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Chapter Summary
 Introduction to Discrete Probability

 Probability Theory

 Bayes’ Theorem

 Expected Value and Variance



Section 7.1



Section Summary
 Finite Probability

 Probabilities of Complements and Unions of Events

 Probabilistic Reasoning



Probability of an Event
We first study Pierre-Simon Laplace’s classical theory of probability, 
which he introduced in the 18th century,  when he analyzed games of 
chance.

 We first define these key terms:
 An experiment is a procedure that yields one of a given set of possible 

outcomes.
 The sample space of the experiment is the set of possible outcomes.
 An event is a subset of the sample space.

 Here is how Laplace defined the probability of an event:
Definition: If S is a finite sample space of equally likely outcomes, and 
E is an event, that is, a subset of S, then the probability of E is                   
p(E) = |E|/|S|.

 For every event E, we have 0 ≤ p(E)  ≤ 1. This follows directly from the 
definition because 0 ≤ p(E) = |E|/|S| ≤ |S|/|S| ≤ 1, since 0 ≤ |E| ≤ |S|.

Pierre-Simon Laplace
(1749-1827)



Applying Laplace’s Definition
Example: An urn contains four blue balls and five red balls. 
What is the probability that a ball chosen from the urn is 
blue?

Solution:  The probability that the ball is chosen is 4/9 
since there are nine possible outcomes, and four of these 
produce a blue ball.

Example: What is the probability that when two dice are 
rolled, the sum of the numbers on the two dice is 7?

Solution:  By the product rule there are 62 = 36 possible 
outcomes. Six of these sum to 7. Hence, the probability of 
obtaining a 7 is 6/36 = 1/6. 



Applying Laplace’s Definition
Example: In a lottery, a player wins a large prize when they pick four digits that 
match, in correct order, four digits selected by a random mechanical process. 
What is the probability that a player wins the  prize? 
Solution: By the product rule there are 104 = 10,000 ways to pick four digits. 
 Since there is only 1 way to pick the correct digits, the probability of winning 

the large prize is 1/10,000 = 0.0001.

A smaller prize is won if only three digits are matched. What is the probability 
that a player wins the small prize?
Solution: If exactly three digits are matched, one of the four digits must be 
incorrect and the other three digits must be correct. For the digit that is 
incorrect, there are 9 possible choices. Hence, by the sum rule, there a total of 
36 possible ways to choose four digits that match exactly three of the winning 
four digits. The probability of winning the small price is 36/10,000 = 9/2500 = 
0.0036.



Applying Laplace’s Definition
Example: There are many lotteries that award prizes to 
people who correctly choose a set of six numbers out of the 
first n positive integers, where n is usually between 30 and 
60. What is the probability that a person picks the correct 
six numbers out of 40?

Solution: The number of ways to choose six numbers out 
of 40 is 

C(40,6) = 40!/(34!6!) = 3,838,380.

Hence, the probability of picking a winning combination is 
1/ 3,838,380 ≈ 0.00000026.

Can you work out the probability of winning the lottery with 
the biggest prize where you live?



Applying Laplace’s Definition
Example: What is the probability that the numbers 11, 4, 
17, 39, and 23 are drawn in that order from a bin with 50
balls labeled with the numbers 1,2, …, 50 if 
a) The ball selected is not returned to the bin.

b) The ball selected is returned to the bin before the next ball 
is selected.

Solution: Use the product rule in each case.
a) Sampling without replacement: The probability is 

1/254,251,200 since there are  50 ∙49 ∙47 ∙46 ∙45  = 
254,251,200 ways to choose the five balls.

b) Sampling with replacement: The probability is                       
1/505 = 1/312,500,000 since 505 = 312,500,000.



The Probability of Complements 
and Unions of Events

Theorem 1: Let E be an event in sample space S. The 
probability of the event = S − E, the complementary 
event of E, is given by

Proof: Using the fact that | | = |S| − |E|, 



The Probability of Complements 
and Unions of Events

Example: A sequence of 10 bits is chosen randomly. 
What is the probability that at least one of these bits is 
0?

Solution: Let E be the event that at least one of the 10 
bits is 0. Then is the event that all of the bits are 1s. 
The size of the sample space S is 210. Hence,



The Probability of Complements 
and Unions of Events

Theorem 2: Let E1 and E2 be events in the  sample 
space S. Then

Proof: Given the inclusion-exclusion formula from 
Section 2.2, |A ∪ B| = |A| + | B| − |A ∩ B|,  it follows 
that



Example: What is the probability that a positive 
integer selected at random from the set of positive 
integers not exceeding 100 is divisible by either 2 or 5?

