CSci 243 Graph Practice

1. Show that a simple graph with $n \geq 2$ vertices must have two vertices of the same degree.

Case 1: At least one node has $n-1$ edges. If a node has $n-1$ edges, then it is connected to every other vertex, therefore no vertices in the graph have degree 0 .
Case 2: No node has $n-1$ edges.
In both cases, there are $n-1$ possible degrees for each node $(1,2, \ldots n-1$ or $0,1, \ldots n-2)$, and n nodes. Thus by the Pigeon Hold Principle, at least 2 nodes have the same degree.
2. For the graph below, give its adjacency list, adjacency matrix, and incidence matrix.

Adjacency List	
vertex	adjacent vertices
v_{1}	v_{2}, v_{4}
v_{2}	v_{1}, v_{4}, v_{5}
v_{3}	v_{4}, v_{5}
v_{4}	v_{1}, v_{2}, v_{3}
v_{5}	v_{2}, v_{3}

Adjacency Matrix				
v_{1}				
v_{2}				
v_{1}				
v_{2}				
v_{3}				
v_{3}				
v_{4}				
v_{5}				

1 \& 0 \& 0 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 1

1 \& 1 \& 1 \& 0 \& 0

0 \& 1 \& 1 \& 0 \& 0\end{array}\right)\)

Incidence Matrix

v_{1}
v_{1}
v_{2}
v_{3}
v_{3}
v_{4}
$v_{4}$$\left(\begin{array}{ccccc}1 & 1 & 0 & e_{3} & e_{4} \\ e_{5} & e_{0} & e_{6} \\ v_{5} & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1\end{array}\right)$
3. Can someone cross all six bridges shown in the map exactly once and return to the starting point? Why?

Yes, let the vertices be A (land to the north), B (land to the west), C (land to the east), and D (land to the south). Then $\operatorname{deg}(A)=2, \operatorname{deg}(B)=4, \operatorname{deg}(C)=2$ and $\operatorname{deg}(D)=4$, and since every degree is even there exists a Euler cycle.
4. Is the graph below undirected or directed? If it's undirected, is it connected? If it's directed, is it strongly connected?

$$
\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Undirected - asymmetric adjacency matrix. It's strongly connected.

