CSci 243 Homework 6

My name

1. (10 points)

- (a) (4 points) Find the formula for $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n \cdot (n+1)}$ using telescoping.
- (b) (6 points) Prove the formula you found is true by induction.
- 2. (10 points) Prove by induction that for $n \ge 8$, $n^2 2^n \le n!$.
- 3. (10 points) Prove that 21 divides $4^{n+1} + 5^{2n-1}$ when *n* is a positive integer using induction.
- 4. (10 points) Use strong induction to prove that any positive integer *n* can be written as a sum of distinct powers of two, that is, as a sum of subset of integers $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, and so on. [Hint: consider two cases.]
- 5. (5 points) Find the flaw with the following proof that $a^n = 1$ for all nonnegative integers *n* and all nonzero real numbers *a*.

Basis step: $a^0 = 1$ is true.

Inductive step: Assume that $a^j = 1$ for all nonnegative integer $j \le k$. Consider the case of k + 1.

$$a^{k+1} = \frac{a^k \cdot a^k}{a^{k-1}} = \frac{1 \cdot 1}{1} = 1.$$

6. (5 points) Find the flaw with the following proof that every postage of 3 cents or more can be formed using just 3-cent and 4-cent stamps.

Basis step: We can form postage of 3 cents with a single 3-cent stamp and we can form postage of 4 cents using a single 4-cent stamp.

Inductive step: Assume that we can form postage of *j* cents for all integers *j* with $3 \le j \le k$ using just 3-cent and 4-cent stamps. We can then form postage of k + 1 cents by replacing one 3-cent stamp with a 4-cent stamp or by replacing two 4-cent stamps with three 3-cent stamps.