Solution: Let E1 be the event that  the integer is 
divisible by  2 and E2 be the event that it is divisible 5? 
Then the event that the integer is divisible by 2 or 5 is 
E1 ∪ E2 and E1 ∩ E2 is the  event that it is divisible by 2 
and 5.

It follows that: 

p(E1 ∪ E2) = p(E1) + p(E2) – p(E1 ∩ E2)

= 50/100 + 20/100 − 10/100 = 3/5.

The Probability of Complements 
and Unions of Events



Monty Hall Puzzle
Example: You are asked to select one of the three doors to open.  
There is a large prize behind one of the doors and if you select 
that door, you win the prize. After you select a door, the game 
show host opens one of the other doors (which he knows is not 
the winning door). The prize is not behind the door and he gives 
you the opportunity to switch your selection. Should you switch? 

Solution: You should switch. The probability that your initial 
pick is correct is 1/3. This is the same whether or not you switch 
doors. But since the game show host always opens a door that 
does not have the prize, if you switch the probability of winning 
will be 2/3, because you win if your initial pick was not the 
correct door and the probability your initial pick was wrong is 
2/3.

1 32

(This is a notoriously confusing problem that has been the subject of much 

discussion . Do a web search to see why!)



Section 7.2



Section Summary
 Assigning Probabilities

 Probabilities of Complements and Unions of Events

 Conditional Probability 

 Independence

 Bernoulli Trials and the Binomial Distribution

 Random Variables

 The Birthday Problem

 Monte Carlo Algorithms

 The Probabilistic Method (not currently included in 
the overheads)



Assigning Probabilities
Laplace’s definition from the previous section, assumes that 
all outcomes are equally likely. Now we introduce a more 
general definition of probabilities that avoids this 
restriction.

 Let S be a sample space of an experiment with a finite 
number of outcomes. We assign a probability p(s) to each 
outcome s, so that:

i. 0 ≤ p(s) ≤ 1 for each s  S

ii.   

 The function p from the set of all outcomes of the sample 
space S is called a probability distribution.



Assigning Probabilities
Example: What probabilities should we assign to the 
outcomes H(heads) and T (tails) when a fair coin is 
flipped? What probabilities should be assigned to 
these outcomes when the coin is biased so that heads 
comes up twice as often as tails?

Solution:    For a fair coin, we have p(H) = p(T) = ½.

For a biased coin, we have p(H) = 2p(T).

Because p(H) + p(T) = 1, it follows that

2p(T) + p(T) = 3p(T) = 1.

Hence, p(T) = 1/3  and p(H) = 2/3.



Uniform Distribution
Definition: Suppose that S is a set with n elements. 
The uniform distribution assigns the probability 1/n to 
each element of S. (Note that we could have used 
Laplace’s definition here.)

Example: Consider again the coin flipping example, 
but with a fair coin. Now p(H) = p(T) = 1/2.



Probability of an Event
Definition: The probability of the event E is the sum 
of the probabilities of the outcomes in E.

 Note that now no assumption is being made about the 
distribution.  



Example
Example: Suppose that a die is biased so that 3 
appears twice as often as each other number, but that 
the other five outcomes are equally likely. What is the 
probability that an odd number appears when we roll 
this die?

Solution: We want the probability of the event               
E = {1,3,5}. We have p(3) = 2/7 and 

p(1) = p(2) = p(4) = p(5) = p(6) = 1/7.

Hence, p(E) = p(1) + p(3) + p(5) =

1/7 + 2/7 + 1/7 = 4/7.



Probabilities of Complements and 
Unions  of Events
 Complements:                                  still holds. Since 

each outcome is in either E or      , but not both,     

 Unions:

also still holds under the new definition. 



Combinations of Events
Theorem: If E1, E2, … is a sequence of pairwise disjoint 
events in a sample space S, then

see Exercises 36 and 37 for the proof



Conditional Probability
Definition: Let E and F be events with p(F) > 0. The conditional 
probability of E given F, denoted by P(E|F), is defined as:

Example: A bit string of length four is generated at random so 
that each of the 16 bit strings of length 4 is equally likely. What 
is the probability that it contains at least two consecutive 0s, 
given that its first bit is a 0?
Solution: Let E be the event that the bit string contains at least 
two consecutive 0s, and F be the event that the first bit is a 0. 
 Since E ⋂ F = {0000, 0001, 0010, 0011, 0100}, p(E⋂F)=5/16.
 Because 8 bit strings of length 4 start with a 0, p(F) = 8/16= ½.

