of two steps.

 BASIS STEP: Specify the value of the function at zero.

 RECURSIVE STEP: Give a rule for finding its value at an 
integer from its values at smaller integers.

 A function f(n)  is the same as a sequence a0, a1, … , 
where ai, where f(i) = ai. This was done using 
recurrence relations in Section 2.4.



Recursively Defined Functions
Example:  Suppose f is defined by:

f(0) = 3,
f(n + 1) = 2f(n) + 3

Find f(1), f(2), f(3), f(4)
Solution:

 f(1) = 2f(0) + 3 = 2∙3 + 3 = 9
 f(2) = 2f(1)+ 3 = 2∙9 + 3 = 21
 f(3) = 2f(2) + 3 = 2∙21 + 3 = 45
 f(4) = 2f(3) + 3 = 2∙45 + 3 = 93

Example:  Give a recursive definition of the factorial function n!:
Solution:

f(0) = 1
f(n + 1) = (n + 1)∙ f(n)



Recursively Defined Functions
Example: Give a recursive definition of:

Solution: The first part of the definition is

The second part is



Fibonacci Numbers
Example : The Fibonacci numbers are defined as 
follows:

f0 = 0

f1 = 1

fn = fn−1 + fn−2

Find f2, f3 , f4 , f5 .
 f2 = f1 + f0 = 1 + 0 = 1

 f3 = f2 + f1 = 1 + 1 = 2

 f4 = f3 + f2 = 2 + 1 = 3

 f5 = f4 + f3 = 3 + 2 = 5

Fibonacci 
(1170- 1250)

In Chapter 8, we will use the 
Fibonacci numbers to model 
population growth of rabbits. 
This was an application 
described by Fibonacci himself.

Next, we use strong induction 
to prove a result about the 
Fibonacci numbers.



Fibonacci Numbers  
Example 4: Show that whenever n ≥ 3, fn > αn − 2, where  α = (1 + √5)/2.
Solution:  Let P(n) be the statement fn > αn−2 . Use strong induction to show 
that P(n) is true whenever  n ≥ 3.
 BASIS STEP: P(3) holds since α < 2 = f3

P(4) holds since α2 = (3 + √5)/2 < 3 = f4 .
 INDUCTIVE STEP: Assume that P(j) holds, i.e.,  fj > αj−2  for all integers j with

3 ≤ j ≤ k, where k ≥ 4. Show that P(k + 1) holds, i.e., fk+1 > αk−1 . 
 Since α2 = α + 1 (because α is a solution of x2 − x − 1 = 0),

 By the inductive hypothesis, because k ≥ 4 we have

 Therefore, it follows that

 Hence, P(k + 1) is true.  

− 2
 . 

fk+1 =  fk + fk−1 > αk−2 + αk−3 = αk−1. 

αk−1 = α2   ∙ αk−3 = ( α + 1) ∙αk−3 = α ∙αk−3+ 1 ∙αk−3    = αk−2   + αk−3                    

fk−1 > αk−3,          fk > αk−2. 
Why does 
this equality 
hold?



Lamé’s Theorem 
Lamé’s Theorem: Let a and b be positive integers with a ≥ b.  Then the 

number of divisions used by the Euclidian algorithm to find gcd(a,b) is less 
than or equal to five times the number of decimal digits in b. 

Proof: When we use the Euclidian algorithm to find gcd(a,b) with a ≥ b,

Gabriel Lamé
(1795-1870)

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r3 0 ≤ r3 < r2,

⋮
rn-2 = rn-1qn-1 + rn 0 ≤ rn < rn-1,
rn-1 = rnqn.

rn ≥ 1 = f2,
rn-1 ≥ 2 rn ≥ 2 f2 = f3, 
rn-2 ≥ rn-1 + rn ≥ f3 + f2 = f4,

⋮
r2 ≥ r3 + r4 ≥ fn-1 + fn-2 = fn,
b = r1 ≥ r2 + r3 ≥ fn + fn-1 = fn+1.

• n divisions  are used to obtain 
(with a = r0,b =r1 ): 

• Since each quotient q1, q2 , …,qn-1 is 
at least 1 and qn ≥ 2:

continued →



Lamé’s Theorem 
 It follows that if n divisions are used by the Euclidian algorithm to find gcd(a,b) 

with a ≥ b, then b ≥ fn+1. By Example 4, fn+1 > αn − 1, for n > 2, where               
α = (1 + √5)/2. Therefore, b > αn−1.

