Simplex Search Behavior in Nonlinear
Optimization

A thesis submitted in partial fulfillment of the requirements for a

Bachelor of Science with Honors in Computer Science
from the College of William & Mary in Virginia,

by
Adam P. Gurson

Accepted for

Thesis Advisor:

Virginia J. Torczon

Weizhen Mao

Michael W. Trosset

Abstract

It is often a desire in many fields such as mathematics, physics, and engineering to
solve bound constrained minimization problems. Non-derivative based direct search
methods each use a specific method of function sampling in an attempt to home in
on the minimizers of a given function. Here we focus on three simplex based direct
search methods: the original simplex search provided by the description of Spendley,
Hext and Himsworth; a variation on its theme provided by Nelder and Mead; and a
sequential version of Torczon’s multidirectional search. It is a common assumption
that these searches are easily implemented and used. This research addresses this
claim and suggests that these searches are more intricate and should be implemented
and used in a careful fashion.

We first provide a formal description of each algorithm using a common notation,
providing a means of direct comparison between algorithms. We then discuss the
importance of resolving seemingly small ambiguities in these algorithms before using
them for optimization. For this, we provide an anomaly specific to the Nelder-Mead
algorithm in which the search fails to converge to a constrained stationary point. We
conclude with some preliminary results of execution of these algorithms on a specific
set of objective functions.

Acknowledgments

This research would not have been possible without the many generous contributions
I received from various organizations' and other special individuals. First, I have to
greatly acknowledge my advisory panel: Dr. Virginia Torczon, Dr. Weizhen Mao, and
Dr. Michael Trosset for all of their guidance. I would like to thank Dr. Trosset for
providing me with a clear focus for my research. He helped a great deal to give my
thesis some well-defined direction. I would also like to thank Dr. Mao, especially for
her thoughtful suggestions and all of the time she dedicated to me during her year on
sabbatical. I would like to acknowledge all of my friends who kept me focused and
never let me drop the ball. Chris Siefert, I can never express how much I appreciate all
of your time and effort in guiding me through more KTEX, shell scripting, Splus, and
plot generation than I ever thought possible. Anne Shepard, thank you for agreeing
to proof read my thesis on numerous occasions. The oatmeal-raisin cookies were
wonderful, and T am glad you liked the pictures. Liz Dolan, thank you for providing
me with the inspiration to attempt research of this kind. I need a special thank you
to Karen Phillips and Alex Burke, two very special people whose company was often
superseded by my work. Thank you for understanding. Finally, I have to thank Dr.
Torczon for being not only an amazing thesis advisor, but also an amazing friend. Dr.
Torczon, I have enjoyed this year more than I can express in words. Your support
has carried me from beginning to end, and I never would have accomplished so much
without you.

! This research was supported by NSF Grant CCR-9734044.

Contents

1 Introduction 10
2 The Search Algorithms 13
2.1 The Simplex Search of Spendley, Hext and Himsworth 13
2.1.1 General Descriptiono 14
2.1.2 Formal Description o000 15
2.1.3 Ambiguities oL L 16
2.2 The Simplex Search of Nelder and Mead 23
2.2.1 General Description Lo 23
2.2.2 Formal Description 25
2.2.3 Subtleties 26
2.3 Sequential Multi-Directional Search 26
2.3.1 General Description 26
2.3.2 Formal Description 28
2.3.3 From Multi-Processor to Single-Processor 29

3 The Importance of Resolving Ambiguities in the Nelder-Mead Search
Algorithm 31
3.1 The Discovery of the Problem 31
3.2 TheCause e 33
3.3 The Solution 34
3.4 Discussion e e e 37
4 Testing and Results 41
4.1 The Testing Setup 41
4.1.1 The Objective Functions 41
4.1.2 Description of the Tests 43
4.1.3 The Function Minima Density Plots. 44
4.2 General Comparison of the Search Methods 46
4.3 Visual Results of Nelder-Mead Improvement 51
5 Conclusion 53
A The C++ Code 55

A.1 C++ Code for the Simplex Search of Spendley, Hext, and Himsworth 57

A11 SHH-Header File 57

A2

A3

A4

A.1.2 SHH - ExploratoryMoves() 62

A.1.3 SHH - Constructors and Destructor 62
A.1.4 SHH - Simplex Initialization Routines 64
A.1.5 SHH - Other Unique Functions 66
C++ Code for the Simplex Search of Nelder and Mead 70
A21 NM-HeaderFile 70
A.22 NM - ExploratoryMoves() 75
A.2.3 NM - Constructors and Destructor 77
A.2.4 NM - Simplex Initialization Routines 79
A.2.5 NM - Other Unique Functions 81
C++ Code for the Sequential Multi-Directional Search 86
A.3.1 SMDS-Header File 86
A.3.2 SMDS - ExploratoryMoves() 91
A.3.3 SMDS - Constructors and Destructor 92
A.3.4 SMDS - Simplex Initialization Routines 94
A.3.5 SMDS - Other Unique Functions 96
Functions Common to All Three Searches 101

List of Figures

2.1
2.2

2.3

24

2.5

2.6

2.7

2.8

A labeling example for IR® such that f(zo) < f(z1) < f(za).
In this reflection step, vertex zo has the highest function value (left),
so we reflect it through Z, the centroid of zy, and z;, to a new vertex
x, (center). The result is a new nondegenerate simplex consisting of
xo,x1 and x, (right).o oo oo
If the true minimizer of the function, z,,;,, lies with the current sim-
plex (left), shrinking the current simplex around z, (right) results in a
smaller simplex, which refines the search.
A sequence of reflections {z},z% =7, 7,22}, each of which fails to re-
place the best vertex z, which brings the search back to the simplex
from which this sequence started.
a) The initial simplex vertices and their respective ages, initialized to
1. b) If the reflection point is not a new minimum (i.e. f(z,) > f(zo)),
simply increment the ages of the remaining simplex vertices. c) If the
reflection point is a new minimum (i.e. f(z,) < f(x¢)), all simplex
vertices begin the next iteration with their ages set to 1.
a) In this example, reflecting % to z* makes 2% the new maximum. b)
On the next iteration, reflecting #5" through yields the original
simplex.
In an evolution from left to right, this example shows how oscillation
without correction could permit the simplex to contract to a point that
is not the true minimizer. oL
This is an example of label swapping to prevent simplex oscillation.
This will resolve the problem encountered in Figure 2.7. a) On the
kth iteration, the reflection step is taken to yield z*. b) The (k + 1)th
iteration begins by labeling the points such that f(zf ™) < f(zf™) <
f(z5™1). ¢) Because 5" = 2 we swap the labels on 2" and 25",
d) Having made this change, the reflection step in the (k+1)th iteration
yields a new point 25! # 2% and oscillation is no longer an issue. The
simplex will continue to move as in Figure 2.4, allowing it to search in

15

17

18

19

20

21

as many directions as possible, preventing collapse to a false minimizer. 22

2.9

2.10

2.11

2.12

2.13

3.1

3.2

3.3

4.1

4.2
4.3

4.4
4.5

4.6

a) The reflection step of the Nelder-Mead algorithm is similar to that of
Spendley, Hext and Himsworth. b) The ezpansion step further reflects
xo through Z to yield the expansion point, z.. c) If
perform an from z toward zo to find »,.. d) If

, perform an from Z toward z, to
find 7. 24
Begin by labeling the basepoint xy and arbitrarily labeling the other
points. Calculate only f(xo).« . . o L 27
A reflection of the primary simplex through z, yields the reflection
simplex. 27
If all points in both simplices have been evaluated without improve-
ment, shrink the primary simplex around zy. 28
a) f(aF) < f(zf), therefore ¥ will be the new basepoint for the next
iteration (i.e. z¥ = zf{*'). b) We begin the (k + 1)th iteration by
evaluating f(zk+!) first because the step from zf (which is equivalent
to x’”l) to :z:k+1 yielded improvement, so we continue in the same
direction. L 30

Our 2-dimensional objective function. For a given point (x,y), = runs
down along the lower left axis and y runs up along the lower right axis. 32
This figure shows one iteration of the algorithm which leads to a col-
lapse of the simplex. a) The simplex begins with only one feasible
point, zg. b) The reflection step is taken, however it is such that z, is
also infeasible. ¢) Having a failed reflection, the algorithm makes an
outside contraction to find z,., which is also infeasible, yet accepted,
which terminates the iteration. This process is continued to yield a se-
ries of infeasible outside contraction vertices, which is shown in Figure

0 35
The collapse of the simplex {1., 2., 3., 1., 5., 6.} toward the line defined
by o and x;. Note how as the process continues, x, gets closer to the
centroid of zgpand 1. 36

Two krigifier objective functions with the similar input parameters.
Above: A function with a constant trend. Below: A function with a
quadratic trend.o 42
Three examples of density plots. 45
The lower two density plots show the advantage of the (n + 1) shrink-
ing criterion over the 2(n + 1) criterion for the Spendley, Hext and
Himsworth algorithm., 46
An example similar to Figure 4.3, but for a different objective function. 47
These density plots representing each algorithm suggest that the pat-
tern searches show more satisfactory results than the simplex searches. 48
Density plots representing each algorithm on a 3-dimensional function
given a budget of 20.o 49

4.7 Density plot representing the same objective function as Figure 4.6,

but with a budget of 50. o oo 20
4.8 These plots show the clear advantage of the Nelder-Mead implementa-
tion based on Lagarias, Reeds, Wright, and Wright. o1

4.9 Another example of the clear advantage of the Nelder-Mead imple-
mentation based on Lagarias, Reeds, Wright, and Wright, over that
described by Avriel. 52

List of Tables

3.1 'The twelve unusually high putative minimizers returned by the Nelder

Mead search.o 33
3.2 The starting and finishing simplices and the final vertex function values

for the twelve unique test cases., 39
3.3 The twelve minimizers returned by the Lagarias, Reeds, Wright, and

Wright algorithm. o000 40

Chapter 1

Introduction

It is often a desire in many fields such as mathematics, physics, and engineering to
solve the bound constrained minimization problem:

minimize f(z) (1.1)
subject to [<z <u '

where f:IR* — IR, [, z,u, € IR", and [< u. It is also possible to allow for the possibility
of certain variables to be unconstrained by setting [,u = +oo. For instance, during
the development of a new type of machinery, there can be many variables, such as
angles, rotational speeds, and temperature which can be combined to create a function
f representing the tendency for the given machinery to shake in an unstable fashion.
In an effort to minimize this shaking tendency, the designers will attempt to look for
a combination of those variables which minimize f as much as possible.

When dealing with these types of problems, the most likely first inclination is
to attempt minimization via calculus. However, it is often the case in the physical
world that the functions represented by f are quite complicated, with many variables.
A simple function evaluation at one point is often an expensive process. With this
being the case, derivatives are most likely difficult, if not impossible, to calculate in
a form suitable for calculus. It may therefore be preferable to use one of a series of
non-derivative-based search methods.

These non-derivative-based search methods each use a specific method of function
sampling in an attempt to hone in on the minimizers of a given function. For a
physical representation of the task at hand, consider the following two dimensional
analogy due to J. E. Dennis [13]. A person is placed in a boat on a lake and given
only a very long string with a weight tied to the end of it. The person cannot see the
bottom of the lake, and there are no currents in the water. The boat is free to move
about the surface of the lake. Using only this equipment, the person must attempt
to find the point on the surface of the lake at which the lake is deepest. This is to be
done with a series of depth samples made by dropping the string into the lake.

There are many ways in which this person can move the boat around. Each of
these separate methods defines a specific non-derivative-based search. Many of these
searches are heuristic based methods whose descriptions were first published in the
1960’s. A more recent need to solve these types of problems using derivative-free

10

methods has brought about renewed interest in the subject. While there may be
analysis available for individual search algorithms, there has been little in the way of
direct comparison of these algorithms, the theory behind them, and their individual
behavior and success for a given set of problems.

In this research, we focus on a specific subset of the direct search methods, which
we will refer to as simplex-based methods. Our three chosen searches are the original
simplex-based search described by Spendley, Hext and Himsworth [17]; a variation
on its theme provided by Nelder and Mead [8]; and a sequential version of Torczon’s
Multi Directional search [18]. This research is complementary to that of Dolan [4],
who focused primarily on pattern search methods, another subset of direct search
methods. We have chosen to examine the simplex methods here because at least one
of them [8] is widely used, yet their behavior is still not well understood.

We would like to use this paper as a resource for the clarification, implementa-
tion and documentation of these simplex algorithms. Because much of the literature
leaves these methods open for interpretation, we start by resolving the ambiguities
in these algorithms to produce clearly defined search techniques. This will allow for
implementation of these algorithms into C++ software that permits easy general use
and availability. Also, we will directly compare and contrast the heuristics underlying
the simplex search methods as well as their general performance statistics.

While the simplex search algorithms are quite popular, we are not aware of a single
location in which computer implementations can be obtained for all of them. There-
fore, one of our primary goals is to implement three of the simplex-based searches
using C++ classes. With these and the work of Dolan, we can then create a software
repository suitable for their distribution. Our complete implementation can be found
in Appendix A.

For this to be achieved, we must first modernize and disambiguate the Spendley,
Hext and Himsworth description, which was first introduced in 1962 and is not en-
tirely suitable for numerical optimization techniques. Also, thought must be given to
determine a good and efficient way to transform Torczon’s Multi Directional Search,
an algorithm originally intended solely for use on parallel processor machines, into
a sequential search algorithm suitable for single processor machines. Our discussion
can be found in Chapter 2.

Once this has been achieved, we will analyze and compare the behavior of the
three simplex-based algorithms for problems of the form given in (1.1). As was
mentioned above, evaluating a given objective function f at one point can often be
a rather expensive and time-consuming process. It is therefore desirable to find a
search algorithm which not only achieves sufficient resolution on the location of the
minimizer, but also locates the minimizer in as few function calls as possible. We will
therefore focus primarily on the algorithms’ overall efficiency and their success near
constraints of a bounded objective function f. By efficiency, we mean the ability of
the algorithms to quickly locate the region of a true function minimizer. During the
course of our testing, a unique anomaly associated with the Nelder-Mead algorithm
was discovered. This anomaly is illustrated and is discussed in Chapter 3. A general
discussion of the results from our testing can be found in Chapter 4.

Thus our goal is to evaluate and better understand the behavior of the simplex-

11

based algorithms and make it easier for others to experiment with each of these
alternatives to discover which is most effective in practice.

12

Chapter 2

The Search Algorithms

The algorithms used for this research all come from a class of nonlinear optimization
techniques known as simplex searches. Each of the algorithms uses a nondegenerate
simplex as its design for function sampling. By a nondegenerate simplex, we mean
a set of n + 1 vertices in IR" that has the property that the set of simplex edges
adjacent to any given vertex spans IR*. A simplex is a line in IR, a triangle in IR, a
tetrahedron in IR?, and so on.

The three simplex search algorithms addressed herein are those of Spendley, Hext
and Himsworth [17]; Nelder and Mead [8]; and a sequential version of Torczon’s multi-
directional search [18]. While each has its own specific rules for simplex manipulation,
they all roughly follow the same basic heuristic. Each begins with a nondegenerate
simplex in IR". The function is then evaluated at the vertices of the simplex. As the
algorithms proceed, they continually label a point 2y whose function value f(zg) is
better than any of the other vertices evaluated thus far. For each iteration of the
algorithm, they attempt to replace simplex vertices that yield high function values
with new vertices whose new function values are lower than f(zo).

After each iteration, the vertices that replaced those in the starting simplex leave
us with a new simplex. If we label a given iteration with the letter k, and let % be
the best point currently found by iteration k£, we can state the following: It is the
goal of these algorithms to yield a sequence {zk} such that

flag™) < f(x5)- (2.1)

In other words, once we have a given xy, we do not replace it until we find another
point whose function value is lower than f(zo).

The goal of all three algorithms is to move the simplex, by replacing vertices, into
the neighborhood of a minimizer.

2.1 The Simplex Search of Spendley, Hext and
Himsworth

To the best of our knowledge, the simplex search method of Spendley, Hext and
Himsworth is the original nonlinear simplex search. Aside from being the earliest

13

of the three search algorithms considered here, it has a minimal number of rules for
simplex manipulations between iterations, which make it a good algorithm to describe
first.

2.1.1 General Description

In this section we will outline the algorithm as originally stated. It is important to
note that the original specification was concerned with evolutionary operation, not
numerical optimization. It is therefore incomplete by modern standards for use as
an optimization method; there are ambiguities, which we will address in more detail
in section 2.1.3. While Spendley, Hext, and Himsworth noted these ambiguities in
their original paper [17] and hinted at resolutions similar to those we suggest in
2.1.3, we present solutions that are designed to be more rigorous for the purposes of
optimization.

First, begin with a nondegenerate simplex of n + 1 vertices for IR". Each new
iteration of the algorithm begins by labeling the vertices of the simplex

g, T1, ..., Ty (2.2)

such that
flzo) < f(z1) < oo < fmy). (2.3)

See Figure 2.1.

T2
[

X

.’,Eo\ ¥al

Figure 2.1: A labeling example for IR® such that f(zo) < f(z1) < f(my).

We now know that x,, has the highest function value f(z,) of all simplex vertices.
It is therefore desirable to replace x, with a new point whose function value is lower
than f(x,). This is done by reflecting x, through the centroid of the remaining
n vertices, effectively flipping the simplex away from the area of highest function
value. This reflection step always has the beneficial result of providing yet another
nondegenerate simplex, consisting of n of the original vertices and x,,’s reflection point
(Fig. 2.2). This step of the algorithm conveys the underlying assumption that flipping
the simplex away from its highest function value will most likely flip the simplex along
the gradient of the function. If we flip the simplex along the gradient, we are likely
to uncover new points whose function values are lower than f(z,) and even possibly
lower than f(xz).

14

T2 T2

T T Zo x1
Zo Zo

o Ly Ly

Figure 2.2: In this reflection step, vertex xz, has the highest function value (left), so
we reflect it through z, the centroid of z¢ and x1, to a new vertex x, (center). The
result is a new nondegenerate simplex consisting of xg, z; and z, (right).

The centroid z of all vertices ezxcluding x,, is calculated using the standard formula:

|
—

n

Kl
Il
S|+
i

The final step is the actual reflection of z, through ¥ to obtain a new point z,.
This is simply
Tp = 20 — Ty (2.5)

From here, x, replaces x, in the simplex, and a new iteration is begun. As the
algorithm cycles, the function values of the simplex vertices should decrease overall
as each consecutive simplex flips away from areas of high function values. It is the
hope, although not a guarantee, that this will eventually flip the simplex toward a
basin in the function, thereby locating a valid local minimizer.