Hence,



Conditional Probability
Example: What is the conditional probability that a 
family with two children has two boys, given that they 
have at least one boy. Assume that each of the 
possibilities BB, BG, GB, and GG is equally likely where 
B represents a boy and G represents a girl.

Solution: Let E be the event that the family has two 
boys and let  F be the event that the family has at least 
one boy. Then E = {BB}, F = {BB, BG, GB}, and                                               
E ⋂ F = {BB}.
 It follows that p(F) = 3/4 and  p(E⋂F)=1/4.

Hence, 



Independence
Definition: The events E and F are independent if and only if   

Example: Suppose E is the event that a randomly generated bit string 
of length four begins with a 1 and F is the event that this bit string 
contains an even number of 1s. Are E and F independent if the 16 bit 
strings of length four are equally likely? 
Solution: There are eight bit strings of length four that begin with a 1, 
and eight bit strings of length four that contain an even number of 1s.
 Since the number of bit strings of length 4 is 16,

 Since E⋂F = {1111, 1100, 1010, 1001}, p(E⋂F) = 4/16=1/4.

We conclude that E and F are independent, because 
p(E⋂F) =1/4 = (½) (½)= p(E) p(F) 

p(E⋂F) = p(E)p(F).

p(E) = p(F) = 8/16 = ½. 



Independence
Example: Assume  (as in the previous example) that 
each of the four ways a family can have two children 
(BB, GG, BG,GB) is equally likely. Are the events E, that 
a family with two children has two boys, and F, that a 
family with two children has at least one boy, 
independent?

Solution: Because E = {BB}, p(E) = 1/4.  We saw 
previously that that p(F) = 3/4 and  p(E⋂F)=1/4. The 
events  E and F are not independent since

p(E) p(F) = 3/16 ≠ 1/4= p(E⋂F) .



Pairwise and Mutual Independence
Definition: The events E1, E2, …, En are pairwise
independent if and only if p(Ei⋂Ej) = p(Ei) p(Ej) for all 
pairs i and j with i ≤ j ≤ n.

The events are mutually independent if

whenever ij, j = 1,2,…., m, are integers with 

1 ≤ i1 < i2 <∙∙∙ < im ≤ n and m ≥ 2.



Bernoulli Trials 

James Bernoulli
(1854 – 1705)

Definition: Suppose an experiment can have only two 
possible outcomes, e.g., the flipping of a coin or the 
random generation of a bit. 

 Each performance of the experiment is called a Bernoulli trial. 

 One outcome is called a success and the other a failure. 

 If p is the probability of success and q the probability of 
failure, then p + q = 1. 

 Many problems involve determining the probability of k
successes when an experiment consists of n mutually 
independent Bernoulli trials.



Bernoulli Trials 

Example: A coin is biased so that the probability of heads 
is 2/3. What is the probability that exactly four heads 
occur when the coin is flipped seven times?

Solution:  There are 27 = 128 possible outcomes. The 
number of ways four of the seven flips can be heads is 
C(7,4). The probability of each of the outcomes is 
(2/3)4(1/3)3 since the seven flips are independent. 
Hence, the probability that exactly four heads occur is   

C(7,4) (2/3)4(1/3)3 =  (35∙ 16)/ 27 =  560/ 2187.



Probability of k Successes in n
Independent Bernoulli Trials.

Theorem 2: The probability of exactly k successes in n independent 
Bernoulli trials, with probability of success p and probability of failure 
q = 1 − p, is

C(n,k)pkqn−k.
Proof: The outcome of n Bernoulli trials is an n-tuple (t1,t2,…,tn), 
where each is ti either S (success) or F (failure). The probability of each 
outcome of n trials consisting of k successes and k − 1 failures (in any 
order) is pkqn−k. Because there are C(n,k) n-tuples of Ss and Fs that 
contain exactly k Ss, the probability of k successes is C(n,k)pkqn−k.

 We denote by b(k:n,p) the probability of k successes in n independent 
Bernoulli trials with p the probability of success. Viewed as a function 
of k, b(k:n,p) is the binomial distribution. By Theorem 2,

b(k:n,p) = C(n,k)pkqn−k.



Random Variables
Definition: A random variable is a function from the 
sample space of an experiment to the set of real numbers. 
That is, a random variable assigns a real number to each 
possible outcome.