 Because log10 α ≈ 0.208 > 1/5, log10 b > (n−1) log10 α > (n−1)/5 . Hence,

 Suppose that  b has k decimal digits. Then b < 10k and log10 b < k. It  follows 
that n − 1 < 5k and since k is an integer, n ≤ 5k.

 As a consequence of Lamé’s Theorem, O(log b) divisions are used by the 
Euclidian algorithm to find gcd(a,b) whenever a > b.
 By Lamé’s Theorem, the number of divisions needed to find gcd(a,b) with a > b 

is less than or equal to 5 (log10 b + 1) since the number of decimal digits in b 
(which equals ⌊log10 b⌋ + 1) is less than or equal to log10 b + 1. 

n−1 < 5 ∙log10 b.

− 2
 . 

Lamé’s Theorem was the first result in computational complexity



Recursively Defined Sets and Structures
Recursive definitions of sets have two parts:
 The basis step specifies an initial collection of elements.

 The recursive step gives the rules for forming new elements in 
the set from those already known to be in the set.

 Sometimes the recursive definition has an exclusion rule, 
which specifies that the set contains nothing other than 
those elements specified in the basis step and generated by 
applications of the rules in the recursive step. 

 We will always assume that the exclusion rule holds, even if 
it is not explicitly mentioned. 

 We will later develop a form of induction, called structural 
induction, to prove results about recursively defined sets. 



Recursively Defined Sets and Structures
Example : Subset of Integers  S:

BASIS STEP: 3 ∊ S.

RECURSIVE STEP: If x ∊ S and y ∊ S, then x + y is in S.

 Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.

Example: The natural numbers N.

BASIS STEP: 0 ∊ N.

RECURSIVE STEP: If n is in N, then n + 1 is in N.

 Initially 0 is in S, then 0 + 1 = 1, then 1 + 1 = 2, etc.



Strings
Definition: The set  Σ* of strings over the alphabet Σ:

BASIS STEP: λ ∊ Σ* (λ is the empty string)

RECURSIVE STEP: If w is in Σ* and x is in Σ,                   
then wx  Σ*.

Example:  If Σ = {0,1}, the strings in in Σ* are the set of 
all bit strings, λ,0,1, 00,01,10, 11, etc.

Example:  If Σ = {a,b}, show that aab is in Σ*.
 Since λ ∊ Σ* and a ∊ Σ, a ∊ Σ*.

 Since a ∊ Σ* and a ∊ Σ, aa ∊ Σ*.

 Since aa ∊ Σ* and b ∊ Σ, aab ∊ Σ*.



String Concatenation
Definition: Two strings can be combined via the 
operation of concatenation. Let Σ be a set of symbols 
and Σ* be the set of strings formed from the symbols 
in Σ. We can define the concatenation of two strings, 
denoted by ∙, recursively as follows.

BASIS STEP: If w  Σ*, then w ∙ λ= w.

RECURSIVE STEP: If w1  Σ* and w2  Σ* and x  Σ, then
w1 ∙ (w2 x)= (w1 ∙ w2)x.

 Often w1 ∙ w2 is written as w1 w2.

 If w1  = abra and w2  = cadabra, the concatenation        
w1 w2 = abracadabra.



Length of a String
Example: Give a recursive definition of l(w), the 
length of the string w.

Solution: The length of a string can be recursively 
defined by:

l(λ) = 0;

l(wx) = l(w) + 1 if w ∊ Σ* and x ∊ Σ. 



Balanced Parentheses
Example: Give a recursive definition of the set  of 
balanced parentheses P.

Solution:

BASIS STEP: () ∊ P

RECURSIVE STEP: If w ∊ P, then () w ∊ P,  (w) ∊ P and       
w () ∊ P.

 Show that (() ()) is in P.

 Why is ))(() not in P?



Well-Formed Formulae in Propositional 
Logic

Definition: The set of well-formed formulae in 
propositional logic involving T, F, propositional 
variables, and operators from the set {¬,∧,∨,→,↔}.