2.1.2 Formal Description

This section contains our formal description of the Spendley, Hext and Himsworth
algorithm. Please note that our version introduces some notation and terminology
which has not yet been discussed. These have been included to help resolve certain
ambiguities and are discussed in greater detail in section 2.1.3. These include the
notion of point age, shrinking criteria, unnecessary simplex oscillation, and criteria
for terminating a given execution of the algorithm. The age of a simplex vertex z
is designated by the notation A(z), and we will again be using the notation z¥ to
designate a specific instance of a vertex z; for a given iteration k£, where £ > 0, and
i€{0,...,n}.

0. Initialize. Start with a nondegenerate simplex for IR" and calculate the func-
tion values at all of the vertices. Then at each iteration k£, k > O:

1. Order. Order the vertices z& 2% ... 2% | x¥ such that
fla) < f@h) <. < flahy) < flab). (2.6)

If £ > 0 and zF = 2*~! swap the labels of x* and 2% | to prevent simplex oscillation
(described in section 2.1.3).

15

2. Check Ages for Shrinking Criterion. If the current best simplex vertex
zk has an age A(zf) such that

AzE) >n+1, (2.7)

then shrink the simplex around zf by replacing z¥ with
1

Replace ¥ with 2%, for 7 = 1, ..., n. Reset the ages so that A(z¥) = 1foralli =0, ..., n.
Set k = k + 1 and return to Step 1.
3. Reflect. If the maximum age has not been exceeded (i.e., A(zf) <n+1), find

the centroid
Z z;, (2.9)
and reflect zF through Z* to obtain the vertex

ok =1* + (28 — 2F). (2.10)

Replace zF with zF.
4. Update Ages. The ages for all simplex vertices are then as follows: First,
since ¥ has been replaced by z¥,

A(zF) = 1. (2.11)
Next, if f(zF) > f(xf) (i.e., we do not have a replacement for zf), then

A@@¥)y =AM +1,i=0,...n - 1; (2.12)

2

otherwise, f(z%) < f(zk) (i.e., we do have a replacement for z¥), so
A =1,4i=0,..,n—1. (2.13)

5. Check Termination. Terminate if any of the possible stopping criteria in
force are satisfied. Otherwise, set £k = k£ + 1 and return to Step 1.

Our complete C++ implementation of this algorithm is available in Appendix A.
The heart of the algorithm explained above can be found in the ExploratoryMoves()
function, located in section A.1.2. Also, there are some aspects of the algorithm, such
as the notion of point age, unnecessary oscillation, and algorithm termination, that
were not addressed in section 2.1.1. These will be addressed fully in the next section.

2.1.3 Ambiguities

The general algorithm of section 2.1.1 has some ambiguities which were resolved
by methods alluded to in the formal description in section 2.1.2. As mentioned
above, Spendley, Hext and Himsworth were aware of these ambiguities and hinted at
resolutions. We have expanded upon their initial suggestions to provide the solutions
addressed below.

16

Shrinking and the Concept of Point Age

While the algorithm as described in section 2.1.1 is sufficient for finding the general
vicinity of a function minimizer, as stated it does not do well when it comes to
narrowing in on the exact location of the minimizer. For example, consider a two-
dimensional example for an iteration & in which a true function minimizer, x,,;, lies
somewhere inside the triangle formed by the simplex (Fig 2.3 left). If the size of
the simplex is not changed for further iterations, at best, the algorithm could only
approximate the location of x,,;, with its current value of z&. In this instance, to
better refine the search, the algorithm should halve each side of the simplex around
7o in the following manner: Each simplex vertex 2z should be replaced with a new

point ¥ where
1 :
okt =gk 4 5(36'3 —2f), i=0,..,n. (2.14)
See Figure 2.3 (right).
i))
Ty
o Lmin o Tmin
I . T
Zo Ty = X 1

Figure 2.3: If the true minimizer of the function, x,,;,, lies with the current simplex
(left), shrinking the current simplex around z (right) results in a smaller simplex,
which refines the search.

This concept of shrinking for refinement purposes is quite common and is used
in most of the non-derivative-based optimization methods. The real question is how
to determine when the simplex actually is in the area of a minimizer and should
therefore shrink.

To answer the question we return to the two-dimensional example given above
(Figure 2.3 left). If the algorithm were to be carried out further without allowing the
simplex to shrink, the simplex would begin to revolve around zy. After six consecutive
flips (not allowing the simplex to oscillate between two consecutive simplices), it would
be back where it started (Fig. 2.4) Clearly, this is now a case for shrinking.

It might be tempting at this point to assume that a solution would be to keep
track of the simplices and shrink whenever the current simplex equals a simplex that
was previously encountered. This is not plausible for two reasons. First, while there
are only six simplices in this example, going to higher dimensions would quickly in-
crease this number. From a mere performance standpoint, a coded implementation of
this algorithm would require unnecessarily large amounts of memory to store enough
simplices. Second, even if memory size is not a consideration, we run into another
problem in cases where n > 2: although in IR? all possible simplices for this algorithm
lie on a well-defined lattice and therefore can loop back on themselves, this is not
true in higher dimensions. We therefore need to find another shrinking criterion.

17

Zo

2 1
X, S Ly
+Xo / 420 .
2 1 2 1 2 1
z, z, z, z, z, LT,

Figure 2.4: A sequence of reflections {z},z? 1+’ = 22}, each of which fails to replace
the best vertex x, which brings the search back to the simplex from which this

sequence started.

Looking again at the example, we note that another sign of a need for shrinking
is that one vertex, more specifically z(, remains in the simplex for a significantly long
time. This is a general feature of simplex searches: the simplex should not reflect the
vertex labeled zy, even after exhausting all possible search directions. Therefore, if
we can spot a simplex vertex that has not been replaced for a while, we can define
an absolute shrinking criterion. This requirement naturally introduces the need for
point age.

The rough definition of point age is how many times a given point has been a
vertex of any simplex thus far. The rules for determining age are straightforward.
Before the first iteration, all simplex vertices have age 1. During each iteration, z,
is replaced with a new point, whose age is set to 1. All other points have their age
incremented by 1. If the new point has a function value less than xy (i.e. it is the
new best point), then reset the age of all simplex vertices to 1 (This has the value of
waiting for the simplex to establish a true “orbit” around a minimizer. If new points
with smaller function values are still being found, the simplex is probably not yet
near a function minimizer). Finally, after shrinking a simplex, reset the age of all
simplex vertices to 1.

For example, consider a simplex in IR? with vertices zg, 21, 2 such that
f(zo) < f(x1) < f(x2). Let A(z;) represent the age of a vertex x;. Initially,

A(xg) = A(z1) = A(z2) = 1. (2.15)

See Figure 2.5 a. Now because f(z3) is the highest function value so far, we reflect
xo and replace it with a new point x,. A(z,) is set to 1, and A(zo) and A(z) are set
as follows (Fig. 2.5 b):

A(zo) = A(zy) = 21if f(x,) > f(z0), (x, is not a new minimum) (2.16)

18

or (Fig. 2.5 ¢)
A(xg) = A(zy) =1 if f(x,) < f(zg). (2, is a new minimum) (2.17)

A(.TQ) =1

i) T2
a) Initial Simplex Ages

A(zy) =2 Axy) =2 A(zy) =1 A(zy) =1
b) Ages for f(z,) > f(zo)) Ages for £(z,) < f(z0)

Figure 2.5: a) The initial simplex vertices and their respective ages, initialized to
1. b) If the reflection point is not a new minimum (i.e. f(z,) > f(x)), simply
increment, the ages of the remaining simplex vertices. c) If the reflection point is a
new minimum (i.e. f(x,) < f(xg)), all simplex vertices begin the next iteration with
their ages set to 1.

Now that we have a means for determining how long a point has been a vertex of
various simplices, all that remains is to determine the age that should trigger a shrink.
Going back to the two-dimensional example, there are six possible different simplices
around z, before the simplices begin to repeat themselves. On the first repetition,
xo has reached an age of 7. We can generalize this to multiple dimensions and state
that for a search in IR", if at any time the age of one of the simplex vertices reaches
a value greater than 2(n + 1), a value representing the maximum positive basis for
dimension n, a shrink should occur.

Some initial testing on this subject found 2(n+1) an acceptable criterion; however,
we believe it to be too conservative. The 2(n + 1) criterion is closely related to the
concept of a maximal positive basis, which suggests that the search will have looked
in a sufficient number of directions to identify a direction of descent if the current
iterate is not a stationary point. It is therefore expected that a criterion related to a
minimal positive basis, n + 1, should be sufficient. A further discussion of this choice
of criterion is available in section 4.2. Practical testing appeared to favor the n + 1
case. It is therefore the choice used in the formal description of the algorithm stated
above.

It is important to note that the concept of point age was actually addressed by
Spendley, Hext and Himsworth in their original paper. They believed that point age
could be used to determine when the simplex neared the area of a minimizer. However,
they were not interested in shrinking the simplex. While they granted shrinking
as a plausible solution to refinement, they were more concerned with stopping the
algorithm at a specific point and then using a quadratic fitting method to approximate
the true location of the minimizer.

19

This, however, was flawed in that it was based on the assumption that the size of
the simplex was in perfect relative proportion to the function being minimized. If,
however, the simplex was quite large and entered the area of two distinct minimizers,
a quadratic fitting method would not pick out either individual minimizer but would
most likely approximate the minimizer to some incorrect median value. Also, because
they were using a quadratic fitting method, their critical values of age were on the
order of n%. This is unnecessarily conservative for our purposes.

Simplex Oscillation

The formal description of the algorithm states that when labeling simplex vertices, the
labels on 2 and 2f | may need to be swapped. This section addresses the reasoning
behind this requirement.

Consider the following scenario for the algorithm: The iteration begins, as usual,
by ordering the vertices and continues until the worst vertex x* the centroid z*,
and the reflection point z¥ are found. However, let the simplex be aligned with the
function such that

Flag) > flan). (2.18)

In other words, z¥ is now the simplex vertex with the greatest function value.
(Fig. 2.6 a) For now, assume that the label swapping has not been included in the
algorithm. This means that on the next iteration, z* is guaranteed to be replaced by
x¥+1. However, because x5*! ... 25%] have not changed since the last iteration and
are therefore equal to zf ... ¥ |, zF™! must be equal to z*. In this case, when the
simplex flips to replace x¥, it will necessarily be replacing it with =¥+, which is 2%,
and we will have the original simplex back again (Fig. 2.6 b). The above process will

repeat itself until the age of xy reaches a critical limit and a shrink occurs.

k k+1 — .k
Jo T, =Ty
a) b)
k+1 — Lk k+1 — .k
k k+1 — .k
X, T9 =T,

Figure 2.6: a) In this example, reflecting z% to =¥ makes z* the new maximum. b)
On the next iteration, reflecting 25! through yields the original simplex.

Clearly, it is not sufficient on each iteration to blindly replace the vertex which
yields the highest function value, for unnecessary oscillation between two adjacent

20

simplices could occur. This wastes extra function calls and could potentially affect
the success of the algorithm by causing the simplex to collapse prematurely to a
false minimizer (Figure 2.7). In this example, oscillation only permits the simplex to

Figure 2.7: In an evolution from left to right, this example shows how oscillation
without correction could permit the simplex to contract to a point that is not the
true minimizer.

sample the function in a specific area. The range of the sampling is limited and the
simplex never looks in the true direction of descent. What we truly desire is for the
simplex to sample the function in as many directions as possible and to continually
minimize f(zo). This can be accomplished if two criteria are upheld on each iteration:

(1) Flip the simplex such that it does not return immediately to the previous simplex,
and
(2) Whatever manipulations are made to the simplex, do not replace x.

Basically, we want the algorithm to keep the simplex moving in new directions and
to look for new points with smaller function values, but we don’t want to let go of
the best point we’ve found so far.

The following solution to this problem was suggested by Spendley, Hext, and
Himsworth: Execute the first iteration as stated above. On the second iteration
and all iterations thereafter, when looking for a vertex to replace, do not consider
the vertex that was newly added from the previous iteration. We can state this
more formally: At the beginning of iteration £, order the vertices as to conform with
equations (2.2) and (2.3). Now if this is at least the second iteration (£ > 2) and
zk = zF~1 swap the labels on the two worst vertices (i.e. the vertex labeled z* gets
labeled % | and vice-versa) and proceed as usual (Figure 2.8).

There are two minor points about this addendum that should now be mentioned.
First, if a label swap between z, and z,_; does occur, (2.2) and (2.3) no longer
necessarily hold. This is irrelevant to the algorithm, however, for it only cares about
x, as far as it is the vertex to be replaced by a reflection through the centroid of
the other n vertices. Second, this will not work for IR', for in this case z,_; is, by
definition, xy, and a swap would force the algorithm to replace the only vertex we
were adamant about keeping. If this algorithm is to be used for one-dimensional
optimization, the algorithm as stated in 2.1.1 is sufficient, for although oscillation is

still possible, in one dimension an instance of simplex oscillation is necessarily a sign

21

Ty r
a) b) c) d)
k k k+1 k+1 k+1 k+1 k+1 k+1
xg @y xg xy xg x5 xg x5
o gkt ghtl gkt B

Figure 2.8: This is an example of label swapping to prevent simplex oscillation. This
will resolve the problem encountered in Figure 2.7. a) On the kth iteration, the
reflection step is taken to yield zF. b) The (k + 1)th iteration begins by labeling
the points such that f(zf™) < f(2§™!) < f(25%"). ¢) Because 25 = 2%, we swap
the labels on z§™' and z5™'. d) Having made this change, the reflection step in the
(k4 1)th iteration yields a new point 25! # 2% and oscillation is no longer an issue.
The simplex will continue to move as in Figure 2.4, allowing it to search in as many

directions as possible, preventing collapse to a false minimizer.

that the vicinity of a minimizer has been located, and therefore shrinking the simplex
is the proper next move.

The method by which we have addressed the issue of oscillation here is crucial
to the success of the age-based shrinking criterion described in the previous section.
While Spendley, Hext and Himsworth provided a similar solution, theirs was not as
concrete. It was therefore necessary for us to refine the solution as discussed above.

This change, although subtle, allows the algorithm to satisfy the two criteria stated
above. First, it prevents the simplex from immediately returning whence it came and
entering an instance of indefinite oscillation, which fulfills criterion (1). Also, (aside
from the IR' case) we are still holding on to our best vertex and simply looking all
around it, which fulfills criterion (2).

Termination

All that is left for the Spendley, Hext, and Himsworth algorithm is to define the
stopping criteria. While stopping criteria should be defined as to best suit the specific
purposes for which the algorithm is being used, there are three common criteria.

Many searches of this kind are designed to approximate the minimum of the
function by using the smallest possible number of function calls to achieve that task.
Therefore, a reasonable stopping criterion is to simply count the number of function
calls made by the algorithm and terminate it when the number of function calls
reaches a predefined maximum number.

Another option is to define a value A which represents a length inherent to the
current simplex. This length can vary slightly in definition, but it is usually defined to
be the length of the longest simplex edge. As the algorithm executes and the simplex
continues to shrink, A decreases along with it. When A becomes less than some
small predefined tolerance constant e, it is assumed that the simplex has effectively
contracted to a single point, and the algorithm should terminate. The constant € is

22

usually on the order of 1078.

A final method is based on the stopping criteria given by Avriel [1] for suggested
use with the simplex search of Nelder and Mead. Find the mean, p = £ Y% | f(z;),

n
of the function values for all vertices excluding that of the best point. Terminate the

algorithm if

S If) - uP| <e (219)

where € is a small tolerance constant, usually on the order of 1078.

2.2 The Simplex Search of Nelder and Mead

While the simplex search method of 2.1 is straightforward and sufficient for optimiza-
tion, the simplex in use never changes its shape and therefore is effectively unaware
of the true curvature of the function which it is sampling. Nelder and Mead realized
this fact and believed the simplex search method could be made more efficient if the
simplex were allowed to adjust its shape with each iteration to better suit the cur-
vature of the function. Also, the original Nelder-Mead paper [8] was the first paper
dedicated solely to the optimization of nonlinear functions using a simplex method.
(Recall that evolutionary operation was the primary concern of Spendley, Hext, and
Himsworth.) It is also often assumed to be very easy to implement (although the
discussion of Chapter 3 suggests that one must be careful with this assumption).
It is probably for these reasons that Nelder-Mead is one of the most widely used
non-derivative-based search algorithms.

2.2.1 General Description

The Nelder-Mead algorithm is similar to that of Spendley, Hext, and Himsworth,
except that here the simplex can alter its shape. While with the Spendley, Hext, and
Himsworth method, the simplex will only reflect or shrink with each iteration, Nelder
and Mead allow for a reflection, an expansion, a contraction, and a shrink. These
four steps are labeled respectively by the coefficients: p (reflection), x (expansion), y
(contraction), and o (shrink), governed by the rules:

p>0, x>1, x>p, 0<y<1l,and 0 <o < 1. (2.20)

While these are general rules, they almost always are seen by convention yielding the

following values:
1 1

=1, x=2,y==, 0 =—. 2.21

p=1x=27=5, 5 (2.21)

Please note that while v and ¢ are conventionally given the same value of %, their roles
in the algorithm are quite different. The constant v is used during the contraction
step to determine how the location of just one of the simplex vertices is adjusted.
The constant o, however, is used during a shrink step to determine the adjustment

of n of the vertices.

23

Each of the four types of simplex alterations is designed to help the simplex better
follow the gradient of the function it is sampling. It is the intention of the Nelder-
Mead algorithm to provide a means whereby the simplex can expand itself along
directions of improvement and contract itself opposite directions where improvement
is not found. The reflection is calculated the same as that of Spendley, Hext, and
Himsworth (Figure 2.9); however, Nelder-Mead recognizes that if the new reflection
point has a lower function value than f(z,), it could be advantageous to immediately
continue sampling the function in the same direction. This is the purpose of the
expansion step (Figure 2.9). The simplex is expanding itself outward from Z in the
direction of plausible function decrease. If, however, the reflection and expansion
steps do not improve upon the current lowest function value, the assumption is that
the simplex is straddling a minimizer. The simplex then contracts itself in one of two
ways: If x,, has a function value less than the reflection point z,, then z, is more
likely to be closer to a minimizer. In this case, the simplex contracts from z,, toward
the centroid Z (Figure 2.9). Otherwise, if z, has a function value less than x,, the
simplex contracts from z, toward Z (Figure 2.9). Finally, if no improvement has been
found, the simplex shrinks toward xy as with the Spendley, Hext and Himsworth
algorithm (Figure 2.3).

