CSci 243 Homework 6

My name

1. (10 points)
(a) (4 points) Find the formula for $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n \cdot(n+1)}$ using telescoping.
(b) (6 points) Prove the formula you found is true by induction.
2. (10 points) Prove by induction that for $n \geq 8, n^{2} 2^{n} \leq n!$.
3. (10 points) Prove that 21 divides $4^{n+1}+5^{2 n-1}$ when n is a positive integer using induction.
4. (10 points) Use strong induction to prove that any positive integer n can be written as a sum of distinct powers of two, that is, as a sum of subset of integers $2^{0}=1,2^{1}=2,2^{2}=4$, and so on. [Hint: consider two cases.]
5. (5 points) Find the flaw with the following proof that $a^{n}=1$ for all nonnegative integers n and all nonzero real numbers a.
Basis step: $a^{0}=1$ is true.
Inductive step: Assume that $a^{j}=1$ for all nonnegative integer $j \leq k$. Consider the case of $k+1$.

$$
a^{k+1}=\frac{a^{k} \cdot a^{k}}{a^{k-1}}=\frac{1 \cdot 1}{1}=1 .
$$

6. (5 points) Find the flaw with the following proof that every postage of 3 cents or more can be formed using just 3-cent and 4-cent stamps.
Basis step: We can form postage of 3 cents with a single 3-cent stamp and we can form postage of 4 cents using a single 4 -cent stamp.
Inductive step: Assume that we can form postage of j cents for all integers j with $3 \leq j \leq k$ using just 3 -cent and 4 -cent stamps. We can then form postage of $k+1$ cents by replacing one 3 -cent stamp with a 4 -cent stamp or by replacing two 4 -cent stamps with three 3 -cent stamps.