BASIS STEP: T,F, and s, where s is a propositional 
variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae, 
then (¬ E),  (E ∧ F), (E ∨ F), (E → F), (E ↔ F), are well-
formed formulae.

Examples: ((p ∨q) → (q ∧ F)) is a well-formed formula.

pq ∧  is not a  well formed formula.



Rooted Trees
Definition: The set of rooted trees, where a rooted tree 
consists of a set of vertices containing a distinguished 
vertex called the root, and edges connecting these vertices, 
can be defined recursively by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2, …,Tn are disjoint rooted 
trees with roots r1, r2,…,rn, respectively. Then the graph 
formed by starting with a root r, which is not in any of the 
rooted trees T1, T2, …,Tn, and adding an edge from r to each of 
the vertices r1, r2,…,rn, is also a rooted tree.



Building Up Rooted Trees

• Trees are studied extensively in Chapter 11.
• Next we look at a special type of tree, the full binary tree. 



Full Binary Trees
Definition: The set of full binary trees can be defined 
recursively by these steps.

BASIS STEP: There is a full binary tree consisting of only a 
single vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full binary 
trees, there is a full binary tree, denoted by T1∙T2, 
consisting of a root r together with edges connecting the 
root to each of the roots of the left subtree T1 and the 
right subtree T2. 



Building Up Full Binary Trees



Induction and Recursively Defined Sets
Example:  Show that the set S defined  by specifying that 3 ∊ S and that if x ∊ S
and   y ∊ S, then x + y is in S, is the set of all positive integers that are multiples 
of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that      
A = S, show that A is a subset of S and S is a subset of A. 
 A⊂ S: Let P(n) be the statement that 3n belongs to S. 

BASIS STEP: 3∙1 = 3 ∊ S, by the first part of recursive definition.
INDUCTIVE STEP: Assume P(k) is true. By the second part of the recursive definition, 
if 3k ∊ S, then since 3 ∊ S, 3k + 3 = 3(k + 1) ∊ S. Hence, P(k + 1) is true. 

 S ⊂ A:
BASIS STEP: 3 ∊ S by the first part of recursive definition, and   3 = 3∙1.
INDUCTIVE STEP:  The second part of the recursive definition adds x +y to S, if both x
and y are in S. If x and y are both in A, then both x and y are divisible by 3. By part (i) 
of Theorem 1 of Section 4.1, it follows that  x + y is divisible by 3. 

 We used mathematical induction to prove a result about a recursively defined 
set. Next  we study a more direct form induction for proving results about 
recursively defined sets.



Structural Induction
Definition: To prove a property of the elements of a 
recursively defined set, we use  structural induction. 

BASIS STEP: Show that the result holds for all elements 
specified in the basis step of the recursive definition.

RECURSIVE STEP: Show that if the statement is true for 
each of the elements used to construct new elements in 
the recursive step of the definition, the result holds for 
these new elements. 

 The validity of structural induction can be shown to 
follow from the principle of mathematical induction. 



Full Binary Trees
Definition: The height h(T) of a full binary tree T is 
defined recursively as follows:
 BASIS STEP: The height of a full binary tree T consisting of 

only a root r is h(T) = 0.
 RECURSIVE STEP: If T1 and T2 are full binary trees, then the 

full binary tree T = T1∙T2 has height                                           
h(T) = 1 + max(h(T1),h(T2)).

 The number of vertices  n(T) of a full binary tree T satisfies 
the following recursive formula:
 BASIS STEP: The number of vertices of a full binary tree T 

consisting of only a root r is n(T) = 1.
 RECURSIVE STEP: If T1 and T2 are full binary trees, then the  

full binary tree T = T1∙T2 has the number of vertices                                                                 
n(T) = 1 + n(T1) + n(T2).



Structural Induction and Binary Trees
Theorem: If T is a full binary tree, then   n(T) ≤ 2h(T)+1 – 1.

Proof: Use structural induction.
 BASIS  STEP: The result holds for a full binary tree consisting only 

of a root, n(T) = 1 and h(T) = 0.  Hence, n(T) = 1 ≤ 20+1 – 1 = 1.