Z2
i) T1
Ty
a) Reflection Step b) Expansion Step
)
)) %
‘/‘ET
¢) Inside Contraction) Outside Contractlon

Figure 2.9: a) The reflection step of the Nelder-Mead algorithm is similar to that of
Spendley, Hext and Himsworth. b) The expansion step further reflects x5 through z
to yield the expansion point, z.. c) If , perform an

from z toward z, to find »,.. d) If , perform an

from Z toward z, to find

24

2.2.2 Formal Description

The formal description of the algorithm used in this research and described below
is from Lagarias, Reeds, Wright, and Wright [6]; however, some notation has been
changed here to better coincide with the description of 2.1.2.

0. Initialize. Start with a nondegenerate simplex for IR* and calculate the func-
tion values at all of the vertices. Then at each iteration k,k > 0:
1. Order. Order the vertices zf, 2%, ...,2* | 2% such that

9 ¥n—17%n
flag) < fah) <. < flah_y) < flan). (2.22)
2. Reflect. After computing the centroid z¥ = L 7= z¥, compute the reflection
point ¥ from
o =78 + p(z* —). (2.23)

If f(zf) < f(a*) < f(zF), replace zF with zF and go to Step 6.
3. Expand. If f(zF) < f(zF), calculate the ezpansion point ¥ from

z¥ =75 + x(zF — 7F). (2.24)

If f(z%) < f(xh) replace zF with 2% and go to Step 6; otherwise (f(zF) > f(zF)),
replace = with z¥ and go to Step 6.

4. Contract If f(zF) > f(zF_,), perform a contraction between Z¥ and whichever
of ¥ and z* has the lower functlon value.

a. Outside. If f(zf_|) < f(a¥) < f(aF), perform an outside contraction:
calculate

ok =78 4 y(2F — 7). (2.25)

If f(z%,) < f(zF), replace z¥ with z¥, and go to Step 6; otherwise perform a shrink

(Step 5).
b. Inside. If f(z*) > f(2¥) perform an inside contraction: calculate

of =% 4 y(af — 2F). (2.26)

If f(z) < f(zF), replace z¥ with z¥ and go to Step 6; otherwise perform a shrink

(Step 5).
5. Shrink. Shrink the simplex around z£ by replacing z¥ with

¥ :x§+%(x’(§ —2¥), i=1,..n. (2.27)
6. Check Termination. Terminate if any of the possible stopping criteria in
force are satisfied. Otherwise, set £k = k + 1 and return to Step 1.
Our complete C++ implementation of this algorithm is available in Appendix A.
The heart of the algorithm explained above can be found in the ExploratoryMoves()
function, located in section A.2.2.

25

2.2.3 Subtleties

At this time, it is important to point out some subtle aspects of the Nelder Mead
algorithm. The algorithm above is very specific about putting conditions of equal-
ity in certain places. The original Nelder-Mead paper left these choices ambiguous,
while Lagarias, Reeds, Wright, and Wright needed to specify the algorithm in a very
particular unambiguous fashion for analysis purposes.

For instance, there are two small, yet important differences between this algorithm
and that of Avriel’s interpretation which deal specifically with the contraction step.
2.2.2 states that an outside contraction is to be taken if f(z,) is strictly less than
f(z,). Otherwise, f(z,) > f(z,), which is the condition for an inside contraction.
Avriel, however, leaves the case f(z,) = f(z,) open, not defining any choice of
contraction for this case. Second, in 2.2.2; shrinking after an outside contraction
occurs if f(zoc) > f(x,), while shrinking after an inside contraction occurs if f(z;.) >
f(z,). Note the addition of the f(z;.) = f(x,) case for the inside contraction but
not for the outside contraction. Avriel, however, does not shrink after an inside
contraction if f(z;) = f(z,), while leaving the criteria for a shrink after an outside
contraction the same as 2.2.2.

While these may appear to be minor and unimportant discrepancies in the inter-
pretation of the Nelder-Mead algorithm, we’ve found they actually play a large role
in the algorithm’s success near the boundaries of a bounded objective function. This
role and its effects are further described in Chapter 4.

2.3 Sequential Multi-Directional Search

In 1989, Torczon published a paper introducing the Multi-Directional Search Algo-
rithm [18]. Intended for execution on a multi-processor machine, its most attractive
feature was a design constructed to utilize the ability to make multiple function calls
simultaneously, without additional real-time cost. Here we introduce an adapted
sequential version of the algorithm, intended for single-processor machines.

2.3.1 General Description

The Multi-Directional Search, like the other simplex searches, is based on a simplex
of n + 1 vertices in IR". However, its algorithm contains one main difference from
the other two algorithms previously discussed. During a reflection step, rather than
simply reflecting the vertex with greatest function value, x,, through the centroid of
the other vertices, Z, the Multi-Directional Search instead reflects all vertices, z; ...
Zn, through the best verter, xy. The following general description of the algorithm
will elaborate on this procedure.

Each iteration of the Sequential Multi-Directional Search really consists of two
simplices: a primary simplex, and its reflection simplex through the current best
minimizer xy. Because both simplices share xg, this gives a total of 2n 4+ 1 simplex
vertices. Unlike the simplex algorithms encountered so far, not all of the function
values of these vertices are known. Because it is a greedy algorithm, function values

26

are only calculated until a new minimizer is found. Therefore, at any given time
during an iteration, the algorithm may know anywhere from only 1 to all 2n + 1 of
these values. To exemplify this concept, in the figures accompanying this section,
a simplex vertex whose function value is known will be represented by a filled-in
dot, while those vertices whose function values have not yet been calculated will be
denoted by an empty circle.

Begin with a nondegenerate simplex of n + 1 vertices in IR", but do not evaluate
any of the vertices’ function values. This is the primary simplex. Choose one of these
vertices to be the basepoint, zo, and calculate only f(zo). The other n points can
be arbitrarily labeled z; ... x, for reference purposes (Figure 2.10). This algorithm
is only concerned with the current best point having the label xy. Because not all
vertex function values are known, the algorithm does not (and cannot) require the
ordering of all n + 1 points based on function value.

Figure 2.10: Begin by labeling the basepoint z, and arbitrarily labeling the other
points. Calculate only f(x).

The next step is to reflect each point z; ... z,, through z, to create a reflection
simplex. The reflection simplex and the primary simplex will, by construction, share
xo, and the reflection simplex will contain n new points, z,, ... z,, (Figure 2.11). A
reflection in this manner guarantees that if the primary simplex is nondegenerate, the
reflection simplex will also be nondegenerate.

T2

Lpy 2o T

Ty

Figure 2.11: A reflection of the primary simplex through z, yields the reflection
simplex.

From here, the function value of each vertex in the reflection simplex is calculated
until a vertex, z,, is identified whose function value is less than f(x¢). If z,. is found,
the reflection simplex becomes the new primary simplex with z,, as its basepoint,
and the algorithm returns to the first step. If improvement cannot be found in the
reflection simplex, the primary simplex is searched one vertex at a time for a vertex z;
is less than f(z). If such an z; is found, the primary simplex makes z; its basepoint,
and the algorithm returns to the first step. If all 2n+1 points in both the primary and

27

reflection simplices have been evaluated and improvement over xy has not been found,
the primary simplex shrinks around zy, and a new iteration is begun (Figure 2.12).

T2

Figure 2.12: If all points in both simplices have been evaluated without improvement,
shrink the primary simplex around z.

2.3.2 Formal Description

The following is a formal description of the Sequential Multi-Directional Search algo-
rithm.

0. Initialize. Given x, construct a simplex of n + 1 points for IR" that includes

x5, but calculate only f(x)). Then, for each iteration k,k > 0:
1. Label. Label £ as the basepoint. Arbitrarily label the other vertices % ... z%.
2. Create Reflection. Reflect each of z% ... 2% through z§ to obtain the vertices

af =ab 4+ (2f —ab), i=1,...n (2.28)

T3 3

3. Look through Reflection for Minimizer. Evaluate (sequentially) f(z}),
for : = 1,...,n until either

f(acfj) < f(xf) for some j € {1,...,n} (2.29)
or it is determined that
f(ah) > f(z§) foralli =1,...,n. (2.30)
If, and only if, equation 2.29 is satisfied, then
zh = xfl foralli =1,...,n, (2.31)

swap the labels on xf and zf, and go to Step 6. Otherwise (i.e., equation 2.30 is
satisfied), continue to Step 4.

4. Look through Primary for Minimizer. Evaluate (sequentially) f(z¥), for
1 = 1,...,n until either

f(xf) < f(zf) for some j € {1,...,n} (2.32)
or it is determined that

f@F) > f(ak) foralli =1,...,n. (2.33)

28

If, and only if, equation 2.32 is satisfied, then swap the labels on xf and zf, and go
to Step 6. Otherwise (i.e., equation 2.33 is satisfied), continue to Step 5.

5. Shrink. Since neither (2.29) nor (2.32) have been satisfied, shrink the (pri-
mary) simplex around z¥ by replacing z¥ with

ik :xf-l—%(:v'g -z, i=1,...n. (2.34)

Replace =¥ with 2% for i =1, ..., n.

6. Check Termination. Terminate if any of the possible stopping criteria in
force are satisfied. Otherwise, set £k = k£ + 1 and return to Step 1.

Our complete C++ implementation of this algorithm is available in Appendix A.
The heart of the algorithm explained above can be found in the ExploratoryMoves()
function, located in section A.3.2.

2.3.3 From Multi-Processor to Single-Processor

This algorithm is different from the two previous simplex algorithms in that a re-
flection occurs about a vertex of the simplex rather than about a centroid. This has
the side-effect of n new simplex vertices for each iteration, rather than one. The ad-
vantage is a greater overall sampling of the function; however, finding their function
values requires n new function calls on each iteration. If run on a machine with at
least n processors, as was Torczon’s intention, this was not a significant problem, for
n function calls could be made simultaneously and therefore effectively cost as much
as only one call. This is the true power of the original algorithm. Here, we do not
have n processors to work with, and therefore an algorithm that evaluated all vertex
function values would be too expensive to execute effectively.

It was therefore necessary to modify the multi-processor algorithm so that we
could keep the advantage of reflecting n vertices simultaneously, but at the same
time make as few function calls per iteration as possible. The purpose of evaluating
all function values of the n new vertices was to locate a vertex whose function value
was not only less than f(xg), but also less than the function values of the other n —1
new vertices. In a choice to compromise absolute minimization for speed, the solution
was to invoke the style of a greedy algorithm: Once a reflection is made through zy,
keep track of the location of the new n vertices, but only evaluate enough function
values, one at a time, to single out one vertex whose function value is less than f(z).
While this criterion is clearly less strict that the multi-processor algorithm, it was
best suited for the problem and most consistent with other existing search methods.

The question which now needs to be addressed is “Once the n new vertices have
been identified, in what order should their function values be evaluated?” To answer
this question, we pulled from the ideology of Nelder and Mead’s expansion step: If a
step is taken from a point of low function value toward a new point whose function
value is even lower, continue to look for the next point by taking a further step in the
same direction.

This concept is extended here and can best be understood through an example.
Let z¥ denote a specific point z; for a given iteration k. Consider a scenario where

29

we have just reflected the simplex through our current minimizer ¥ and have n new

simplex vertices. Now say we have located a vertex of the new simplex :rffz such

that f(zF) < f(zf) (Figure 2.13 a). This would then be the basepoint for the next

iteration (zF = z{™). To start the (k + 1)th iteration, we reflect the simplex, this

T
time through £, Now we again have n new simplex vertices and we need to begin

looking for a new minimizer. This is where the rule comes in. We had a minimizer

zk that was replaced by a better minimizer 2§ . Therefore, necessarily zf, which is

equivalent to 257!, has been reflected through z£ " to a new vertex x’jjl We therefore
begin looking in the direction of descent by evaluating f(zF) first (Figure 2.13 b).
If f(zF}H") is evaluated and improvement is not found (i.e. f(zk') > f(zft")), the

function values of the remaining n — 1 vertices can be evaluated in any order.

k k
z z
a) 2 b) 2
k k k k+1 k k
Ly,) Ty T Ty Ty
ko k41 k+1
Ty, = T xg
k41 k41
xT’Z x”'l

Figure 2.13: a) f(zF) < f(zF), therefore z* will be the new basepoint for the

T2 T2
next iteration (i.e. 2% = zf™). b) We begin the (k + 1)th iteration by evaluating
f(zk1) first because the step from zf (which is equivalent to z5™") to z§*" yielded

improvement, so we continue in the same direction.

This is the primary adjustment that has been made to go from many processors
to one. Finally, it should be mentioned here that Torczon originally included an
expansion step in the Multi-Directional Search algorithm which we have decided not
to transcribe to the sequential version. Otherwise, the progression of each algorithm
is, in essence, the same.

30

Chapter 3

The Importance of Resolving
Ambiguities in the Nelder-Mead
Search Algorithm

It was mentioned in section 2.2.3 that the Nelder and Mead simplex algorithm contains
some important subtleties which, if not treated appropriately, can have an adverse ef-
fect on how the algorithm behaves. We discovered an instance of a bound constrained
optimization problem where the Nelder and Mead simplex algorithm converged to a
nonstationary point near the boundary. We thus are interested in what happens when
at least one of the components of the current iterate is at or near one of the bounds
(i.e., x; = 1; or x; = u; for at least one 1 € {1,...,n}).

Here we discuss our specific encounter with these subtleties, which occurred during
testing of the Nelder-Mead algorithm on numerous bound constrained problems.

3.1 The Discovery of the Problem

Testing was done using the Nelder-Mead algorithm on a set of smooth bounded ob-
jective functions, each of whose independent variables was restricted to the range 0
through 10. Every test function had multiple local extrema. Also, each was continu-
ous and had continuous first and second derivatives.

During our testing, each of the simplex searches was run on each function 1000
times, each time with a different starting simplex which was randomly placed as
follows. A random number generator would choose one floating point number be-
tween 0 and 10 for each dimension. These random numbers made up the coordi-
nates of the basepoint vy for the starting simplex, which is guaranteed to be fea-
sible . The basepoint was designated a vertex of the simplex. To generate the
remaining n vertices of the starting simplex, the program then took a step of a
distance of 2.0 from the basepoint along each of the positive coordinate directions;
ie. v; = vo + 2e,i = {1, ..., n}, where ¢; denotes the standard unit coor-
dinate vector. This process had the effect of creating what is often referred to as a
fixed-length right-angled simplex to begin each test.

Finally, because we were dealing with bounded problems, it was necessary to deal

31

"temp.dat" ——

20 -
15 -
10
==
= ———Cn-
e -
D e P
e e AR, B
D _ ey X
e ORI AL R0
30 ¢ = T
= 77 7R S . . Q#.',””"..QQ 15 --------
ZZ LTS =27 LRI L '. 0>
2 Z77A> S O SN\\S .' 2277 20—
20 - AT e LT ST DAL
R RS L D [z o5
/7 LR RERERZA AT R AT 7] e
10 e O S A7 8 g Wy, == 0
T AR A R AR SRR AT T T 77N =
R A A A S S S e S NN S, s IV
A AR et R AT T T T 7 — o
0 e R
=
== S0 NS
-10 %%z?%%%ﬁm\s’wwu
20 B W™
——
) SOV

10

Figure 3.1: Our 2-dimensional objective function. For a given point (z,y), £ runs
down along the lower left axis and y runs up along the lower right axis.

with the possibility that a simplex might flip into an infeasible region. To account
for this, we used a method common to non-derivative-based searches and suggested
by Nelder and Mead [8]: whenever a simplex vertex is infeasible, the function value
assigned to the vertex should be a large number, in our case infinity. This will cause
the search to instantly reject any infeasible vertex, thus ensuring that the sequence
of best vertices remains feasible.

After extensive testing of all three simplex searches, we noted that the Nelder-
Mead method sometimes gave anomalous results. Occasionally, a point returned by
the search as a function minimizer would actually not be anywhere close to a true
minimizer—or any stationary point at all. We decided to examine the situation
more closely; specifically, we chose for analysis the 2-dimensional objective function
shown in Figure 3.1. It should be noted that this particular objective function has
no minimizers with a positive function value.

While scanning through the 1000 test cases on this function, we found that twelve
cases had returned false minimizers with positive function values. The twelve false
minimizers and their values are shown in Table 3.1.

Comparing these values with the objective function shown in Figure 3.1 yields
some surprising results. First, all of the function values returned are positive. How-
ever, the objective function has no local minimizers with positive function values.

32

Min. Location | Min. f(z) Value |

‘ Ex. ‘
1. | (9.54547, 9.22147) 9.18047
2. | (9.94115, 9.26812) 5.50756
3. | (8.34786, 9.65801) 12.5530
4. | (8.54405, 9.79115) 16.3964
5. | (9.96021, 9.25700) 5.23315
6. | (9.48996, 9.64920) 15.1434
7. | (9.74767, 9.98758) 12.1590
8. | (9.16491, 9.47893) 16.2598
9. | (9.92376, 9.96469) 9.11214
10. | (8.33212, 9.53514) 11.3507
11. | (8.67829, 9.63636) 16.9166
12. | (8.56104, 9.94855) 17.0677

Table 3.1: The twelve unusually high putative minimizers returned by the Nelder
Mead search.

Second, and perhaps more interesting, is that all of the points chosen as minimizers
fall relatively close to (10,10), the upper limit of the domain variables. Looking at the
objective function in Figure 3.1, it is clear that this area is near the absolute maxi-
mum of the function. Nelder-Mead was actually returning some of the highest possible
function values. Also interesting was that even though the other two simplex algo-
rithms, that of Spendley, Hext, and Himsworth and the Sequential Multi-Directional
Search, were run on the exact same function, with the exact same starting points and
initial simplices, neither of them were returning such solutions. Nelder-Mead alone
was falling into some trap that was causing its simplex to collapse to a nonstationary
point.

3.2 The Cause

The only way to figure out why Nelder-Mead was returning false results was to look
more closely at the twelve specific runs. At this point, we only had information
regarding the putative location of the function minimizer. We thought that it would
be advantageous to know the exact nature of the entire simplex.

Recreating the same twelve test cases, this time we logged the exact starting and
finishing positions of all the vertices in the simplices. These data, as well as the final
function values of each of the final simplex vertices, are shown in Table 3.2.

Even though this information is limited, there are definite trends among the twelve
cases. First, every simplex begins with all but one of its vertices infeasible. The fact
that this is a valid starting position is not surprising, for we generate the simplices
by adding 2.0 to each of the basepoint components. Therefore, any time the ran-
dom number generator creates a basepoint whose components are all above 8.0, this
starting scenario will occur.

Looking at the ending locations of the twelve simplices, the problem becomes clear.

33

Upon termination, two of the three simplex vertices are still in the infeasible region.
In fact, in every case, xy and z; do not move at all during the search, and z, has
become equivalent to the centroid of zy and z;. At this point, the three vertices are
necessarily collinear, the simplex has lost full dimensionality, and the simplex remains
with only one feasible vertex. It is this one feasible vertex which (of course) represents
the lowest function value found thus far and is therefore the vertex returned by the
algorithm as the likely function minimizer. A comparison of Tables 3.1 and 3.2 show
this to be the case.

