CSci 243 Graph Practice

1. Show that a simple graph with $n \ge 2$ vertices must have two vertices of the same degree.

Case 1: At least one node has n-1 edges. If a node has n-1 edges, then it is connected to every other vertex, therefore no vertices in the graph have degree 0.

Case 2: No node has n - 1 edges.

In both cases, there are n-1 possible degrees for each node (1, 2, ..., n-1 or 0, 1, ..., n-2), and n nodes. Thus by the Pigeon Hold Principle, at least 2 nodes have the same degree.

2. For the graph below, give its adjacency list, adjacency matrix, and incidence matrix.

Adjacency List		Adjacency Matrix						Incidence Matrix						
vertex	adjacent vertices		v_1	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄	<i>v</i> ₅		e_1	e_2	e_3	e_4	e_5	e_6
<i>v</i> ₁	v_2, v_4	v_1	$\begin{pmatrix} 0\\1 \end{pmatrix}$	1	0	1	$\begin{pmatrix} 0\\1 \end{pmatrix}$	v_1	$\begin{pmatrix} 1\\1 \end{pmatrix}$	1	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
v_2	v_1, v_4, v_5	V_2 V_2		0	0	1	1	V2 V2		0	1	1	1	1
<i>v</i> ₃	<i>v</i> ₄ , <i>v</i> ₅	v 3 V4	1	1	1	0	0	v ₄	0	1	0	1	0	1
V4 V5	v_1, v_2, v_3	<i>v</i> ₅	\setminus_0	1	1	0	₀ /	v5	$\setminus 0$	0	1	0	1	0/

3. Can someone cross all six bridges shown in the map exactly once and return to the starting point? Why?

Yes, let the vertices be *A* (land to the north), *B* (land to the west), *C* (land to the east), and *D* (land to the south). Then deg(A) = 2, deg(B) = 4, deg(C) = 2 and deg(D) = 4, and since every degree is even there exists a Euler cycle.

4. Is the graph below undirected or directed? If it's undirected, is it connected? If it's directed, is it strongly connected?

0	1	1	0	0	0
0	0	1	0	0	0
0	0	0	0	0	1
1	1	1	0	0	1
0	0	0	1	0	0
LO	0	0	0	1	0-

Undirected - asymmetric adjacency matrix. It's strongly connected.