 RECURSIVE STEP:  Assume n(T1) ≤ 2h(T1)+1 – 1 and also                   
n(T2) ≤ 2h(T2)+1  – 1 whenever T1 and T2 are full binary trees.

n(T)   =  1 + n(T1) + n(T2)                      (by recursive formula of n(T))

≤ 1 + (2h(T1)+1 – 1) + (2h(T2)+1 – 1)  (by inductive hypothesis)

≤ 2∙max(2h(T1)+1 ,2h(T2)+1 ) – 1 

= 2∙2max(h(T1),h(T2))+1 – 1 (max(2x , 2y)= 2max(x,y) )

= 2∙2h(t) – 1 (by recursive definition of h(T))

= 2h(t)+1 – 1

− 2
 . 



Generalized Induction
 Generalized induction is used to prove results about 

sets other than the integers that have the well-ordering 
property. (explored in more detail in Chapter 9)

 For example, consider an ordering on N⨉ N, ordered 
pairs of nonnegative integers. Specify that (x1 ,y1) is 
less than or equal to (x2,y2) if either x1 < x2, or x1 = x2

and y1 <y2 . This is called the lexicographic ordering.

 Strings are also commonly ordered by a lexicographic 
ordering.

 The next example uses generalized induction to prove 
a result about ordered pairs from N⨉ N. 



Generalized Induction
Example: Suppose that am,n is defined for  (m,n)∊N ×N by               
a0,0 = 0 and

Show that am,n = m + n(n + 1)/2 is defined for all    (m,n)∊N ×N.
Solution: Use generalized induction.
BASIS STEP: a0,0 = 0 = 0 + (0∙1)/2
INDUCTIVE STEP: Assume that am ̍,n̍ =  m̍+ n̍(n̍ + 1)/2 

whenever(m̍,n̍) is less than (m,n) in the lexicographic ordering of 
N ×N . 
 If n = 0, by the inductive hypothesis we can conclude 

am,n = am−1,n + 1 = m − 1+ n(n + 1)/2 + 1 = m + n(n + 1)/2 .
 If n > 0, by the inductive hypothesis we can conclude 

am,n = am−1,n + 1 = m + n(n − 1)/2 +n = m + n(n + 1)/2 .

− 2
 . 



Section 5.4



Section Summary
 Recursive Algorithms

 Proving Recursive Algorithms Correct

 Recursion and Iteration (not yet included in overheads)

 Merge Sort



Recursive Algorithms
Definition: An algorithm is called recursive if it solves 
a problem by reducing it to an instance of the same 
problem with smaller input.

 For the algorithm to terminate, the instance of the 
problem must eventually be reduced to some initial 
case for which the solution is known.



Recursive Factorial Algorithm
Example: Give a recursive algorithm for computing n!, 
where n is a nonnegative integer. 

 Solution: Use the recursive definition of the factorial 
function.

procedure factorial(n: nonnegative integer)
if n = 0 then return 1
else return n∙factorial (n − 1)
{output is n!}



Recursive Exponentiation Algorithm
Example: Give a recursive algorithm for computing an, 
where a is a nonzero real number and  n is a 
nonnegative integer.

Solution: Use the recursive definition of an.

procedure power(a: nonzero real number, n: nonnegative 
integer)

if n = 0 then return 1
else return a∙ power (a, n − 1)
{output is an}



Recursive GCD Algorithm
Example: Give a recursive algorithm for computing 
the greatest common divisor of two nonnegative 
integers a and b with a < b.

Solution: Use the reduction

gcd(a,b) = gcd(b mod a, a) 

and the condition gcd(0,b) = b when b > 0.
procedure gcd(a,b: nonnegative integers 

with a < b)
if a = 0 then return b
else return gcd (b mod a, a)
{output is gcd(a, b)}



Recursive Modular Exponentiation 
Algorithm

Example: Devise a  a recursive algorithm for 

computing bn mod m, where b, n, and m are
integers with  m ≥ 2,  n ≥ 0, and 1≤ b ≤ m.

 Solution:

procedure mpower(b,m,n: integers with b > 0 and    m ≥ 2,  n ≥ 0)
if n = 0 then

return 1
else if  n is even then 

return mpower(b,n/2,m)2 mod m
else

return (mpower(b,⌊n/2⌋,m)2 mod m∙ b mod m) mod m

{output is bn mod m}

(see text for full explanation)



Recursive Binary Search Algorithm
Example: Construct a recursive version of a binary 
search algorithm. 