3.3 The Solution

At this point, it was clear that in each of the twelve test cases, the simplex, which
should be a triangle for this two-dimensional problem, was collapsing to a line. All
that was left was to determine why this was happening. For this, it was necessary to
track through one instance of the algorithm step-by-step to determine the cause of
the behavior.

It is important to note that for these tests, we were not yet using the algorithm
of Lagarias, Reeds, Wright, and Wright [6] which was described in section 2.2.2. At
the time, our implementation of the algorithm was based on the description found in
Avriel [1]. We note here that either of the two descriptions is a perfectly plausible
interpretation of the original specification found in [8].

In our initial testing, for these twelve cases, we started with one feasible vertex; the
remaining two vertices were infeasible. Our implementation of the algorithm would
then label the simplex vertices g, z1, 9 such that f(zo) < f(z1) < f(z2). Since
only one vertex was feasible, the choice for zy, was easy; because the remaining two
vertices were given function values of infinity, the algorithm arbitrarily chose which
of the two remaining vertices would be z; and which would be z5. (Note that this
arbitrary labeling is not the cause of the problem.)

Next x9 was reflected through the centroid of zy and z; to obtain x,. However,
the simplex was positioned such that z, was also infeasible. This made f(z,) =
f(z2) = oo, making the expansion step unnecessary. The next step, therefore, was
to take a contraction step. Normally, if f(x,) < f(x,), an outside contraction is
made toward z,, and if f(z,) < f(z,), an inside contraction is made toward z,. (Of
course, for this particular example, n = 2, so z9 = x,,.) Avriel, however, states that a
contraction step should be taken toward min{f(z,), f(z,)} and does not address our
case where f(z,) = f(z,). This decision seemed inconsequential during the coding
of the algorithm, so it was simply determined that if f(z,) = f(z,), an outside
contraction toward z, would be taken.

So, an outside contraction was taken to find z,.. This is the crucial step that allows
the simplex to collapse: Avriel states that if f(z,.) > f(x,) (or f(zi) > f(x2)—Avriel
makes no distinction between inside and outside contractions), a shrink of the simplex
should occur. But here, z,. is still infeasible, making f(z,.) = f(x,) = 00, so the
contraction point is accepted and a new iteration begins. On the next iteration,
what was z,. in the last iteration is now z,. The same thing happens again. The
simplex contracts to a point still out of the defined region, and the cycle continues.

34

i Ty il Xy 1

T2 T2 T2
Zo Zo Zo

Figure 3.2: This figure shows one iteration of the algorithm which leads to a collapse
of the simplex. a) The simplex begins with only one feasible point, zo. b) The
reflection step is taken, however it is such that z, is also infeasible. ¢) Having a
failed reflection, the algorithm makes an outside contraction to find z,., which is also
infeasible, yet accepted, which terminates the iteration. This process is continued to
yield a series of infeasible outside contraction vertices, which is shown in Figure 3.3.

On each iteration, the simplex contracts and accepts z,.. Also, since each iteration
is necessarily a contraction, z,. continues to approach the centroid of xy and x1,
collapsing the once nondegenerate simplex to a straight line. The evolution of this
process is shown in Figure 3.3. Each iteration makes the simplex contract closer to
the line defined by zy and z;.

It may appear that a crucial part of this infinite contraction relies on the consistent
labeling of the vertices. The vertex labeled z5 had to be labeled as such throughout
the entire execution of the algorithm. While it is true that the initial choice of x; and
X9 was arbitrary, it should be clear that this choice only changes the line to which the
simplex collapses. The inherent problem is still present. It may also be possible to fix
this problem by alternating the points labeled z; and x5. This would, after a while,
have the result of slowly shrinking the simplex to a degree where all three vertices
were again defined. While possible, a robust algorithm should not have to rely on
labeling to prevent this problem. In fact, as will be discussed below, the description
of the Nelder-Mead algorithm given by Lagarias, Reeds, Wright, and Wright [6] does
prevent this problem, and all it takes is some cleverly placed equal signs.

The problem is that the simplex cannot adequately sample the function, for the
majority of its vertices are infeasible. Our method of resolving the ambiguities in
Avriel’s description leads to an algorithm which accepts an infeasible contraction
point, when we would rather the simplex perform a shrink around zy. If the simplex
continues to shrink, eventually it will permit all of the vertices to become feasible,
and further progress toward a true minimizer can then be made.

If the same scenario is run through the Lagarias, Reeds, Wright, and Wright
algorithm (described in section 2.2.2), we find a different outcome for our twelve
examples. Here, if f(z,) = f(z,) the algorithm chooses to take an inside contraction
toward z,,. This, however, is not enough to solve our problem, for if we had made the
same choice, the simplex would still have collapsed, it just would not have oscillated
about the centroid. The key difference is that Lagarias, Reeds, Wright, and Wright
make a clear distinction between the shrinking criterion of a inside contraction verses

35

T

Zo

Figure 3.3: The collapse of the simplex {1., 2., 3., 1., 5., 6.} toward the line defined
by xo and x;. Note how as the process continues, z, gets closer to the centroid of z
and x1.

that of an outside contraction. For an outside contraction, the case f(z,.) = f(z;)
results in an acceptance of z,, just as with Avriel. However, if f(x;.) = f(z,) during
an inside contraction, the simplex shrinks around xy, which is exactly what we hope
to accomplish.

Once again for clarity, the two important features of the description given by
Lagarias, Reeds, Wright, and Wright are:

(1) If it is necessary to take a contraction step and f(x,) = f(z,), take an inside
contraction step toward z,,.

(2) If during an outside contraction, f(z,.) = f(x,), accept z,. and begin a new
iteration. However, if during an inside contraction, f(z;.) = f(x,), shrink the simplex
around .

We reran the twelve test cases with the modified algorithm. For each case, the
simplex was able to shrink, thus permitting all vertices to become feasible after about
two or three shrinks. Afterwards, it could move toward true function minimizers.
Table 3.3 shows the new minima found by our twelve test cases using the Lagarias,
Reeds, Wright, and Wright variant. Comparing the results with Figure 3.1, we are
pleasantly surprised to find that all of the test cases now each converge to a true
function minimizer, and nine of the twelve cases actually converge to the global min-
imizer.

While the analysis developed in this section was strictly for a specific 2-dimensional
case, this same scenario originally occurred for problems in higher dimensions as well.

36

The use of the Lagarias, Reeds, Wright, and Wright algorithm also corrected the
results for these higher dimensional cases. The manifestations of these changes can
be clearly seen in the full testing results (Chapter 4). It is also important to note that
this particular ambiguity is resolved once all of the simplex vertices are within the
feasible region. Because this algorithm guarantees a shrinking of the simplex in this
scenario, eventually all of the simplex points will necessarily move within the feasible
region. This algorithm is therefore guaranteed to prevent the anomaly.

3.4 Discussion

While the anomaly described here may seem rather artificial, it is important because
there are many implementations of Nelder-Mead used today in mathematical software
packages that would also fail for the scenario presented. For bound constrained
problems, it is common practice to simply set the function value to infinity for any
infeasible vertex when using a simplex search algorithm. Any user blindly using these
packages could fall into this trap, so it is important to recognize its significance.

Note that for this scenario to occur, the initial simplex must start in the given
configuration. Once all of the vertices are feasible, at most one vertex at a time
could wander into an infeasible region, only to be quickly rejected and replaced.
This particular instance could then be avoided if the simplex is guaranteed to start
completely within a feasible region. We could have achieved this by only allowing
the random number generator to generate basepoint components that were between
0 and 8.0. Another suggestion is to allow a range of 0 through 10.0 for the generator,
but to take a step of —2.0 from the basepoint for any coordinate direction whose
basepoint component was 8.0 or greater. Although this does prevent the problem
discussed, it is too restrictive, for a completely general search algorithm should not
have to be aware of the limitations of the objective function on which it is working.
While the user could be held responsible for guaranteeing that the simplex begin
entirely within the feasible region, it is preferable to specify an algorithm which is
not based on this assumption. Therefore, for purposes of robustness, it is better to
focus on a specification of the algorithm that is less prone to the possible vagaries
introduced by a user’s choice of starting criteria.

It is interesting to look at different implementations of the Nelder-Mead algorithm
which are currently being used. Some of the specifications we examined are immune
to the potential pitfall outlined above, while some will fall into the same trap as our
original version did. We will compare each of the specifications against criteria (1)
and (2) from the last section.

First, we consider the original source, Nelder and Mead [8]. They first defined
their search algorithm using an algorithmic flowchart. While this method of expla-
nation made for an easy grasp of the algorithm, it was not at all concerned with the
specifics of equality, which is probably the source of ambiguity that has been open to
interpretation by so many others. In fact, according to their flowchart, their original
statement of the algorithm does not meet either criterion (1) or (2). Like our inter-
pretation drawn from Avriel, they suggest an outside contraction if f(x,) = f(x,),
and they accept z. for either an inside or outside contraction if f(z.) = f(z,). To

37

be fair, they did not claim that their algorithm could handle the above scenario at
all, for they clearly stated that for their algorithm to work for constraints, the entire
simplex would have to start completely within the feasible region.

Looking at some others, we find that a Fortran implementation (minim.f) pro-
vided by Shaw, with amendments by Wedderburn and Miller [15] fits Nelder and
Mead’s flowchart perfectly, failing to meet both criteria (1) and (2).

The Fortran implementation of Nelder Mead (nelmin.f) [9] provided by O’Neill [10],
with subsequent comments by Chambers and Ertel [3], Benyon [2], and Hill [5] is
more interesting. Like our original implementation, which fails to meet criterion (1),
if f(xz,) = f(z,), it takes an outside contraction toward z,. The shrinking criterion
for the inside contraction is like Avriel’s: shrink the simplex only if f(z;.) > f(x,),
otherwise accept x;. and continue. The outside contraction, however, does not even
have a shrinking criterion. In this case, if f(z,.) < f(z,), we accept z,. and continue.
Otherwise (f (o) > f(z,)), we accept x, and continue. Clearly, this would also fail
for our scenario.

The Numerical Recipes tn C implementation provided by Press, Teukolsky, Vet-
terling, and Flannery [14] does not have an outside contraction at all. If a contraction
step is necessary, it will always be an inside contraction. However, if f(z;) > f(x,),
they do shrink, so this implementation would not fall into our trap.

Finally, we have Torczon’s Fortran implementation of nelder.f [18]. It does
meet criterion (1) above. Both the inside and outside contraction steps have the
same shrinking criterion: if f(z.) > f(x,), shrink. Otherwise (f(z.) < f(xp)), accept
z. and continue. This implementation would also not fail in our test cases.

We have shown here how simple changes in the interpretation of the Nelder-Mead
algorithm can either promote or prevent the simplex from collapsing and losing di-
mensionality. While these changes make the algorithm more robust, they cannot
prevent collapsing in every scenario. In 1998, McKinnon [7] published a specific ex-
ample where Nelder-Mead converged to nonstationary points, yet all simplex vertices
were always feasible. McKinnon actually uses an algorithm identical to that of La-
garias, Reeds, Wright, and Wright for the purposes of contraction and shrinking, so
his argument is still valid and cannot be contradicted through any method mentioned
here. Nomnetheless, it is still clear that simple choices made when dealing with the
ambiguity of a few equal signs can have significant repercussions.

38

| Ex. | Point || Initial Location ||

Final Location

| Final f(z) Value |

zs || (11.5455, 9.22147) || (9.54547, 10.2215) 0

1. | 2 | (9.54547, 11.2215) || (9.54547, 11.2215) 0
zo || (9.54547, 9.22147) || (9.54547, 9.22147) 9.18047
wy || (11.9412, 9.26812) || (9.94115, 10.2681) 0

2. | xy || (9.94115, 11.2681) | (9.94115, 11.2681) 0
zo | (9.94115,9.26812) || (9.94115, 9.26812) 5.50756
75 || (10.3479, 9.65801) || (8.34786, 10.6580) 0

3. | =z | (8.34786, 11.6580) || (8.34786, 11.6580) 00
zo || (8.34786, 9.65801) || (8.34786, 9.65801) 12.5530
2, || (10.5440, 9.79115) || (8.54405, 10.7912) o0

4. | =z || (8.54405, 11.7912) || (8.54405, 11.7912) 00
zo || (8.54405, 9.79115) || (8.54405, 9.79115) 16.3964
22 || (11.9602, 9.25700) || (9.96021, 10.2570) o0

5. | a1 || (9.96021, 11.2570) | (9.96021, 11.2570) 0
zo || (9.96021, 9.25700) || (9.96021, 9.25700) 5.23315
2o || (11.4900, 9.64920) || (9.48996, 10.6492) o0

6. | a1 || (9.48996, 11.6492) | (9.48996, 11.6492) 00
zo | (9.48996, 9.64920) || (9.48996, 9.64920) 15.1434
zy || (11.7477, 9.98758) || (9.74767, 10.9876) 0

7. | || (9.74767, 11.9876) | (9.74767, 11.9876) 0
zo || (9.74767, 9.98758) || (9.74767, 9.98758) 12.1590
2y || (11.1649, 9.47893) || (9.16491, 10.4789) 0

8. | a1 || (9.16491, 11.4789) | (9.16491, 11.4789) 0
zo || (9.16491, 9.47893) || (9.16491, 9.47893) 16.2598
2o || (11.9238, 9.96469) || (9.92376, 10.9647) o0

9. | x| (9.92376, 11.9647) | (9.92376, 11.9647) 00
zo || (9.92376, 9.96469) || (9.92376, 9.96469) 9.11214
2, || (10.3321, 9.53514) || (8.33212, 10.5351) 0

10. | 21 | (8.33212,11.5351) || (8.33212, 11.5351) 00
zo | (8.33212, 9.53514) || (8.33212, 9.53514) 11.3507
2, || (10.6783, 9.63636) || (8.67829, 10.6364) o0

11. | =1 | (8.67829,11.6364) || (8.67829, 11.6364) 00
zo || (8.67829, 9.63636) || (8.67829, 9.63636) 16.9166
x5 || (10.5610, 9.94855) || (8.56104, 10.9485) 0

12. | 21 | (8.56104, 11.9485) || (8.56104, 11.9485) 0
zo || (8.56104, 9.94855) || (8.56104, 9.94855) 17.0677

Table 3.2: The starting and finishing simplices and the final vertex function values

for the twelve unique test cases.

39

| Ex. | Min. Location | Min. f(z) Value |
1. | (9-37702, 3.34053) —38.3280
2. | (9.37702, 3.34053) —38.3280
3. | (7.32816, 7.46766) —12.9065
4. | (9.37702, 3.34053) —38.3280
5. | (9.37702, 3.34053) —38.3280
6. | (9.37702, 3.34053) —38.3280
7. | (9.37702, 3.34053) —38.3280
8. | (7.32816, 7.46766) —12.9065
9. | (9.37702, 3.34053) —38.3280
10. | (7.32816, 7.46766) —12.9065
11. | (9.37702, 3.34053) —38.3280
12. | (9.37702, 3.34053) —38.3280

Table 3.3: The twelve minimizers returned by the Lagarias, Reeds, Wright, and
Wright algorithm.

40

Chapter 4

Testing and Results

Having given a full description of the simplex-based algorithms, we suggest that they
are now well-defined for the purposes of optimization. This chapter discusses our
testing of the search methods and provides a general comparison of performance
between them for a specified group of objective functions.

4.1 The Testing Setup

We begin with a description of our testing of the simplex search methods. First,
we describe the objective functions used, as well as their creation and incorporation
into our optimization procedures. We then describe the type of tests run employing
the simplex search methods to these functions. Finally, we conclude with a general
description of the function minima density plots, our medium for comparison of the
data.

4.1.1 The Objective Functions

All the objective functions used in this research were created using a function gener-
ator called the krigifier [11, 19]. The krigifier is a function generator which accepts
general parameters describing a function, such as overall trend, as well as a number
of other parameters that determine how much curvature the function contains. The
krigifier can then be used to generate continuous, differentiable, nonlinear functions
with characteristics that vary based on the input given.

In this research, we consider two types of trends for our objective functions: con-
stant and quadratic. To generate a function with a constant trend, the krigifier begins
with a constant function surface (for a function of two dimensions, this would repre-
sent a plane parallel to the x-y plane). The krigifier then uses its input parameters
to add smooth bumps to this surface, creating ranges of local extrema. An objective
function with quadratic trend begins with a quadratic surface (a paraboloid in two
dimensions), to which smooth bumps are then added based on the krigifier parame-
ters. Figure 4.1 shows two objective functions generated by the krigifier, one with a
constant trend (above) and one with a quadratic trend (below), both based on similar
input parameters.

41

"constant_trend"

==
S
=

= _—3 —— \\\\‘:::‘::3:3...:.'.—.
e e Vo N
10 | G e A O
LA L 117 ..‘\\W
L7 = 1] 77z]] RS
= Sogss’ :.-.-.-..,llll"'"...g
[
LT
XA

"quadratic_trend"

27—
i Y s e 7 ey e
vy 2T RZ AT AZ AT AT T
Z> 2R AT A2 AT AT AL T
s Z% e e e e Y Y &
T 27 AT AT A AL AT AT ST T ST T T 777 77— IO
e e L e 30
e S s e e e RS O e et
e S e e L) == ST E AL 2 T
30 -~ P e S ———
e RS
e e N S N NSRSt v s s s] 777 T AN
e R A T 77 7 T T T T /AT | [AR
- — S RIS NS 7 7 T T /7 77777777 N
20 =N
e .. ' S =
K>

S 1777
— N\
Q:Q’;’;;i%}}:\” L

Figure 4.1: Two krigifier objective functions with the similar input parameters.
Above: A function with a constant trend. Below: A function with a quadratic trend.

42

For our purposes, we consider objective functions of only dimension 2, 3, 4, or 5.
We have also bounded the feasible region; the krigifier functions are only defined on
a range from 0 to 10 for each variable in the domain. We handle infeasible points by
returning a function value of infinity for any x with at least one component less than
0 or greater than 10. Thus we define our objective function F' such that for a given
dimension n, with z € IR?,

i < z; <10; =1, ...
F(x):{f(x), if0<ax;<10; foralli=1,....n, (41)

0, otherwise

where f(z) denotes the value for any feasible x returned by a given realization of f
produced by the krigifier. We set the value of F'(x) to infinity for any infeasible x so
that during testing, if any simplex vertex is located within this infeasible region, the
search will immediately throw it out as a possible minimum, since we start with at
least one feasible vertex in the initial simplex. This will force the best vertex of every
simplex to remain within in the feasible region.