 A random variable is a function. It is not a variable, and it is 
not random! 

 In the late 1940s W. Feller and J.L. Doob flipped a coin to 
see whether both would use “random variable” or the more 
fitting “chance variable.” Unfortunately, Feller won and the 
term “random variable” has been used ever since.



Random Variables
Definition: The distribution of a random variable X on a sample 
space S is the set of pairs (r, p(X = r)) for all r ∊ X(S), where p(X = 
r) is the probability that X takes the value r. 

Example: Suppose that a coin is flipped three times. Let X(t) be 
the random variable that equals the number of heads that appear 
when t is the outcome. Then X(t) takes on the following values:
X(HHH) = 3, X(TTT) = 0,

X(HHT) = X(HTH) = X(THH) = 2,

X(TTH) = X(THT) = X(HTT) = 1.

Each of the eight possible outcomes has probability 1/8. So, the 
distribution of X(t) is p(X = 3) = 1/8, p(X = 2) = 3/8,
p(X = 1) = 3/8, and p(X = 0) = 1/8.



The Famous Birthday Problem
 The puzzle of finding the number of people needed in a room to ensure that the 

probability of at least two of them having the same birthday is more than ½ has a 
surprising answer,  which we now find.

Solution: We assume that all birthdays are equally likely and that there are 366 days in the year. 
First, we find the probability pn that at least two of n people have different birthdays.  

Now, imagine the people entering the room one by one.  The probability that at least two have the 
same birthday  is 1− pn .
 The probability that the birthday of the second person is different from that of the first is 

365/366.
 The probability that the birthday of the third person is different from the other two, when these 

have two different birthdays, is  364/366.
 In general, the probability that the jth person has a birthday different from the birthdays of those 

already in the room, assuming that these people all have different birthdays,                                           
is  (366 − (j − 1))/366 = (367 − j)/366.

 Hence, pn = (365/366)(364/366)∙∙∙ (367 − n)/366.
 Therefore , 1− pn = 1−(365/366)(364/366)∙∙∙ (367 − n)/366.

Checking various values for n with computation help tells us that for n = 22, 1− pn ≈ 0.457, and for n
= 23, 1− pn ≈ 0.506.  Consequently, a minimum number of 23 people are needed so that that the 
probability that at least two of them have the same birthday is greater than 1/2.



Monte Carlo Algorithms
 Algorithms that make random choices at one or more steps 

are called probabilistic algorithms.
 Monte Carlo algorithms are probabilistic algorithms used 

to answer decision problems, which are problems that 
either have “true” or “false” as their answer.  
 A Monte Carlo algorithm consists of  a sequence of tests. For 

each test the algorithm responds “true” or ‘unknown.’ 
 If the response is “true,” the algorithm terminates with the  

answer is “true.”  
 After running a specified  sequence of tests where every step 

yields “unknown”, the algorithm outputs “false.”
 The idea is that the probability of the algorithm incorrectly 

outputting “false” should be very small as long as a sufficient 
number of tests are performed. 



Probabilistic Primality Testing
 Probabilistic  primality testing (see Example 16 in text) is an example of a 

Monte Carlo algorithm, which  is used to  find large primes to generate the 
encryption keys for RSA cryptography (as discussed in Chapter 4). 
 An integer n greater than 1 can be shown to be composite (i.e., not prime) if it 

fails  a particular test  (Miller’s test),  using a random integer b with 1 < b < n as 
the base. But if n passes Miller’s test for a particular base b, it may either be 
prime or composite. The probability that a composite integer passes n Miller’s 
test is for a random b, is less that ¼. 

 So failing the test,  is the “true” response in a Monte Carlo algorithm, and 
passing the test is “unknown.”

 If the test is performed k times (choosing a random integer b each time) and 
the  number n passes Miller’s test at every iteration, then the probability that it 
is composite is less than (1/4)k.  So for a sufficiently, large k, the probability that 
n is composite even though it has passed all k iterations of Miller’s test  is small. 
For example, with 10 iterations, the probability that n is composite is less than 
1 in 1,000,000.



Section 7.3



Section Summary
 Bayes’ Theorem

 Generalized Bayes’ Theorem

 Bayesian Spam Filters

 A.I. Applications (optional, not currently included in 
the overheads)



Motivation for Bayes’ Theorem
 Bayes’ theorem allows us to use probability to answer 

questions such as the following:

 Given that someone tests positive for having a particular 
disease, what is the probability that they actually do 
have the disease?