Solution: Assume we have a1,a2,…, an, an increasing sequence of 

integers. Initially i is 1 and j is n. We are searching for x.

procedure binary search(i, j, x : integers,  1≤ i ≤ j ≤n)
m := ⌊(i + j)/2⌋
if x = am then

return m
else if  (x < am and   i < m) then 

return binary search(i,m−1,x)
else if  (x > am and   j >m) then 

return binary search(m+1,j,x)
else return 0
{output is location of x in a1, a2,…,an if it appears, otherwise 0}



Proving Recursive Algorithms Correct
 Both mathematical and str0ng induction are useful techniques to show that recursive 

algorithms always produce the correct output.

Example: Prove that the algorithm for computing the powers of real numbers is correct.

Solution: Use mathematical induction on the exponent n.
BASIS STEP: a0 =1 for every nonzero real number a, and power(a,0) = 1.
INDUCTIVE STEP: The inductive hypothesis is that power(a,k) = ak, for all          a ≠0. 
Assuming the inductive hypothesis, the algorithm correctly computes ak+1, since

power(a,k + 1) = a∙ power (a, k) = a∙ ak = ak+1 .

procedure power(a: nonzero real number, n: nonnegative integer)

if n = 0 then return 1

else return a∙ power (a, n − 1)

{output is an}

− 2
 . 



Merge Sort
 Merge Sort works by iteratively splitting a list (with an 

even number of elements) into two sublists of equal 
length until each sublist has one element.

 Each sublist is represented by a balanced binary tree.

 At each step a pair of sublists is successively merged 
into a list with the elements in increasing order. The 
process ends when all the sublists have been merged.

 The succession of merged lists is represented by a 
binary tree.



Merge Sort
Example: Use merge sort to put the list

8,2,4,6,9,7,10, 1, 5, 3

into increasing order.

Solution:



Recursive Merge Sort
Example: Construct a recursive merge sort algorithm. 

Solution: Begin with the list of n elements L.

procedure mergesort(L = a1, a2,…,an )
if  n > 1 then

m := ⌊n/2⌋
L1 := a1, a2,…,am

L2 := am+1, am+2,…,an

L := merge(mergesort(L1), mergesort(L2 ))
{L is now sorted into elements in increasing order}

continued →



Recursive Merge Sort
 Subroutine merge, which merges two sorted lists.

Complexity of Merge: Two sorted lists with m
elements and n elements can be merged into a sorted 
list using no more than m + n − 1 comparisons.

procedure merge(L1, L2 :sorted lists)
L := empty list
while L1 and L2 are both nonempty

remove smaller of first elements of L1 and L2 from its list; 
put at the right end of L

if this removal makes one list empty 
then remove all elements from the other list and append them to L

return L {L is the merged list with the elements in increasing order}



Merging Two Lists
Example: Merge the two lists 2,3,5,6 and 1,4.

Solution:



Complexity of Merge Sort
Complexity of Merge Sort:  The number of comparisons 
needed to merge  a list with n elements is O(n log n).

 For simplicity, assume that n is a power of 2, say 2m.

 At the end of the splitting process, we have a binary tree with   m
levels, and 2m lists with one element at level  m.

 The merging process begins at level m with the pairs of 2m lists 
with one element combined into 2m−1 lists of two elements. Each 
merger takes two one comparison.

 The procedure continues , at each level (k = m,  m−1,
m−1,…,3,2,1) 2k lists with 2m−k elements are merged into 2k−1

lists, with 2m−k + 1 elements at level k−1.
 We know (by the complexity of the merge subroutine) that  each 

merger takes at most 2m−k + 2m−k − 1 = 2m−k+ 1 − 1 comparisons.

continued →



Complexity of Merge Sort
 Summing over the number of comparisons at each level, 

shows that 

because m = log n and n = 2m.

(The expression                   in the formula above  is 
evaluated as 2m − 1 using the formula for the sum of the 
terms of a geometric progression, from Section 2.4.)

 In Chapter 11, we’ll see that the fastest comparison-based 
sorting algorithms have O(n log n) time complexity. So, 
merge sort achieves the best possible big-O estimate of 
time complexity.