For each of the four dimensions considered, we look at five different constant trends
and their five corresponding quadratic trends. For a given dimension, a constant trend
function with its corresponding quadratic trend function is called one realization of
the dimension. We therefore consider five different realizations for each dimension.
Since we are looking at four dimensions, we have a total of 20 realizations, or 40 total
objective functions.

4.1.2 Description of the Tests

We consider five search algorithms for testing: two versions of the Spendley, Hext, and
Himsworth algorithm, two versions of the Nelder-Mead algorithm, and one version of
the Sequential Multi-Directional Search algorithm. The two variants of the Spendley,
Hext, and Himsworth algorithms are as described in section 2.1.2. In particular,
recall that for a given dimension n, one variant will shrink the simplex if the age of
any simplex point exceeds 2(n + 1), while the other variant will shrink the simplex
if the age of any simplex point exceeds (n + 1). Our two variants of the Nelder-
Mead simplex algorithms are almost identical; however, one variant is as described
by Avriel [1] and thus is subject to the anomaly described in Chapter 3, while the
other variant, due to [6] and discussed in section 2.2.2, is not subject to the anomaly
described in Chapter 3. Finally, the Sequential Multi-Directional Search algorithm is
as described in section 2.3.2.

Each of the five algorithms was run 1,000 times, with a different randomly gen-
erated starting point, on each of the 40 objective functions. For each of the 1,000
starting points, we ran tests with each of four different function call budgets: 20,
30, 40, and 50. Each run would count the number of function calls made for the
run thus far, and if at any time the given limit on the function budget was reached,
the particular run would stop, and the search would return its current best function
value. While it is likely to assume that the algorithms will not get highly accurate
results with a 20 function call budget on a 5-dimensional objective function, using
these budgets we can draw some preliminary conclusions as to which algorithms tend

43

to perform better for more or less equivalent amounts of computational work. (For
the simplex searches, function evaluations are the dominant computational cost.)

For each function, each run began by starting with a fixed-length right-angled
simplex. By fixed-length, we mean that there is a primary vertex, and every other
simplex vertex is at the same fixed distance away from the primary vertex. The
starting vertex locations for the initial simplex of each run were chosen in the following
manner. One primary vertex for the simplex was chosen by a pseudo-random number
generator [12]. (Actually, the random number generator generates a number between
0 and 10 for each component of the initial point: a 4-dimensional point will require
generating 4 random numbers.) The remaining vertices for the initial simplex were
found by stepping a distance of 2.0 from the primary vertex in each of the positive
coordinate directions. This completely determines (n+1) initial vertices, thus creating
a fixed-length right-angled simplex as desired.

Again, to allow for comparisons across the five algorithms, the starting positions
of the simplices were random within a given algorithm, but uniform across the algo-
rithms. In other words, the starting simplex location for the first test was the same
for every algorithm on every objective function, and so on. If results are obtained
for a given test run of the algorithms for the same objective function, it is safe to as-
sume during further examination that the algorithms all started with the same initial
simplex.

4.1.3 The Function Minima Density Plots

Upon the termination of a given run for a given algorithm, the algorithm returns the
best function value it has found thus far. Note that for these tests, only the value of
the best point is returned, not the location. Therefore, for a given function budget
on a given objective function, each algorithm records 1,000 function values, each
representing the best result for a given run. These 1,000 values are then combined
to make a density plot, which is briefly described below. One density plot represents
1,000 runs by a given algorithm on a given objective function with a given budget.
Figure 4.2 shows three examples of density plots.

Above each density plot is a title associating it with a given testing scenario. The
“2-D” states that this is a density plot for a 2-dimensional objective function. The
other dimensions would be written in a similar fashion. Next is “Realization 2c.”
As mentioned above, there are two trends, constant and quadratic, and there are five
realizations of these two trends for each dimension. The “2¢” means this is the second
realization for the dimension, constant trend. Quadratic trends would be designated
with a “q.”

Next is the name of the algorithm that generated the results which are represented
by the density plot. The two variants of the Spendley, Hext and Himsworth algorithm
are noted by “Spendley Hext & Himsworth” followed by either “2(n+1)” or “n+1,”
depending on the choice of shrinking criterion. For the two variants of the Nelder-
Mead algorithm, both are prefaced with “Nelder Mead”, however the variant based on
Avriel’s description has the suffix “With Equal Sign Ambiguities,” while the variant
due to Lagarias, Reeds, Wright, and Wright has the suffix “No Ambiguities.” The

44

Distribution of Best Values for 2-D Realization 2c, Nelder Mead - With Equal Sign Ambiguities V=30

B |

..................

Distribution of Best Values for 2-D Realization 2c, Nelder Mead - No Ambiguities V=30

nnnnnnnnnnnnnn

Distribution of Best Values for 2-D Realization 2c, Hooke and Jeeves V=30

..................

Figure 4.2: Three examples of density plots.

Sequential Multi-Directional Search is labeled as such. Finally, we have density plots
for the Hooke and Jeeves pattern search algorithm [4] to compare against the simplex
searches.

The final piece of information on the title bar says “V=30." The value of V
indicates that the function call budget was set at 30 for this particular example.
Other budget values are noted in a similar fashion.

Looking now at the plot itself, there are segmented vertical lines representing
the function values of the known minima of the given objective function, which run
along the bottom of the plot. In this example, we see that the function has seven
known minima, with the global minimum having a function value of approximately
—35. Note that the location of these minima were actually determined by Siefert [16]
through empirical means by running 1,000 pattern searches on each objective function
until the searches converged.

As mentioned above, one plot represents 1,000 runs from different starting points,
each of which returns the lowest function value found. If a given function value is
returned by a search, it is represented on the density plot by drawing a small Gaussian
curve at that value. This is done for each of the 1,000 solutions. The Gaussian curves
are then added together via superposition to yield the overall curve shown in the plot.
Looking at the first example, there are clear peaks around the function minima lines,
indicating that the search was able to reach the vicinity of the true function minima.
The highest peak indicates the most likely convergence location, which in this case
is the minimum around —19. Note that these plots are not histograms due to the
Gaussian nature of the curves used to build them.

These plots are a useful way to compare the general performance of our search
algorithms, and all of the analysis in the next section is based on them. Again,
remember that these plots contain data on function values only and say nothing
about the location of the points which generate these values. For more information

45

Distribution of Best Values for 2-D Realization 1q, Sequential Multi-Directional Search V=20

. LI

Distribution of Best Values for 2-D Realization 1q, Spendley Hext & Himsworth - 2(n+1) V=20

Distribution of Best Values for 2-D Realization 1q, Spendley Hext & Himsworth - n+1 V=20

..................

Figure 4.3: The lower two density plots show the advantage of the (n + 1) shrinking
criterion over the 2(n+ 1) criterion for the Spendley, Hext and Himsworth algorithm.

about these type of plots, as well as the scripts used to build them from the data,
see [20].

4.2 General Comparison of the Search Methods

This section contains general trends we noted while examining the density plots for
all of the tests. It is important to note that these trends are solely the result of obser-
vation, and should therefore be looked upon as suggestions for future investigations,
rather than as definitive evidence.

First, we address the difference between our two proposed shrinking criteria for
Spendley, Hext, and Himsworth: 2(n + 1) and (n + 1). For this, consider the two
sets of density plots shown in Figures 4.3 and 4.4. From these, and similar results,
we conclude that a shrinking criterion of age exceeding 2(n + 1) is too conservative.
A criterion of (n + 1) should be sufficient and should approach a minimum function
value significantly faster than the 2(n + 1) case, which appears to be wasting too
many function calls before shrinking. Returning to Figures 4.3 and 4.4 we can see
that both versions of Spendley, Hext, and Himsworth are likely to return a similar
distribution of function values. However, the (n + 1) case appears to be identifying
the function values at the known minimizers much faster, and it has only used 20
function calls. In Figure 4.4, after 50 function calls to a 4-dimensional function, the
peaks of the (n+1) case shows clear signs of identifying the function values associated
with the known minimizers, while the 2(n+1) case has only achieved a relatively even
distribution of values and it not very useful at this budget level.

Next we consider the issue of performance across the algorithms. While it is not
possible to make a definitive observation with only the density plots, the following

46

Distribution of Best Values for 4-D Realization 1c, Sequential Multi-Directional Search V=50

Distribution of Best Values for 4-D Realization 1c, Spendley Hext & Himsworth - 2(n+1) V=50

Distribution of Best Values for 4-D Realization 1c, Spendley Hext & Himsworth - n+1 V=50

..................

Figure 4.4: An example similar to Figure 4.3, but for a different objective function.

example represents a general trend observed across our tests of the simplex searches.
Consider the six density plots in Figure 4.5. Sequential Multi-Directional Search and
Hooke and Jeeves have much shorter “tails” in the upper range for the function value
than either of the Spendley, Hext and Himsworth or Nelder-Mead algorithms. This
suggests that given a finite budget of function calls, the former two algorithms are
more likely to identify the function values associated with the known minimizers, while
the latter algorithms appear to be much slower to arrive at similar conclusions. This
is interesting because Hooke and Jeeves is a pattern search, and although Sequential
Multi-Directional Search uses follows a simplex method, it is also a pattern search.
This would suggest that given a fixed budget, patterns searches may be more effective
than the simplex searches.

Having made the previous observation, we now consider what happens as we in-
crease the “budget” for the number of function evaluations allowed. Figures 4.6 and 4.7
show density plots of the six algorithms on the same 3-dimensional objective function
with function call budgets of 20 and 50 respectively. The question we would like to
answer is: Given enough function calls, which, if any, of the algorithms will identify
the known minimizers? Our density plots for the preliminary tests we ran do not
provide a definitive answer, but they invite conjecture. Looking first at Figure 4.6,
it is clear that all of the algorithms do not yet have sufficient information to allow a
proper identification. This is evident from the long “tails” at the right end of each
plot (though, once again, we see a clear advantage enjoyed by the pattern searches).
Looking now at Figure 4.7, we see that for the most part, all of the algorithms are
much closer to identifications, with greatly reduced tails to the right. Avriel’s ver-
sion of Nelder-Mead, however (the upper-most density plot), has not decreased the
length of its tail at all, suggesting that the algorithm may be prematurely stuck at a
nonstationary point.

47

Distribution of Best Values for 3-D Realization 5q, Nelder Mead - With Equal Sign Ambiguities V=50

H
20 10 o 0 »
Best Vave Found
Distribution of Best Values for 3-D Realization 5q, Nelder Mead - No Ambiguities V=50
2 10 3 0 »
Best Value Found
Distribution of Best Values for 3-D Realization 5q, Hooke and Jeeves V=50
H
20 10 o 0 »
Best Ve Found
Distribution of Best Values for 3-D Realization 54, Sequential Mutti-Directional Search V=50
2 10 3 0 »
Best Value Found
Distribution of Best Values for 3-D Realization 5q, Spendley Hext & Himsworth - 2(n+1) V=50
H

20 10 o 10 20

Best Value Found

Distribution of Best Values for 3-D Realization 5q, Spendley Hext & Himsworth - n+1 V=50

Densiy

= 10 o 10 2

Best Value Found

Figure 4.5: These density plots representing each algorithm suggest that the pattern
searches show more satisfactory results than the simplex searches.

48

Distribution of Best Values for 3-D Realization 4q, Nelder Mead - With Equal Sign Ambiguities V=20

012

Densiy
008

2 10 o 10 20

Best Value Found

Distribution of Best Values for 3-D Realization 4q, Nelder Mead - No Ambiguities V=20

012

Densiy
o oo oo

20 10 o 10 2

Best Value Found

Distribution of Best Values for 3-D Realization 4q, Hooke and Jeeves V=20

H
H
20 10 13 1 »
Best Ve Found
Distribution of Best Values for 3-D Realization 4, Sequential Mutti-Directional Search V=20
2 10 3 0 »
Best Value Found
Distribution of Best Values for 3-D Realization 4q, Spendley Hext & Himsworth - 2(n+1) V=20
H
H
20 10 13 1 »
Best Ve Found
Distribution of Best Values for 3-D Realization 4, Spendley Hext & Himsworth - n+1 V=20

2 10 o 10 2

Best Value Found

Figure 4.6: Density plots representing each algorithm on a 3-dimensional function
given a budget of 20.

49

Distribution of Best Values for 3-D Realization 4q, Nelder Mead - With Equal Sign Ambiguities V=50

g L N — — —
. i i A AN i
2 10 o 0 »
Best value Found
Distribution of Best Values for 3-D Realization 4q, Nelder Mead - No Ambiguties V=50
s LJ N R -
—20 10 o 10 »
Bost Value Found
Distribution of Best Values for 3-D Realization 4q, Hooke and Jeeves V=50
H
2 10 o 0 »
Best value Found
Distribution of Best Values for 3-D Realization 4, Sequential Multi-Directional Search V=50
—20 10 o 10 »
Bost Value Found
Distribution of Best Values for 3-D Realization 4q, Spendley Hext & Himsworth - 2(n+1) V=50
H
2 10 o 0 »
Best value Found
Distribution of Best Values for 3-D Realization 4q, Spendley Hext & Himsworth - n+1 V=50

20 10 o 10 2

Best Value Found

Figure 4.7: Density plot representing the same objective function as Figure 4.6, but
with a budget of 50.

90

Distribution of Best Values for 3-D Realization 1q, Nelder Mead - With Equal Sign Ambiguities V=50

...................

Distribution of Best Values for 3-D Realization 1q, Nelder Mead - No Ambiguities V=50

nnnnnnnnnnnnnn

Distribution of Best Values for 3-D Realization 1q, Hooke and Jeeves V=50

L=

..................

Figure 4.8: These plots show the clear advantage of the Nelder-Mead implementation
based on Lagarias, Reeds, Wright, and Wright.

4.3 Visual Results of Nelder-Mead Improvement

In this section we present some results to demonstrate the effectiveness of the cor-
rections made to the Nelder-Mead algorithm discussed in Chapter 3, where we noted
that ambiguities in the original specification for the algorithm could lead to situations
in which the simplex collapses. This collapses forces the search to return a nonsta-
tionary point near the boundary of the feasible region. However, the Lagarias, Reeds,
Wright, and Wright description avoids this pitfall.

It would be a good assumption that these results should be apparent in the density
plots for our two implementations of Nelder-Mead. This was, in fact, the case, for
practically all of the problems tested. Two examples are shown in Figures 4.8 and 4.9.
The difference between the algorithms is clearly shown by the extreme tails to the right
ends of the density plots for the implementation that does not resolve the ambiguities.
Similar tails are not visible in the density plots for the implementation that does
resolve the ambiguities. As mentioned in Chapter 3, a few carefully placed equal
signs can have a significant impact on the reliability of the Nelder-Mead algorithm.

ol

Distribution of Best Values for 4-D Realization 4q, Nelder Mead - With Equal Sign Ambiguities V=50

00 005 010 o015
T
[
Vil

£
H
&
g
i

Distribution of Best Val D Realization 4q, Nelder Mead - No Ambiguities V=50

- N L
Distribution of Best Values for 4-D Realization 4q, Hooke and Jeeves V=50

Figure 4.9: Another example of the clear advantage of the Nelder-Mead implementa-
tion based on Lagarias, Reeds, Wright, and Wright, over that described by Avriel.

52

Chapter 5

Conclusion

We have presented three popular algorithms used for nonlinear function optimization.
The common folklore for these algorithms, particularly the very popular algorithm
of Nelder and Mead, is that they are fairly straightforward and simple to implement.
We have shown that, in reality, this is not the case; great care must be taken to
implement these algorithms.

For each of the three simplex algorithms, we have given thorough modern algo-
rithmic descriptions. For the simplex search of Spendley, Hext, and Himsworth, we
finalized a well-defined description based on the incorporation of point age for use in
the shrinking criterion, addressed the removal of simplex oscillation, and presented
various versions of stopping criteria. We presented a description of the Nelder-Mead
simplex algorithm that would prevent certain instances of unnecessary simplex col-
lapse. We also created and described a successful sequential version of Torczon’s
Multi-Directional Search (MDS), explaining the methods used to reformulate MDS,
which was originally designed to be executed on multiple processors, for use with
single processor machines.

We carefully examined the Nelder-Mead simplex algorithm, an extremely popular
non-derivative-based search method. We explained the importance of clarifying small
ambiguities regarding the effect the placement of tests for equalities have on simplex
contraction. We also examined four popular Nelder-Mead implementations in use
today to determine that two did not prevent premature simplex collapse of the sort
we identified. The success of the Lagarias, Reeds, Wright, and Wright variant of the
algorithm [6] over the Avriel variant of the algorithm [1] was verified in the function
minima density plots. We also used the density plots to make some preliminary
general observations regarding the overall performance of these searches, both against
variants of one another, as well as against one of the classic pattern search methods.

Finally, we have implemented all three simplex searches using C++ classes. These
classes, which will be made publicly available, provide an easy means of use. Further,
they will enable additional research into the behavior of the simplex searches.

While many questions have been answered, this research has provided many sug-
gestions for further experimentation. All of the trends across the algorithms that
were discussed were based solely on the density plots. Utilizing the actual data used
to create the plots, it should be possible to provide a more quantitative analysis of

93

the overall behavior of these algorithms. Additional work could be accomplished re-
garding the local behavior of these searches in the vicinity of a minimizer. This would
suggest analyzing their algorithmic efficiency using simple quadratic objective func-
tions, which would provide a description of their success in converging to an isolated
point.

It was also mentioned that the simplex searches were more likely to locate function
minima located in the corners of the feasible region. This suggests a further study
of the behavior of these algorithms along the boundaries of the feasible region. This
should encompass situations where minimizers were either near or at the boundary.

After preliminary research in all of these areas has been achieved, it would also be
interesting to compare and contrast in a quantitative fashion the behavior of simplex
searches against pattern searches. Many of these algorithms are available for use, but
there is little along the lines of suggestion for choosing a given search algorithm over
another for a specific objective function.

There is a general desire to use these simplex searches for research purposes, but
many find that there is a great deal of literature to wade through, and that there
is no one place to look for descriptions, implementations, and suggestions on how to
proceed. We feel that our research has provided a clear and consistent description for
the simplex searches. This should help to make the simplex searches easier to use.
Further, this should expedite new research projects in the field, as well as allow for a
better interpretation of research that has already been completed.

04

Appendix A
The C++4 Code

This chapter contains the C+4 code for the three classes created to execute the
simplex search of Spendley, Hext and Himsworth, the simplex search of Nelder and
Mead, and the Sequential Multi-Directional Search. The code requires special matrix
definitions defined in the header files vec.h, cmat.h, and subscrpt.h. These files
require no modification by the user and are explained to a greater extent in [16].