 Given that someone tests negative for the disease, what 
is the probability, that in fact they do have the disease?

 Bayes’ theorem has applications to medicine, law, 
artificial intelligence, engineering, and many diverse 
other areas.



Bayes’ Theorem
Bayes’ Theorem: Suppose that E and F are events from a sample 
space S such that p(E)≠ 0 and p(F) ≠ 0. Then:

Example: We have two boxes. The first box contains two green 
balls and seven red balls. The second contains four green balls 
and three red balls. Bob selects one of the boxes at random. Then 
he selects a ball from that box at random.  If he has a red ball, 
what is the probability that he selected a ball from the first box.
 Let E be the event that Bob has chosen a red ball and F be the event 

that Bob has chosen the first box.
 By Bayes’ theorem the probability  that Bob has picked the first box 

is:

Thomas Bayes
(1702-1761)



Derivation of Bayes’ Theorem
 Recall the definition of the conditional probability 

p(E|F):

 From this definition, it follows that:

,

continued →



Derivation of Bayes’ Theorem
On the last slide we showed that

continued →

,

,

Solving for p(E|F) and  for p(F|E) tells us that

Equating the two formulas 
for p(E F) shows that



Derivation of Bayes’ Theorem
On the last slide we 
showed that:

Note that  

Hence, 

since  

because                                                                    
and                                                                   

By the definition of conditional probability,  



Applying Bayes’ Theorem 
Example: Suppose that one person in 100,000 has a 
particular  disease. There is a test for the disease that 
gives a positive result 99% of the time when given to 
someone with the disease. When given to someone 
without the disease, 99.5% of the time it gives a 
negative result. Find
a) the probability that a person who test positive has the 

disease.

b) the probability that a person who test negative does 
not have the disease.

 Should someone who tests positive be worried?



Applying Bayes’ Theorem 
Solution: Let D be the event that the person has the 
disease, and E be the event that this person tests 
positive. We need to compute p(D|E) from p(D), 
p(E|D), p( E | ), p(   ).

So, don’t worry too much, if your test 
for this disease comes back positive.

Can you use this formula 
to explain why the 
resulting probability is 
surprisingly small?



Applying Bayes’ Theorem 
 What if the result is negative?

 So, it is extremely unlikely you have the disease if you test 
negative.

So, the probability you 
have the disease if you 
test negative is



Generalized Bayes’ Theorem
Generalized Bayes’ Theorem: Suppose that E is an 
event from a sample space S and that F1, F2, …, Fn are 
mutually exclusive events such that

Assume that p(E) ≠ 0 for i = 1, 2, …, n. Then

Exercise 17 asks for the proof.



Bayesian Spam Filters
 How do we develop a tool for determining whether an 

email is likely to be spam?

 If we have an initial set  B of  spam messages and set G of 
non-spam messages.  We can use this information along 
with Bayes’ law to predict the probability that a new email 
message is spam.

 We look at a particular word w, and count the number of 
times that it occurs in B and in G; nB(w) and nG(w). 
 Estimated probability that  a spam message contains  w is:                 

p(w) = nB(w)/|B|   

 Estimated probability  that a message that is not spam  
contains w is:                q(w) = nG(w)/|G|

continued →



Bayesian Spam Filters
 Let S be the event that the message is spam, and E be 

the event that the message contains the word w. 

 Using Bayes’ Rule, 

Assuming that it is 
equally likely that an 
arbitrary message is 
spam and is not 
spam; i.e., p(S) = ½.

Note: If we have data on the 
frequency of spam messages, 
we can obtain a better 
estimate for p(s). 
(See Exercise 22.)

Using our 
empirical 
estimates of 
p(E | S) and
p(E |`S).

r(w) estimates the probability that the 
message is spam. We can class the message 
as spam if r(w) is above a threshold.



Bayesian Spam Filters 
Example: We find that the word “Rolex” occurs in 250 
out of 2000 spam messages and occurs in 5 out of 1000 
non-spam messages. Estimate the probability that an 
incoming message is spam. Suppose our threshold for 
rejecting the email is 0.9.

Solution: p(Rolex) = 250/2000 =.0125 and                
q(Rolex) = 5/1000 = 0.005.

We class the message as spam and 
reject the email!



Bayesian Spam Filters using Multiple Words
 Accuracy can be improved by considering more than 

one word as evidence. 

 Consider the case where E1 and E2 denote the events 
that the message contains the words w1 and w2

respectively.