This code implements general-use simplex search algorithms for either uncon-
strained or bound constrained problems. It is therefore possible to run these searches
on any choice of nonlinear objective functions. It is up to the user to define the
objective function on which a search is to be run. The objective function should be
defined by the user in objective.cc in the function

fcn(int dimension, double *point, double& value, int& flag),

where dimension contains the dimension of the search; point is a pointer to an array
of doubles of size dimension, which represents the point at which the function is to
be evaluated; value will contain f(point) upon the function’s termination; and flag
is 1 if the function evaluation was successful, 0 otherwise.

The user may also choose to modify the respective header file: objective.h.
While it is possible to define the objective function directly within objective.cc,
that would require recompiling the source code every time a search were to be used on
a new function. Therefore, the suggested method of defining the objective function,
as well as the method used in this research, is to compile the objective function
separately as its own binary. Then fcn() would simply execute this separate binary
every time a function evaluation occurs. If this method is used, changing the objective
function simply requires the creation of a new function binary.

Our tests used objective functions created by a function generator know as the
krigifier [19]. More information on the krigifier can be found in [11]. Further infor-
mation on the scripts used to incorporate the objective functions into the search code
can be found in [16].

For all of the three searches, the code is meant to be used in three stages. First,
the user should call one of the several initialization functions provided to set up
an initial simplex. Then, the user should call the ExploratoryMoves() function to
execute the actual simplex search. Finally, any of the query functions can be used to
retrieve the results of a search. If at any time the user would like to start over with a

95

new initial simplex, this can be achieved by re-calling the initialization routines and
running through the cycle described above again.

o6

A.1 C+H+ Code for the Simplex Search of Spend-
ley, Hext, and Himsworth

A.1.1 SHH - Header File

/*SHHSearch.h

x*declarations of Spendley, Hext and Himsworth Simplex Search
*Adam Gurson College of William & Mary 1999

*/

#ifndef _SHHSearch_
#tdefine _SHHSearch_

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include "objective.h"
#include "vec.h"
#include "cmat.h"
#include "subscrpt.h"

#define stoppingStepLength 10e-8 /*sqrt(fabs(3.0 * (4.0/3.0 - 1.0) - 1.0))*/
#ifndef DEBUG

#define DEBUG O

#endif

//#ifndef maxCalls

//#define maxCalls 200

//#endif

class SHHSearch

{

public:

// constructors and destructors

SHHSearch(int dim) ;
// default constructor

SHHSearch(int dim, double Sigma);
// constructor which allows shrinking coefficient initialization

SHHSearch(const SHHSearch& Original);
// deep copy constructor

o7

~“SHHSearch() ;
// destructor

// algorithmic routines

void ExploratoryMoves();
// use Spendley, Hext and Himsworth to find function minimum

void ReplaceSimplexPoint(int index, const Vector<double>& newPoint);
// replaces simplex point indexed at index with newPoint

void CalculateFunctionValue(int index);
// finds the f(x) value for the simplex point indexed at index and
// replaces the proper value in simplexValues

void SetSigma(double newSigma) ;
// allows the user to set a new value for
// the shrinking coefficient

bool Stop();
// returns true if the stopping criteria have been satisfied

void fcnCall(int n, double *x, double& f, int& flag);
// indirection of function call for purposes of keeping an accurate
// tally of the number of function calls

// Simplex-altering functions

void InitRegularTriangularSimplex(const Vector<double> *basePoint,
const double edgeLength);

// deletes any existing simplex and replaces it with a regular

// triangular simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex)

// edgelLength is the length of each edge of the "triangle"

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.

//

// NOTE: basePoint is assumed to be of proper dimension
void InitFixedLengthRightSimplex(const Vector<double> *basePoint,

const double edgelLength);
// deletes any existing simplex and replaces it with a right-angle

o8

// simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex)

// edgeLength is to be the length of each simplex side extending

// from the basePoint along each positive coordinate direction.

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.
//

// NOTE: basePoint is assumed to be of proper dimension

void InitVariableLengthRightSimplex(const Vector<double> #*basePoint,
const doublex edgelLengths);

// deletes any existing simplex and replaces it with a right-angle

// simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex)

// edgelengths points to an array of n doubles, where n is the

// dimension of the given search. x_1 will then be located

// a distance of edgeLengths[0] away from the basepoint along the

// the x_1 axis, x_2 is edgelengths[1] away on the x_2 axis, etc.

//

// functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED.

//

// NOTE: basePoint and edgeLengths are assumed to be of proper dimension

void InitGeneralSimplex(const Matrix<double> *plex);

// deletes any existing simplex and replaces it with the one

// pointed to by plex

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.
//

// NOTE: THIS ASSUMES THAT plex IS OF PROPER DIMENSION

void ReadSimplexFile(istream& fp);

// may also pass cin as input stream if desired

// input the values of each trial point

// NOTE: THIS FUNCTION WILL ONLY ACCEPT n+1 POINTS

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.

// Query functions

int GetFunctionCalls() const;

99

// number of objective function evaluations

void GetMinPoint(Vector<double>* &minimum) const;

// simplex point which generates the best objective function

// value found thus far

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

double GetMinVal() const;
// best objective function value found thus far

void GetCurrentSimplex(Matrix<double>* &plex) const;

// performs a deep copy of the simplex to a Matrix pointer

// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

void GetCurrentSimplexValues(double* &simValues) const;

// performs a deep copy of the simplexValues array to a double pointer
// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

void GetCurrentSimplexAges(double* &simAges) const;

// performs a deep copy of the simplexAges array to a double pointer
// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

int GetVarNo() const;
// returns the number of dimensions

int GetTolHit() const;
// returns toleranceHit

void printSimplex() const;
// prints out the simplex points by row, their corresponding f(x)
// values, and the number of function calls thus far

private:

void FindMinReplacementIndices(int replacementSkipIndex);

// sets minIndex to the simplex index of the point which generates
// the lowest value of f(x)

// sets replacementIndex to the simplex index of the point which
// generates the highest value of f(x) excluding the point at

// maxSkipIndex

// if maxSkipIndex is set to a valid simplex index, the

// replacement search will skip over that index during its search

60

// this is used to prevent the simplex from getting stuck
// in a "back and forth" infinite loop

void FindCentroid();
// finds the centroid

void FindReflectionPt();
// finds the reflection point and sets its f(x) value

void ShrinkSimplex();
// this function goes through the simplex and reduces the
// lengths of the edges adjacent to the best vertex

int AgesToo01d();

// determines when to shrink the simplex based on

// how old the individual simplex points are

// returns 1 if true and a shrink should occur, 0 otherwise

void UpdateAges(int newIndex) ;
// increments the ages of all simplex points EXCEPT the point
// with index newIndex, which gets an age of 1

void ResetAges();
// resets all simplex point ages to 1

int dimensions; // the number of dimensions

// (the dimension of the problem)
Matrix<double> *simplex; // the current simplex
double #*simplexValues; // their corresponding f(x) values
double *simplexAges; // their corresponding ages
double sigma; // shrinking coefficient
int minIndex; // index of point generating min f(x)
int replacementIndex; // index of point to be replaced
Vector<double> *centroid; // the current centroid
Vector<double> *reflectionPt; // the reflection point
double reflectionPtValue; // the value of f(reflectionPt)
long functionCalls; // tally of number of function calls
int toleranceHit; // 1 if stop due to tolerance, 0 if funcCalls

// the following vectors are simply extra storage space
// that are used by functions that require a vector of
// size = dimensions

Vector<double> *scratch, *scratch2?;

61

#tendif

A.1.2 SHH - ExploratoryMoves()

void SHHSearch::ExploratoryMoves ()

{
toleranceHit = 0;
replacementIndex = -1;
do {

FindMinReplacementIndices(replacementIndex) ;
if (DEBUG) printSimplex();

// if any point has been here for a significantly long
// time, the simplex is most likely circling a local
// minimum, so shrink the simplex
if (AgesToo01d()) {

ShrinkSimplex() ;

ResetAges();

FindMinReplacementIndices(-1);

if (DEBUG) printSimplex();

// stop if at maximum function calls

if (functionCalls >= maxCalls) {
FindMinReplacementIndices(-1);
return;

}
Y // if

FindCentroid();
FindReflectionPt () ;
ReplaceSimplexPoint (replacementIndex, *reflectionPt);
simplexValues[replacementIndex] = reflectionPtValue;
UpdateAges (replacementIndex) ;

} while (!Stop()); // while stopping criteria is not satisfied

FindMinReplacementIndices(-1);

} // ExploratoryMoves()

A.1.3 SHH - Constructors and Destructor

SHHSearch: :SHHSearch(int dim)
{
dimensions = dim;
functionCalls = 0;

62

minIndex = 0;
simplex = NULL;
simplexValues = NULL;
simplexAges = NULL;
centroid = new Vector<double>(dimensions,0.0);
reflectionPt = new Vector<double>(dimensions,0.0);
sigma = 0.5;
scratch = new Vector<double>(dimensions,0.0);
scratch?2 = new Vector<double>(dimensions,0.0);

} // SHHSearch() (default)

SHHSearch: :SHHSearch(int dim, double Sigma)
{
dimensions = dim;
functionCalls = 0;
minIndex = 0;
simplex = NULL;
simplexValues = NULL;
simplexAges = NULL;
centroid = new Vector<double>(dimensions,0.0);
reflectionPt = new Vector<double>(dimensions,0.0);
sigma = Sigma;
scratch = new Vector<double>(dimensions,0.0);
scratch?2 = new Vector<double>(dimensions,0.0);
} // SHHSearch() (special)

SHHSearch: :SHHSearch(const SHHSearch& Original)

{
dimensions = Original.GetVarNo();
Original.GetCurrentSimplex(simplex) ;
Original.GetCurrentSimplexValues(simplexValues) ;
Original.GetCurrentSimplexAges (simplexAges) ;
sigma = Original.sigma;
minIndex = Original.minlIndex;
replacementIndex = Original.replacementIndex;
if (centroid != NULL) delete centroid;
centroid = new Vector<double>(*(0Original.centroid));
if (reflectionPt != NULL) delete reflectionPt;
reflectionPt = new Vector<double>(*(Original.reflectionPt));
reflectionPtValue = Original.reflectionPtValue;
functionCalls = Original.functionCalls;

} // SHHSearch() (copy constructor)

SHHSearch: : “SHHSearch()
{

63

if (simplex != NULL) delete simplex;

if (simplexValues != NULL) delete [] simplexValues;

if (simplexAges != NULL) delete [] simplexAges;

delete centroid;

delete reflectionPt;

delete scratch;

delete scratch?2;

//NOTE: Matrix and Vector classes have their own destructors

} // ~“SHHSearch

A.1.4 SHH - Simplex Initialization Routines

void SHHSearch::InitRegularTriangularSimplex(const Vector<double> *basePoint,

{

const double edgeLength)

// This routine constructs a regular simplex (i.e., one in which all of
// the edges are of equal length) following an algorithm given by Jacoby,
// Kowalik, and Pizzo in "Iterative Methods for Nonlinear Optimization
// Problems," Prentice-Hall (1972). This algorithm also appears in

// Spendley, Hext, and Himsworth, "Sequential Application of Simplex

// Designs in Optimisation and Evolutionary Operation," Technometrics,

// Vol. 4, No. 4, November 1962, pages 441--461.

int 1i,j;
double p, q, temp;
Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions,0.0);
for(int col = 0; col < dimensions; col++) {
(*plex) [0] [col] = (*basePoint) [col];
}

temp = dimensions + 1.0;
q = ((sqrt(temp) - 1.0) / (dimensions * sqrt(2.0))) * edgeLength;
p=q+ ((1.0 / sqrt(2.0)) * edgelength);

for(i = 1; i <= dimensions; i++) {
for(j = 0; j <= i-2; j++) {
(xplex) [i1[j] = (xplex)[01[j]1 + q;
} // inner for 1
j=i-14
(*plex) [i]1[j1 = (xplex) [0]1[j]1 + p;
for(j = i; j < dimensions; j++) {
(*plex) [11[j] = (*plex) [0]1[j]1 + q;
} // inner for 2
} // outer for

64

InitGeneralSimplex(plex) ;
delete plex;
} // InitRegularTriangularSimplex()

void SHHSearch::InitFixedLengthRightSimplex(const Vector<double> *basePoint,
const double edgelLength)
{
// to take advantage of code reuse, this function simply turns
// edgelLength into a vector of dimensions length, and then
// calls InitVariableLengthRightSimplex()

double* edgelengths = new double[dimensions];
for(int i = 0; i < dimensions; i++) {
edgeLengths[i] = edgeLlength;
}
InitVariableLengthRightSimplex(basePoint,edgelengths);
delete [] edgelLengths;
} // InitFixedLengthRightSimplex ()

void SHHSearch::InitVariableLengthRightSimplex(const Vector<double> *basePoint,
const doublex edgeLengths)
{
Matrix<double> *plex = new Matrix<double>(dimensions+l,dimensions,0.0);
for(int i = 0; i < dimensions; i++) {
// we’re building the basePoint component-by-component into
// the (n+1)st row
(*plex) [dimensions] [i] = (*basePoint) [i];

// now fill in the ith row with the proper point
for(int j = 0; j < dimensions; j++) {
(xplex) [11[j1 = (*basePoint)[j];
ifCi==3j)
(*plex) [i1 [j] += edgelLengths[i];
}
} // for
InitGeneralSimplex(plex) ;
delete plex;
} // InitVariableLengthRightSimplex()

void SHHSearch::InitGeneralSimplex(const Matrix<double> *plex)
{
functionCalls = 0;
if(simplex != NULL) { delete simplex; }
if(simplexValues != NULL) { delete [] simplexValues;}
simplex = new Matrix<double>((*plex));

65

simplexValues = new double[dimensions+1];
simplexAges = new double[dimensions+1];
ResetAges();

int success;

for(int i = 0; i <= dimensions; i++) {
xscratch = (*plex).row(i);
fcnCall(dimensions, (*kscratch).begin(), simplexValues[i], success);
if (!success) cerr<<"Error with point #"<<i<<" in initial simplex.\n";

} // for

FindMinReplacementIndices(-1);

} // InitGeneralSimplex()

A.1.5 SHH - Other Unique Functions

void SHHSearch::ReadSimplexFile(istream& fp)
{
if (fp == NULL) {
cerr<<"No Input Stream in ReadSimplexFile() !\n";
return; // There’s no file handle!!

Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions);
for(int i = 0; i <= dimensions; i++) {

for (int j = 0; j < dimensions; j++) {

fp > (xplex) [1]1[j];

} // inner for
} // outer for
InitGeneralSimplex(plex) ;
delete plex;

} // ReadSimplexFile()

bool SHHSearch: :Stop()

{
if (maxCalls > -1) {
if (functionCalls >= maxCalls)
return true;

double mean = 0.0;
for(int i = 0; i <= dimensions; i++) {
if(i !'= minIndex) {

mean += simplexValues[i];

Y /7 if

66

} //for
mean /= (double)dimensions;

// Test for the suggested Nelder-Mead stopping criteria
double total = 0.0;
for(int i = 0; i <= dimensions; i++) {
total += pow(simplexValues[i] - mean ,2);
} //for
total /= ((double)dimensions + 1.0);
total = sqrt(total);

if (total < stoppingStepLength) {
toleranceHit = 1;
return true;

}

else
return false;

} // StopQ)

void SHHSearch::GetMinPoint(Vector<double>* &minimum) const
{

minimum = new Vector<double>((*simplex).row(minIndex));
} // GetMinPoint ()

double SHHSearch::GetMinVal() const
{

return simplexValues[minIndex];
} // GetMinVal()

void SHHSearch::GetCurrentSimplexAges(double* &simAges) const
{
simAges = new double[dimensions+1];
for(int i = 0; i <= dimensions; i++) {
simAges[i] = simplexAges[il;
} // for
} // GetCurrentSimplexAges()

void SHHSearch::FindMinReplacementIndices(int replacementSkipIndex)
{
if(simplexValues == NULL) {
cerr << "Error in FindMinReplacementIndices() - "
<< "The vector of simplexValues is NULL!!\n";
return;

67

int newMinIndex = O;
replacementIndex = 0;
double min = simplexValues[0];
double replaceVal = simplexValues[0];
if (replacementSkipIndex == 0) {
replacementIndex = 1;
replaceVal = simplexValues[1];
}
for(int i = 1; i <= dimensions; i++) {
if(simplexValues[i] < min) {
min = simplexValues[i];
newMinIndex = i;
Y /7 if
if((i !'= replacementSkipIndex) && (simplexValues[i] > replaceVal)) {
replaceVal = simplexValues[i];
replacementIndex = i;
Y // if
} // for
if (simplexValues[newMinIndex] < simplexValues[minIndex]) {
minIndex = newMinIndex;
ResetAges();
}
} // FindMinReplacementIndices()

void SHHSearch::FindCentroid()
{
(*centroid) = 0.0;
for(int i = 0; i <= dimensions; i++) {

if(i != replacementIndex) {
(*centroid) = (*centroid) + (*simplex).row(i);
Y // if
} // for

(xcentroid) = (*centroid) * (1.0 / (double)dimensions);
} // FindCentroid()

void SHHSearch::FindReflectionPt ()
{

(xreflectionPt)
(xreflectionPt)
int success;
fcnCall(dimensions, (*reflectionPt).begin(), reflectionPtValue, success);
if (!success) {
cerr << "Error finding f(x) for reflection point at"
<< "function call #" << functionCalls << ".\n";

Y /7 if

0.0;
((*centroid) * 2.0) - (*simplex).row(replacementIndex);

68

} // FindReflectionPt ()

void SHHSearch::ShrinkSimplex ()
{
Vector<double> *lowestPt = scratch;
*lowestPt = (*simplex).row(minIndex);
Vector<double> *tempPt = scratch2;
int success;
for(int i = 0; i <= dimensions; i++) {
if(i !'= minIndex) {
*tempPt = (*simplex).row(i);
(*tempPt) = (*tempPt) + (sigma * ((*lowestPt)-(*tempPt)));
for(int j = 0; j < dimensions; j++) {
(*simplex) [11[j] = (*tempPt) [j1;
} // inner for
fcnCall(dimensions, (*tempPt) .begin() ,simplexValues[i],success);
if (!success) cerr << "Error shrinking the simplex.\n";

// stop if at maximum function calls
if (functionCalls >= maxCalls) {return;}

Y /7 if
} // outer for
} // ShrinkSimplex()

int SHHSearch::AgesToo01d()
{
if(simplexAges[minIndex] > (dimensions+1))
return 1;
else
return O;
} // AgesToo01d()

void SHHSearch::UpdateAges(int newIndex)

{
for(int i = 0; i <= dimensions; i++) {
if(i == newIndex)
simplexAges[i] = 1;
else
simplexAges[i]++;
} // for

} // ResetAges()

void SHHSearch::ResetAges()
{

69

for(int i = 0; i <= dimensions; i++)
simplexAges[i] = 1;
} // ResetAges()

void SHHSearch::printSimplex() const
{
for(int i = 0; i <= dimensions; i++) {
cout << "Point: ";
for (int j = 0; j < dimensions; j++) {
cout << (xsimplex) [i][j]l << " ";
} // inner for
cout << " Value: " << simplexValues[i]
<< " Age: " << simplexAges[i] << "\n";
} // outer for

cout << "\nFCalls: " << functionCalls << "\n\n";
} // printSimplex()

A.2 C++4 Code for the Simplex Search of Nelder
and Mead

A.2.1 NM - Header File

/*NMSearch.h

*declarations of Nelder Mead Simplex Search
*Adam Gurson College of William & Mary 1999
*/

#ifndef _NMSearch_
#tdefine _NMSearch_

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include "objective.h"
#include "vec.h"
#include "cmat.h"
#include "subscrpt.h"

// default definitions: should be defined by user in objective.h,
// but just in case...

/*#ifndef maxCalls

#define maxCalls -1 // means program will only terminate

70

// based on stopping criteria
#endifx/
#define stoppingStepLength 10e-8 /*sqrt(fabs(3.0 * (4.0/3.0 - 1.0) - 1.0))*/
#ifndef DEBUG
#define DEBUG O
#endif

class NMSearch

{

public:

// constructors and destructors

NMSearch(int dim) ;
// default constructor

NMSearch(int dim, double Alpha, double Beta,
double Gamma, double Sigma);
// constructor which allows coefficient initialization

NMSearch(const NMSearch& Original);
// deep copy constructor

“NMSearch() ;
// destructor

// algorithmic routines

void ExploratoryMoves();
// use Nelder Mead to find function minimum

void ReplaceSimplexPoint(int index, const Vector<double>& newPoint);
// replaces simplex point indexed at index with newPoint

void CalculateFunctionValue(int index);
// finds the f(x) value for the simplex point indexed at index and
// replaces the proper value in simplexValues

void SetAlpha(double newAlpha);

void SetBeta(double newBeta);

void SetGamma(double newGamma) ;

void SetSigma(double newSigma);

// these functions allow the user to set values of the reflection,
// contraction, expansion, and shrinking coefficients

bool Stop();

71

// returns true if the stopping criteria have been satisfied

void fcnCall(int n, double *x, double& f, int& flag);
// indirection of function call for purposes of keeping an accurate
// tally of the number of function calls

// Simplex-altering functions

void InitRegularTriangularSimplex(const Vector<double> *basePoint,
const double edgeLength);

// deletes any existing simplex and replaces it with a regular

// triangular simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex)

// edgelength is the length of each edge of the "triangle"

//

// functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED.

//

// NOTE: basePoint is assumed to be of proper dimension

void InitFixedLengthRightSimplex(const Vector<double> *basePoint,
const double edgelLength);

// deletes any existing simplex and replaces it with a right-angle

// simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex)

// edgelLength is to be the length of each simplex side extending

// from the basePoint along each positive coordinate direction.

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.

//

// NOTE: basePoint is assumed to be of proper dimension

void InitVariableLengthRightSimplex(const Vector<double> #*basePoint,
const doublex edgelLengths);

// deletes any existing simplex and replaces it with a right-angle

// simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex)

// edgelengths points to an array of n doubles, where n is the

// dimension of the given search. x_1 will then be located

// a distance of edgeLengths[0] away from the basepoint along the

72

// the x_1 axis, x_2 is edgelLengths[1] away on the x_2 axis, etc.
//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.
//

// NOTE: basePoint and edgelLengths are assumed to be of proper dimension

void InitGeneralSimplex(const Matrix<double> *plex);

// deletes any existing simplex and replaces it with the one

// pointed to by plex

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.
//

// NOTE: THIS ASSUMES THAT plex IS OF PROPER DIMENSION

void ReadSimplexFile(istream& fp);

// may also pass cin as input stream if desired

// input the values of each trial point

// NOTE: THIS FUNCTION WILL ONLY ACCEPT n+1 POINTS

//

// functionCalls is reset to O and ALL FUNCTION VALUES ARE CALCULATED.

// Query functions

int GetFunctionCalls() const;
// number of objective function evaluations

void GetMinPoint(Vector<double>* &minimum) const;

// simplex point which generates the best objective function

// value found thus far

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

double GetMinVal() const;
// best objective function value found thus far

void GetCurrentSimplex(Matrix<double>* &plex) const;

// performs a deep copy of the simplex to a Matrix pointer

// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

void GetCurrentSimplexValues(double* &simValues) const;
// performs a deep copy of the simplexValues array to a double pointer
// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

int GetVarNo() const;

73

// returns the dimension of the problem

int GetTolHit() const;
// returns toleranceHit

void printSimplex() const;
// prints out the simplex points by row, their corresponding f(x)
// values, and the number of function calls thus far

private:

void FindMinMaxIndices();

// sets minIndex to the simplex index of the point which generates
// the lowest value of f(x)

// sets maxIndex to the simplex index of the point which generates
// the highest value of f(x)

int SecondHighestPtIndex();
// returns simplex index of the point which
// generates the second highest value of f(x)

void FindCentroid();
// finds the centroid

void FindReflectionPt();
// finds the reflection point and sets its f(x) value

void FindExpansionPt();
// finds the expansion point and sets its f(x) value

void FindContractionPt();
// finds the contraction point and sets its f(x) value

void ShrinkSimplex();
// this function goes through the simplex and reduces the
// lengths of the edges adjacent to the best vertex

int dimensions; // the number of dimensions

// (the dimension of the problem)
Matrix<double> *simplex; // the current simplex
double *simplexValues; // their corresponding f(x) values
double alpha; // reflection coefficient
double beta; // contraction coefficient
double gamma; // expansion coefficient

74

double sigma; // shrinking coefficient

int minIndex; // index of point generating min f(x)

int maxIndex; // index of point generating max f(x)
Vector<double> *centroid; // the current centroid

Vector<double> *reflectionPt; // the reflection point

double reflectionPtValue; // the value of f(reflectionPt)
Vector<double> *expansionPt; // the expansion point

double expansionPtValue; // the value of f(expansionPt)
Vector<double> *contractionPt; // the contraction point

double contractionPtValue; // the value of f(contractionPt)

double maxPrimePtValue; // min(f (maxIndexPoint) ,reflectionPtValue)
long functionCalls; // tally of number of function calls

int toleranceHit; // 1 if stop due to tolerance, 0 if funcCalls
int maxPrimePtId; // set by FindContractionPt() and used in

// ExploratoryMoves() to branch in pos. 3

// the following vectors are simply extra storage space
// that are used by functions that require a vector of
// size = dimensions

Vector<double> *scratch, *scratch2;

};

#tendif

A.2.2 NM - ExploratoryMoves()

void NMSearch::ExploratoryMoves ()

{
double secondHighestPtValue; // used for contraction/reflection decision
toleranceHit = 0;

FindMinMaxIndices() ;
do {
if (DEBUG) printSimplex();
FindCentroid();
secondHighestPtValue = simplexValues[SecondHighestPtIndex()];
// reflection step
FindReflectionPt () ;

// stop if at maximum function calls and update the simplex
if (functionCalls >= maxCalls) {
FindMinMaxIndices() ;
ReplaceSimplexPoint (maxIndex, *reflectionPt);
simplexValues[maxIndex] = reflectionPtValue;
FindMinMaxIndices() ;

75

return;

}
// possibility 1

if (simplexValues[minIndex] > reflectionPtValue) {
FindExpansionPt(); // expansion step

if (reflectionPtValue > expansionPtValue) {
ReplaceSimplexPoint (maxIndex, *expansionPt);
simplexValues[maxIndex] = expansionPtValue;

} // inner if

else {
ReplaceSimplexPoint (maxIndex, *reflectionPt);
simplexValues [maxIndex] = reflectionPtValue;

} // else

} // if for possibility 1

// possibility 2

else if((secondHighestPtValue > reflectionPtValue) &&
(reflectionPtValue >= simplexValues[minIndex])) {
ReplaceSimplexPoint (maxIndex, *reflectionPt);
simplexValues[maxIndex] = reflectionPtValue;
} // else if for possibility 2

// possibility 3
else if(reflectionPtValue >= secondHighestPtValue) {
FindContractionPt(); // contraction step
if (maxPrimePtId == 0) {
if(contractionPtValue > maxPrimePtValue) {
ShrinkSimplex();
} // inner if
else {
ReplaceSimplexPoint (maxIndex, *contractionPt);
simplexValues[maxIndex] = contractionPtValue;
} // inner else
} // maxPrimePtId ==
else if (maxPrimePtId == 1) {
if (contractionPtValue >= maxPrimePtValue) {
ShrinkSimplex() ;
} // inner if
else {
ReplaceSimplexPoint (maxIndex, *contractionPt);
simplexValues[maxIndex] = contractionPtValue;

76

} // inner else
} // maxPrimePtId ==
} // else if for possibility 3

// if we haven’t taken care of the current simplex, something’s wrong
else {
cerr << "Error in ExploratoryMoves() - "
<< "Unaccounted for case.\nTerminating.\n";
return;
}
FindMinMaxIndices() ;
} while (!Stop()); // while stopping criteria is not satisfied
} // ExploratoryMoves()

A.2.3 NM - Constructors and Destructor
NMSearch: :NMSearch(int dim)

{
dimensions = dim;
functionCalls = 0;
simplex = NULL;
simplexValues = NULL;
centroid = new Vector<double>(dimensions,0.0);
reflectionPt = new Vector<double>(dimensions,0.0);
expansionPt = new Vector<double>(dimensions,0.0);
contractionPt = new Vector<double>(dimensions,0.0);
alpha = 1.0;
beta = 0.5;
gamma = 2.0;
sigma = 0.5;

scratch = new Vector<double>(dimensions,0.0);
scratch2 = new Vector<double>(dimensions,0.0);
} // NMSearch() (default)

NMSearch: :NMSearch(int dim, double Alpha, double Beta,
double Gamma, double Sigma)
{
dimensions = dim;
functionCalls = 0;
simplex = NULL;
simplexValues = NULL;
centroid = new Vector<double>(dimensions,0.0);
reflectionPt = new Vector<double>(dimensions,0.0);
expansionPt = new Vector<double>(dimensions,0.0);
contractionPt = new Vector<double>(dimensions,0.0);

7

alpha
beta =

gamma =

sigma

Alpha;
Beta;

Gamma ;
Sigma;

scratch = new Vector<double>(dimensions,0.0);

scratch?2 =

new Vector<double>(dimensions,0.0);

} // NMSearch() (special)

NMSearch::

{

NMSearch(const NMSearch& Original)

dimensions = Original.GetVarNo();
Original.GetCurrentSimplex(simplex);
Original.GetCurrentSimplexValues(simplexValues);

alpha
beta =

Original.alpha;
Original.beta;

gamma = Original.gamma;

sigma = Original.sigma;
minIndex = Original.minIndex;
maxIndex = Original.maxIndex;

if(centroid '= NULL) delete centroid;
centroid = new Vector<double>(*(Original.centroid));
if (reflectionPt != NULL) delete reflectionPt;

reflectionPt =
reflectionPtValue =

new Vector<double>(*(Original.reflectionPt));
Original.reflectionPtValue;

if (expansionPt != NULL) delete expansionPt;

expansionPt =
expansionPtValue
if (contractionPt
contractionPt =

new Vector<double>(*(0Original.expansionPt)) ;
= Original.expansionPtValue;
I= NULL) delete contractionPt;

new Vector<double>(*(Original.contractionPt));

contractionPtValue = Original.contractionPtValue;

functionCalls =

Original.functionCalls;

} // NMSearch() (copy constructor)

NMSearch::

{

“NMSearch()

if(simplex != NULL) delete simplex;
if (simplexValues != NULL) delete [] simplexValues;

delete
delete
delete
delete
delete
delete

//NOTE:

centroid;
reflectionPt;
expansionPt;
contractionPt;
scratch;
scratch2;

Matrix and Vector classes have their own destructors

} // ~NMSearch

78

A.2.4 NM - Simplex Initialization Routines

void NMSearch::InitRegularTriangularSimplex(const Vector<double> *basePoint,

{
//
//
//
//
//
//
//

const double edgelength)

This routine constructs a regular simplex (i.e., one in which all of
the edges are of equal length) following an algorithm given by Jacoby,
Kowalik, and Pizzo in "Iterative Methods for Nonlinear Optimization
Problems," Prentice-Hall (1972). This algorithm also appears in
Spendley, Hext, and Himsworth, "Sequential Application of Simplex
Designs in Optimisation and Evolutionary Operation," Technometrics,
Vol. 4, No. 4, November 1962, pages 441--461.

int 1i,j;

double p, q, temp;

Matrix<double> *plex = new Matrix<double>(dimensions+l,dimensions,0.0);
for(int col = 0; col < dimensions; col++) {

}

(*plex) [0] [col] = (*basePoint) [col];

temp = dimensions + 1.0;

q

= ((sqrt(temp) - 1.0) / (dimensions * sqrt(2.0))) * edgelLength;

p=q+ ((1.0 / sqrt(2.0)) * edgelength);

for(i = 1; i <= dimensions; i++) {

for(j = 0; j <= i-2; j++) {
(xplex) [i1[j] = (xplex)[01[j]1 + q;
} // inner for 1
j=i-1
(xplex) [11[j] = (xplex) [0]1[j]1 + p;
for(j = i; j < dimensiomns; j++) {
(xplex) [11[j] = (*plex) [0]1[j]1 + q;
} // inner for 2

} // outer for

InitGeneralSimplex(plex) ;
delete plex;
} // InitRegularTriangularSimplex()

void NMSearch::InitFixedLengthRightSimplex(const Vector<double> *basePoint,

{

const double edgelLength)

// to take advantage of code reuse, this function simply turns
// edgelength into a vector of dimensions length, and then
// calls InitVariableLengthRightSimplex()

79

double* edgelLengths = new double[dimensions];
for(int i = 0; i < dimensions; i++) {
edgelLengths[i] = edgeLlength;
}
InitVariableLengthRightSimplex(basePoint,edgelLengths);
delete [] edgelengths;
} // InitFixedLengthRightSimplex()

void NMSearch::InitVariableLengthRightSimplex(const Vector<double> *basePoint,
const doublex edgeLengths)
{
Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions,0.0);
for(int i = 0; i < dimensions; i++) {
// we’re building the basePoint component-by-component into
// the (n+1l)st row
(x¥plex) [dimensions] [i] = (*basePoint) [i];

// now fill in the ith row with the proper point
for(int j = 0; j < dimensions; j++) {
(xplex) [11[j1 = (*basePoint) [j1;
if(i==3j)
(*plex) [i1 [j] += edgelLengths[i];
}
} // for
InitGeneralSimplex(plex) ;
delete plex;
} // InitVariableLengthRightSimplex()

void NMSearch::InitGeneralSimplex(const Matrix<double> *plex)
{
functionCalls = 0;
if(simplex != NULL) { delete simplex; }
if(simplexValues != NULL) { delete [] simplexValues;}
simplex = new Matrix<double>((*plex));
simplexValues = new double[dimensions+1];

int success;

for(int i = 0; i <= dimensions; i++) {
xscratch = (*plex).row(i);
fcnCall(dimensions, (*scratch).begin(), simplexValues[i], success);
if (!success) cerr<<"Error with point #"<<i<<" in initial simplex.\n";

} // for

FindMinMaxIndices();

} // InitGeneralSimplex()

80

A.2.5 NM - Other Unique Functions

void NMSearch::ReadSimplexFile(istream& fp)
{
if (fp == NULL) {
cerr<<"No Input Stream in ReadSimplexFile() !\n";
return; // There’s no file handle!!

Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions);
for(int i = 0; i <= dimensions; i++) {

for (int j = 0; j < dimensions; j++) {

fp >> (*plex) [i]1[j];

} // inner for
} // outer for
InitGeneralSimplex(plex) ;
delete plex;

} // ReadSimplexFile()

bool NMSearch::Stop()
{
if (maxCalls > -1) {
if (functionCalls >= maxCalls)
return true;

double mean = 0.0;

for(int i = 0; i <= dimensions; i++) {

if(i != minIndex) {
mean += simplexValues[i];
y /7 if
} //for

mean /= (double)dimensions;

// Test for the suggested Nelder-Mead stopping criteria
double total = 0.0;
for(int i = 0; i <= dimensions; i++) {
total += pow(simplexValues[i] - mean ,2);
} //for
total /= ((double)dimensions + 1.0);
total = sqrt(total);

if(total < stoppingStepLength) {

81

toleranceHit = 1;
return true;

}

else
return false;

} // StopQ)

void NMSearch: :GetMinPoint (Vector<double>* &minimum) const

{

minimum = new Vector<double>((*simplex).row(minIndex));
} // GetMinPoint ()

double NMSearch::GetMinVal() const
{

return simplexValues[minIndex];
} // GetMinVal()

void NMSearch::FindMinMaxIndices ()
{
if (simplexValues == NULL) {
cerr << "Error in FindMinMaxIndices() - "
<< "The vector of simplexValues is NULL!!\n";

return;
}
minIndex = 0;
maxIndex = dimensions;

double min = simplexValues[0];
double max = simplexValues[dimensions];
for(int i = 1; i <= dimensions; i++) {
if(simplexValues[i] < min) {
min = simplexValues[i];

minIndex = i;

y /7 if

if(simplexValues[dimensions-i] > max) {
max = simplexValues[dimensions-i];
maxIndex = dimensions - 1i;

y /7 if

} // for
} // FindMinMaxIndices()

int NMSearch: :SecondHighestPtIndex ()
{
if (simplexValues == NULL) {
cerr << "Error in SecondHighestPtValue() - "
<< "The vector of simplexValues is NULL!!\n";

82

return -1;
}
int secondMaxIndex = minIndex;
double secondMax = simplexValues[minIndex];
for(int i = 0; i <= dimensions; i++) {
if (i != maxIndex) {
if(simplexValues[i] > secondMax) {
secondMax = simplexValues[i];
secondMaxIndex = i;
} // inner if
} // outer if
} // for
return secondMaxIndex;
} // SecondHighestPtValue()

void NMSearch::FindCentroid()
{
(*centroid) = 0.0;
for(int i = 0; i <= dimensions; i++) {

if(i != maxIndex) {
(*centroid) = (*centroid) + (*simplex).row(i);
Y // if
} // for

(*centroid) = (*centroid) * (1.0 / (double)dimensions);
} // FindCentroid()

void NMSearch: :FindReflectionPt ()
{

(*reflectionPt)
(*reflectionPt)