 We make the simplifying assumption that the events 
are independent. And again we assume that p(S) = ½. 



Bayesian Spam Filters using Multiple Words
Example: We have 2000 spam messages and 1000 non-spam 
messages. The word “stock” occurs 400 times in the spam messages 
and 60 times in the non-spam. The word “undervalued” occurs in 200 
spam messages and 25 non-spam.  

Solution:  p(stock)  = 400/2000 = .2, q(stock) = 60/1000=.06, 

p(undervalued) = 200/2000 = .1, q(undervalued) = 25/1000 = .025

If our threshold is .9, we class the message as spam and reject it. 



Bayesian Spam Filters using Multiple Words

 In general, the more words we consider, the more 
accurate the spam filter. With the independence 
assumption if we consider k words:

We can further improve the filter by considering pairs of words 
as a single block or certain types of strings. 
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Section Summary
 Expected Value

 Linearity of Expectations

 Average-Case Computational Complexity

 Geometric Distribution

 Independent Random Variables

 Variance

 Chebyshev’s Inequality



Expected Value
Definition: The expected value (or expectation or mean) of 
the random variable X(s) on the sample space S is equal to

Example-Expected Value of a Die: Let X be the number 
that comes up when a fair die is rolled. What is the 
expected value of X?

Solution: The random variable X takes the values 1, 2, 3, 4, 
5, or 6. Each has probability 1/6. It follows that



Expected Value
Theorem 1: If X is a random variable and p(X = r) is the 
probability that X = r, so that

then

Proof: Suppose that X is a random variable with range X(S) 
and let p(X = r) be the probability that X takes the value r. 
Consequently, p(X = r) is the sum of the probabilities of the 
outcomes s such that X(s) = r. Hence,



Expected Value
Theorem 2: The expected number of successes when n
mutually independent Bernoulli trials are performed, 
where, the probability of success on each trial, p = np.

Proof: Let X be the random variable equal to the 
number of success in n trials. By Theorem 2 of section 
7.2, p(X = k) = C(n,k)pkqn−k.  Hence, 

by Theorem 1

continued →



Expected Value

from previous page

by Theorem 2 in Section 7.2

by Exercise 21 in Section 6.4

factoring np from each term

shifting index of summation with j = k − 1

by the binomial theom

because p + q = 1

We see that the expected number of successes in n mutually independent Bernoulli trials is np.    



Linearity of Expectations
The following theorem tells us that expected values are 
linear. For example, the expected value of the sum of 
random variables is the sum of their expected values. 

Theorem 3: If Xi, i = 1, 2, …,n with n a positive integer, are 
random variables on S, and if a and b are real numbers, 
then 

(i) E(X1 + X2 + …. + Xn) = E(X1 )+ E(X2) + …. + E(Xn)

(ii) E(aX + b) = aE(X) + b.

see the text for the proof



Linearity of Expectations
Expected Value in the Hatcheck Problem: A new employee started a job checking 
hats, but forgot to put the claim check numbers on the hats. So, the n customers just 
receive a random hat from those remaining. What is the expected number of hat 
returned correctly?
Solution: Let X be the random variable that equals the number of people who receive the 
correct hat. Note that  X = X1 + X2 + ∙∙∙ + Xn, 
where Xi = 1 if the ith person receives the hat and Xi = 0 otherwise. 
 Because it is equally likely that the checker returns any of the hats to the ith person, it 

follows that the probability that the ith person receives the correct hat is 1/n. 
Consequently (by Theorem 1), for all I

E(Xi) = 1 ∙p(Xi = 1) + 0 ∙p(Xi = 0) = 1 ∙ 1/n + 0 = 1/n .

 By the linearity of expectations (Theorem 3), it follows that:

E(X )= E(X1) + E(X2) +  ∙∙∙ + E(Xn) = n ∙ 1/n – 1.

Consequently, the average number of people who receive the correct hat is exactly 1. ( 
Surprisingly, this answer remains the same no matter how many people have checked 
their hats!)



Linearity of Expectations
Expected Number of Inversions in a Permutation: The ordered pair (i,j) is an inversion in a 
permutation of the first n positive integers if  i < j, but j precedes i in the permutation. 
Example: There are six inversions in the permutation of 3,5, 1, 4, 2

(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5).
Find the average number of inversions in a random permutation of the first n integers.

Solution:  Let Ii,j be the random variable on the set of all permutations of the first n positive integers 
with Ii,j = 1 if (i,j) is an inversion of the permutation and Ii,j = 0 otherwise. If X is the random variable 
equal to the number of inversions in the permutation, then

 Since it is equally likely for i to precede j in a randomly chosen permutation as it is for j to precede i, we 
have:  E(Ii,j) = 1 ∙p(Ii ,j = 1) + 0 ∙p(Ii,j = 0) = 1 ∙ 1/2 + 0 = ½, for all (i,j) .

 Because there are           pairs i and j with 1 ≤ i < j ≤ n, by the linearity of expectations (Theorem 3), we 
have:

Consequently,  it follows that there is an average of  n(n −1)/4 inversions in a random permutation of 
the first n positive integers.



Average-Case Computational 
Complexity
The average-case computational complexity
of an algorithm can be found by computing the 
expected value of a random variable.

 Let the sample space of an experiment be the set of 
possible inputs aj, j = 1, 2, …,n, and let the random variable 
X be the assignment to aj of the number of operations used 
by the algorithm when given aj as input.

 Assign a probability p(aj) to each possible input value  aj.

 The expected value of X is the average-case computational 
complexity of the algorithm.



Average-Case Complexity of Linear 
Search
What is the average-case complexity of linear search 
(described in Chapter 3) if the probability that x is in the 
list is p and it is equally likely that x is any of the n 
elements of the list? 

procedure linear search(x: integer, a1, a2, …,an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i

else location := 0
return location{location is the subscript of the term that equals 

x, or is 0 if x is not found}

continued →



Average-Case Complexity of Linear 
Search 

Solution: There are n + 1 possible types of input: one type for each of the n
numbers on the list and one additional type for the numbers not on the list.
Recall that: 
 2i + 1 comparisons are needed if x equals the ith element of the list.
 2n + 2 comparisons are used if x is not on the list. 

The probability that x equals ai is p/n and the probability that x is not in the list 
is q = 1− p. The average-case case computational complexity of the linear search 
algorithm is:

E =  3p/n + 5p/n + … + (2n + 1)p/n + (2n + 2)q
=  (p/n)( 3 + 5 + …. + (2n + 1)) + (2n + 2)q
=  (p/n)((n + 1)2 − 1) + (2n + 2)q  (Example 2 from Section 5.1)
=  p(n + 2) + (2n + 2)q.

• When x is guaranteed to be in the list, p = 1, q = 0, so that E = n + 2.
• When p is ½ and q = ½, then E = (n + 2)/2 + n + 1 = (3n + 4) /2.
• When p is ¾  and  q = ¼  then E = (n + 2)/4 + (n + 1)/2 = (5n + 8) /4.
• When x is guaranteed  not to be in the list, p = 0 and  q = 1, then E = 2n + 2.



Average-Case Complexity of 
Insertion Sort
 What is the average number of comparisons used by 

insertion sort from Chapter 3) to sort n distinct 
elements? procedure insertion sort

(a1,…,an: reals with n ≥ 2)
for j := 2 to n

i := 1
while aj > ai

i := i + 1
m := aj

for k := 0 to j − i − 1
aj-k := aj-k-1

ai := m
{Now a1,…,an is in increasing order}

• At step i for                  
i = 2, ….,n, insertion 
sort inserts the ith
element in the 
original list into the 
correct position in 
the sorted list of the 
first i -1 elements.

continued →



Average-Case Complexity of 
Insertion Sort 

Solution: Let X be the random variable equal to the 
number of comparisons used by insertion sort to sort a list 
of a1, a2, …., an distinct elements.  E(X) is the average 
number of comparisons.
 Let Xi be the random variable equal to the number of comparisons 

used to insert ai into the proper position after the first i −1 elements 
a1, a2, …., ai-1 have been sorted. 

 Since X = X2 + X3 + ∙∙∙ +  Xn,
E(X) = E(X2 + X3 + ∙∙∙ + Xn) = E(X2) + E(X3) + ∙∙∙ + E(Xn).

 To find E(Xi) for i = 2,3,…,n, let pj(k) be the probability that the 
largest of the first j elements in the list occurs at the kth position, 
that is, max(a1, a2, …., aj ) = ak, where 1 ≤ k ≤ j.

 Assume  uniform distribution;  pj(k) = 1/j .
 Then Xi(k) = k. 

continued →



Average-Case Complexity of 
Insertion Sort 
 Since ai could be inserted into any of the first i

positions

 It follows that

 Hence, the average-case complexity is         .



The Geometric Distribution
Definition 2:  A random variable X has geometric 
distribution with parameter p if p(X = k) = (1 − p)k-1p for k
= 1,2,3,…, where p is a real number with 0 ≤ p ≤ 1.
Theorem 4: If the random variable X has the geometric 
distribution with parameter p, then E(X) = 1/p.
Example:  Suppose the probability that a coin comes up 
tails is p. What is the expected number of flips until this 
coin comes up tails?
 The sample space is {T, HT, HHT, HHHT, HHHHT, …}.
 Let X be the random variable equal to the number of flips in 

an element of the sample space; X(T) = 1, X(HT) = 2,          
X(HHT) = 3, etc. 

 By Theorem 4, E(X) = 1/p.
see text for full details 



Independent Random Variables
Definition 3: The random variables X and Y on a 
sample space S are independent if

p(X = r1 and Y = r2) = p(X = r1)∙ p(Y = r2).

Theorem 5:  If X and Y are independent variables on a 
sample space S, then E(XY) = E(X)E(Y).

see text for the proof 



Variance
Deviation: The deviation of X at s ∊ S is X(s) − E(X), the difference between the 

value of X and the mean of X.

Definition 4: Let X be a random variable on the sample space S. The variance
of X, denoted by V(X) is 

That is V(X) is the weighted average of the square of the deviation of X. The 
standard deviation of X, denoted by σ(X) is defined to be             

Theorem 6: If X is a random variable on a sample space S, then                           
V(X) = E(X2) − E(X)2.

Corollary 1: If X is a random variable on a sample space S and E(X) = μ , then  
V(X) = E((X −μ)2).  

see text for the proof  

see text for the proof. 



Variance
Example: What is the variance of the random variable X, where X(t) = 1 if a 
Bernoulli trial is a success and X(t) = 0 if it is a failure, where p is the 
probability of success and q is the probability of failure?

Solution: Because X takes only the values 0 and 1, it follows that X2(t) = X(t). 
Hence, 

Variance of the Value of a Die: What is the variance of a random variable X, 
where X is the number that comes up when a fair die is rolled?

Solution: We have V(X) = E(X2) − E(X)2 .  In an earlier example, we saw that 
E(X) = 7/2. Note that

E(X2) = 1/6(12 + 22 + 32 +42 + 52 + 62) = 91/6.

We conclude that

V(X) = E(X2) − E(X)2 = p − p2 = p(1 − p) = pq.



Variance
Bienaymé‘s Formula:  If X and Y are two independent random variables on a sample 
space S, then V(X + Y) = V(X) + V(Y). Furthermore, if Xi, i = 1,2, …,n, with n a positive 
integer, are pairwise independent random variables on S, then

V(X1 + X2 + ∙∙∙ + Xn) = V(X1) + V(X2) + ∙∙∙ + V(Xn).

Example: Find the variance of the number of successes when n independent Bernoulli 
trials are performed, where on each trial, p is the probability of success and q is the 
probability of failure. 

Solution: Let Xi be the random variable with Xi ((t1, t2, …., tn)) = 1 if trial ti is a success 
and Xi ((t1, t2, …., tn)) = 0 if it is a failure. Let    X = X2 + X3 + …. Xn.  Then X counts the 
number of successes in the n trials.  
 By Bienaymé ‘s Formula, it follows that  V(X)= V(X1) + V(X2) + ∙∙∙ + V(Xn). 
 By the previous example ,V(Xi) = pq for   i = 1,2, …,n. 

Hence, V(X) = npq.

Irenée-Jules Bienaymé
(1796-1878)

see text for the proof 



Chebyshev’s Inequality
Chebyschev’s Inequality:  Let X be a  random variable on a sample space S
with probability function p. If r is a positive real number, then

p(|X(s) − E(X)| ≥ r ) ≤ V(X)/r2.

Example: Suppose that X is a random variable that counts the number of tails 
when a fair coin is tossed n times. Note that X is the number of successes when 
n independent Bernoulli trials, each with probability of success ½ are done. 
Hence, (by Theorem 2) E(X) = n/2 and (by Example 18) V(X) = n/4.

By Chebyschev’s inequality with r = √n, 

p(|X(s) − n/2 | ≥ √n ) ≤ (n/4 )(√n )2 = ¼.

This means that the probability that the number of tails that come up on n
tosses deviates from the mean , n/2, by more than √n is no larger than ¼.

Pafnuty Lvovich Chebyshev
(1821-1894)

see text for the proof 