0.0;
((xcentroid) * (1.0 + alpha)) -
(alpha * (*simplex).row(maxIndex));

int success;
fcnCall(dimensions, (kreflectionPt).begin(), reflectionPtValue, success);
if (!success) {
cerr << "Error finding f(x) for reflection point at"
<< "function call #" << functionCalls << ".\n";
+ /7 if
} // FindReflectionPt ()

void NMSearch::FindExpansionPt ()
{

0.0;
((*CentI'Oid) * (10 - gamma)) +
(gamma * (xreflectionPt));

(xexpansionPt)
(*expansionPt)

int success;

83

fcnCall(dimensions, (*expansionPt).begin(), expansionPtValue, success);
if (!success) {
cerr << "Error finding f(x) for expansion point at"
<< "function call #" << functionCalls << ".\n";
r// if
} // FindExpansionPt ()

void NMSearch::FindContractionPt ()
{
// need to first define maxPrimePt
Vector<double> *maxPrimePt = scratch;
if (simplexValues[maxIndex] <= reflectionPtValue) {
*maxPrimePt = (*simplex).row(maxIndex);
maxPrimePtValue = simplexValues[maxIndex];
maxPrimePtId = 1;
y /7 if
else {
maxPrimePt = reflectionPt;
maxPrimePtValue = reflectionPtValue;
maxPrimePtId = O0;
} // else

(xcontractionPt) = ((*centroid) * (1.0 - beta)) +
(beta * (*maxPrimePt));
int success;
fcnCall(dimensions, (kcontractionPt).begin(), contractionPtValue, success);
if (!success) {
cerr << "Error finding f(x) for contraction point at"
<< "function call #" << functionCalls << ".\n";
r// if
} // FindContractionPt ()

void NMSearch::ShrinkSimplex()
{
// stop if at maximum function calls
if (functionCalls >= maxCalls) {return;}

Vector<double> *lowestPt = scratch;
*lowestPt = (*simplex).row(minIndex);
Vector<double> *tempPt = scratch2;
int success;
for(int i = 0; i <= dimensions; i++) {
if(i !'= minIndex) {
*tempPt = (*simplex).row(i);
(xtempPt) = (*tempPt) + (sigma * ((*lowestPt)-(*tempPt)));

84

for(int j = 0; j < dimensions; j++) {

(*simplex) [i] [j1 = (*tempPt) [j];
} // inner for
fcnCall(dimensions, (*tempPt) .begin() ,simplexValues[i],success);
if (!success) cerr << "Error shrinking the simplex.\n";

// stop if at maximum function calls
if (functionCalls >= maxCalls) {return;}

y // if
} // outer for
} // ShrinkSimplex()

void NMSearch::SetAlpha(double newAlpha)
{

alpha = newAlpha;
} // SetAlpha()

void NMSearch::SetBeta(double newBeta)
{

beta = newBeta;
} // SetBeta()

void NMSearch::SetGamma(double newGamma)
{

gamma = newGamma;
} // SetGamma()

void NMSearch::printSimplex() const
{
for(int i = 0; i <= dimensions; i++) {
cout << "Point: ";
for (int j = 0; j < dimensions; j++) {
cout << (xsimplex) [i][j] << " ";
} // inner for
cout << " Value: " << simplexValues[i]
<< " Age: " << simplexAges[i] << "\n";
} // outer for

cout << "\nFCalls: " << functionCalls << "\n\n";
} // printSimplex()

85

A.3 C++4 Code for the Sequential Multi-Directional
Search

A.3.1 SMDS - Header File

/*SMDSearch.h

x*Declarations of Sequential version of Torczon’s Multi-Directional Search
*Adam Gurson College of William & Mary 2000

*/

#ifndef _SMDSearch_
#tdefine _SMDSearch_

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include "objective.h"
#include "vec.h"
#include "cmat.h"
#include "subscrpt.h"

#define stoppingStepLength 10e-8 /*sqrt(fabs(3.0 * (4.0/3.0 - 1.0) - 1.0))*/
#ifndef DEBUG

#define DEBUG O

#endif

//#ifndef maxCalls

//#define maxCalls 200

//#endif

class SMDSearch

{
public:
// constructors and destructors

SMDSearch(int dim) ;
// default constructor

SMDSearch(int dim, double Sigma);
// constructor which allows shrinking coefficient initialization

SMDSearch(const SMDSearch& Original);
// deep copy constructor

86

~“SMDSearch() ;
// destructor

// algorithmic routines

void ExploratoryMoves();
// use SMD to find function minimum

void ReplaceSimplexPoint(int index, const Vector<double>& newPoint);
// replaces simplex point indexed at index with newPoint

void CalculateFunctionValue(int index);
// finds the f(x) value for the simplex point indexed at index and
// replaces the proper value in simplexValues

void SetSigma(double newSigma) ;
// allows the user to set a new value for
// the shrinking coefficient

bool Stop();
// returns true if the stopping criteria have been satisfied

void fcnCall(int n, double *x, double& f, int& flag);
// indirection of function call for purposes of keeping an accurate
// tally of the number of function calls

// Simplex-altering functions

void InitRegularTriangularSimplex(const Vector<double> *basePoint,
const double edgeLength);

// deletes any existing simplex and replaces it with a regular

// triangular simplex in the following manner:

//

// basePoint points to a point that will be the "origin" of the

// simplex points (it will be a part of the simplex and

// its function value is found here)

// edgelLength is the length of each edge of the "triangle"

//

// functionCalls is reset to 0

// delta is set to edgeLength

//

// NOTE: basePoint is assumed to be of proper dimension

void InitFixedLengthRightSimplex(const Vector<double> *basePoint,

87

//
//
//
//
//
//
//
//
//
//
//
//
//

const double edgeLength);
deletes any existing simplex and replaces it with a right-angle
simplex in the following manner:

basePoint points to a point that will be the "origin" of the
simplex points (it will be a part of the simplex and
its function value is found here)

edgelength is to be the length of each simplex side extending
from the basePoint along each positive coordinate direction.

functionCalls is reset to 0
delta is set to edgeLength

NOTE: basePoint is assumed to be of proper dimension

void InitVariableLengthRightSimplex(const Vector<double> #*basePoint,

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

const double* edgeLengths);
deletes any existing simplex and replaces it with a right-angle
simplex in the following manner:

basePoint points to a point that will be the "origin" of the
simplex points (it will be a part of the simplex and
its function value is found here)

edgelLengths points to an array of n doubles, where n is the
dimension of the given search. x_1 will then be located
a distance of edgelLengths[0] away from the basepoint along the
the x_1 axis, x_2 is edgelLengths[1] away on the x_2 axis, etc.

functionCalls is reset to 0
delta is set to the largest value in edgeLength[]

NOTE: basePoint and edgelengths are assumed to be of proper dimension

void InitGeneralSimplex(const Matrix<double> *plex);

//
//
//
//
//
//
//
//
//
//
//

deletes any existing simplex and replaces it with the one
pointed to by plex

functionCalls is reset to 0
delta is set to the length of the longest simplex side

NOTE: THIS ASSUMES THAT plex IS OF PROPER DIMENSION
AND THAT basePoint is in the LAST row of plex

The basePoint is a point that will be the "origin" of the
simplex points (it will be a part of the simplex and

88

// its function value is calculated here)

void ReadSimplexFile(istream& fp);

// may also pass cin as input stream if desired

// input the values of each trial point

// NOTE: THIS FUNCTION WILL ONLY ACCEPT n+1 POINTS

//

// NOTE: assumes that the basePoint is the last point entered
//

// functionCalls is reset to 0

// delta is set to the length of the longest simplex side

// Query functions

int GetFunctionCalls() const;
// number of objective function evaluations

void GetMinPoint(Vector<double>* &minimum) const;

// simplex point which generates the best objective function

// value found thus far

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

double GetMinVal() const;
// best objective function value found thus far

void GetCurrentSimplex(Matrix<double>* &plex) const;

// performs a deep copy of the simplex to a Matrix pointer

// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

void GetCurrentSimplexValues(doublex &simValues) const;

// performs a deep copy of the simplexValues array to a double pointer
// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

void GetCurrentSimplexVBits(int* &simVBits) const;

// performs a deep copy of the simplexVBits array to a double pointer
// points to a newly allocated chunk of memory upon return

// USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY

int GetVarNo() const;
// returns the dimension of the problem

int GetTolHit() comnst;
// returns toleranceHit

89

void printSimplex() const;

// prints out the primary simplex points by row,

// their corresponding f(x) values, their validity status,
// and the number of function calls thus far

void printRefSimplex() const;

// prints out the reflection simplex points by row,

// their corresponding f(x) values, their validity status,
// and the number of function calls thus far

private:

void CreateRefSimplex();
// creates a reflection simplex from the primary simplex

void SwitchSimplices();
// swaps the primary and reflection simplices

void ShrinkSimplex();
// this function goes through the primary simplex and reduces the
// lengths of the edges adjacent to the best vertex

int GetAnotherIndex(int& index, int*& validBits);
// this is used to find another INVALID point in the simplex
// if all points are VALID, returns O, otherwise 1

void CalculateRefFunctionValue(int index) ;

// Like CalculateFunctionValue(), but for the Reflection Simplex
// (A user should not directly manipulate the reflection simplex,
// hence the private status of this function)

int dimensions; // the number of variables

// (the dimension of the problem)
Matrix<double> *simplex; // the current simplex
double *simplexValues; // their corresponding f(x) values
int *simplexVBits; // valid bits for the simplex values
int currentIndex; // used to step through the arrays
Matrix<double> *refSimplex; // the reflection simplex
double *refSimplexValues; // their corresponding f(x) values
int *refSimplexVBits; // valid bits for the simplex values
int refCurrentIndex; // used to step through the arrays

90

};

Vector<double> *minPt;
double minValue;

int minIndex;

double delta;

double sigma;

long functionCalls;
int toleranceHit;

//
//
//
//
//
//
//

the actual minimizer (i.e. best point seen)
f(minimizer)

the row index of minPt in the main simplex
our stopping criterion

shrinking coefficient

tally of number of function calls

1 if stop due to tolerance, 0 if funcCalls

// the following vectors are simply extra storage space
// that are used by functions that require a vector of

// size = dimensions

Vector<double> *scratch, *scratch2;

#endif

A.3.2 SMDS - ExploratoryMoves()

void SMDSearch: :ExploratoryMoves ()

{

int done;
int lastMinIndex = minIndex;
toleranceHit = O0;

do {
done = 0;
CreateRefSimplex();

if (DEBUG) {
printSimplex() ;
printRefSimplex() ;
}

// Go through the Reflection Simplex First
refCurrentIndex = lastMinlIndex;
while(!done && GetAnotherIndex(refCurrentIndex, refSimplexVBits)) {
CalculateRefFunctionValue (refCurrentIndex) ;
refSimplexVBits [refCurrentIndex] = 1;

if (DEBUG) printRefSimplex();

if (refSimplexValues[refCurrentIndex] < minValue) {
(*minPt) = (krefSimplex).row(refCurrentIndex);
minValue = refSimplexValues[refCurrentIndex];

lastMinIndex = minIndex;

91

minIndex = refCurrentIndex;

SwitchSimplices();
done = 1;
Y // if

if (functionCalls >= maxCalls) return;
} // while (reflection search)

// Go through the Primary Simplex Next

while(!done && GetAnotherIndex(currentIndex, simplexVBits)) {
CalculateFunctionValue (currentIndex) ;
simplexVBits[currentIndex] = 1;
// NOTE: currentIndex initialized in InitGeneralSimplex()

if (DEBUG) printSimplex();

if (simplexValues[currentIndex] < minValue) {
(*minPt) = (*ksimplex).row(currentIndex);
minValue = simplexValues[currentIndex];
lastMinIndex = minIndex;
minIndex = currentIndex;
done = 1;

Y /7 if

if(functionCalls >= maxCalls) return;
} // while (primary search)

// Still there’s no new min now, shrink
if(!done)
ShrinkSimplex () ;

} while (!Stop()); // while stopping criteria is not satisfied
} // ExploratoryMoves()

A.3.3 SMDS - Constructors and Destructor

SMDSearch: :SMDSearch(int dim)
{
dimensions = dim;
simplex = new Matrix<double>(dimensions+1,dimensions,0.0);
simplexValues = new double[dimensions+1];
simplexVBits = new int[dimensions+1];
refSimplex = new Matrix<double>(dimensions+1,dimensions,0.0);
refSimplexValues = new double[dimensions+1];
refSimplexVBits = new int[dimensions+1];

92

minPt = new Vector<double>(dimensions,0.0);
delta = -1.0;
sigma = 0.5;

functionCalls = 0;

scratch = new Vector<double>(dimensions,0.0);

scratch?2 = new Vector<double>(dimensions,0.0);
} // SMDSearch() (default)

SMDSearch: :SMDSearch(int dim, double Sigma)
{
dimensions = dim;
simplex = new Matrix<double>(dimensions+1,dimensions,0.0);
simplexValues = new double[dimensions+1];
simplexVBits = new int[dimensions+1];
refSimplex = new Matrix<double>(dimensions+1,dimensions,0.0);
refSimplexValues = new double[dimensions+1];
refSimplexVBits = new int[dimensions+1];
minPt = new Vector<double>(dimensions,0.0);
delta = -1.0;
sigma = Sigma;
functionCalls = 0;
scratch = new Vector<double>(dimensions,0.0);
scratch?2 = new Vector<double>(dimensions,0.0);
} // SMDSearch() (special)

SMDSearch: :SMDSearch(const SMDSearch& Original)

{
dimensions = Original.GetVarNo();
Original.GetCurrentSimplex(simplex) ;
Original.GetCurrentSimplexValues(simplexValues) ;
Original.GetCurrentSimplexVBits(simplexVBits);
if (minPt != NULL) delete minPt;
minPt = new Vector<double>(*(Original.minPt));
minValue = Original.minValue;
delta = Original.delta;
sigma = Original.sigma;
functionCalls = Original.functionCalls;

} // SMDSearch() (copy constructor)

SMDSearch: : “"SMDSearch ()

{
delete simplex;
delete [] simplexValues;
delete [] simplexVBits;
delete refSimplex;

93

delete [] refSimplexValues;

delete [] refSimplexVBits;

delete minPt;

delete scratch;

delete scratch2;

//NOTE: Matrix and Vector classes have their own destructors
} // ~SMDSearch

A.3.4 SMDS - Simplex Initialization Routines

void SMDSearch::InitRegularTriangularSimplex(const Vector<double> *basePoint,
const double edgelLength)
{
// This routine constructs a regular simplex (i.e., one in which all of
// the edges are of equal length) following an algorithm given by Jacoby,
// Kowalik, and Pizzo in "Iterative Methods for Nonlinear Optimization
// Problems," Prentice-Hall (1972). This algorithm also appears in
// Spendley, Hext, and Himsworth, "Sequential Application of Simplex
// Designs in Optimisation and Evolutionary Operation," Technometrics,
// Vol. 4, No. 4, November 1962, pages 441--461.

int 1i,j;
double p, q, temp;
Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions,0.0);
for(int col = 0; col < dimensions; col++) {
(*plex) [0] [col]l = (*basePoint) [col];
}

temp = dimensions + 1.0;
q = ((sqrt(temp) - 1.0) / (dimensions * sqrt(2.0))) * edgelLength;
p=q+ ((1.0 / sqrt(2.0)) * edgelLength);

for(i = 1; i <= dimensions; i++) {
for(j = 0; j <= i-2; j++) {
(xplex) [i1[j] = (xplex)[01[j]1 + q;
} // inner for 1
j =1i-1; // is this line necessary (redundant)
(xplex) [i1[j] = (*plex)[0]1[j]1 + p;
for(j = i; j < dimensions; j++) {
(xplex) [11[j] = (xplex) [0]1[j]1 + q;
} // inner for 2
} // outer for

delta = edgeLength;
InitGeneralSimplex(plex);

94

delete plex;
} // InitRegularTriangularSimplex()

void SMDSearch::InitFixedLengthRightSimplex(const Vector<double> *basePoint,
const double edgelLength)
{
// to take advantage of code reuse, this function simply turns
// edgelength into a vector of dimensions length, and then
// calls InitVariableLengthRightSimplex()

double* edgelengths = new double[dimensions];
for(int i = 0; i < dimensions; i++) {
edgelLengths[i] = edgeLength;
}
InitVariableLengthRightSimplex(basePoint,edgelengths);
delete [] edgelLengths;
} // InitFixedLengthRightSimplex ()

void SMDSearch::InitVariableLengthRightSimplex(const Vector<double> *basePoint,
const doublex edgelLengths)
{
Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions,0.0);
for(int i = 0; i < dimensions; i++) {
// we’re building the basePoint component-by-component into
// the (n+1)st row
(x¥plex) [dimensions] [i] = (*basePoint) [i];

// now fill in the ith row with the proper point
for(int j = 0; j < dimensions; j++) {
(xplex) [11[j1 = (*basePoint) [j];
if(i==j)
(*plex) [i1 [j] += edgelLengths[i];
}

if(edgeLengths[i] > delta) delta = edgelengths[il;
}
InitGeneralSimplex(plex) ;
delete plex;
} // InitVariableLengthRightSimplex()

void SMDSearch::InitGeneralSimplex(const Matrix<double> *plex)

{
functionCalls = 0;
(¥simplex) = (xplex);

95

// zero out the valid bits
for(int i = 0; i < dimensions; i++)
simplexVBits[i] = 0;

// NOTE: basePoint MUST be located in the last row of plex
Vector<double> basePoint = (*plex).row(dimensions);

// evaluate f(basePoint) and initialize it as the min

int success;

fcnCall(dimensions, (basePoint).begin(), simplexValues[dimensions], success);
if(!success) cerr<<"Error with basePoint in initial simplex.\n";
simplexVBits[dimensions] = 1;

(*minPt) = (basePoint);

minValue = simplexValues[dimensions];

currentIndex = minIndex = dimensions;

// if we still haven’t defined delta, go through the simplex and
// define delta to be the length of the LONGEST simplex side
double temp;
if (delta < 0.0) {
for(int j = 0; j < dimensions; j++) {
for (int k = j+1; k <= dimensions; k++) {
temp = (((*simplex).row(j)) - ((*simplex).row(k))).12norm();
if(temp > delta) delta = temp;
} // inner for
} // outer for
} // outer if

// if delta is still not defined, there is a definite problem
if(delta < 0.0)
cout << "Error in simplex initialization: delta not set.\n";
} // InitGeneralSimplex()

A.3.5 SMDS - Other Unique Functions

void SMDSearch::ReadSimplexFile(istream& fp)
{
if (fp == NULL) {
cerr<<"No Input Stream in ReadSimplexFile() !\n";
return; // There’s no file handle!!

Vector<double> #*basePoint = new Vector<double>(dimensions);
Matrix<double> *plex = new Matrix<double>(dimensions+1,dimensions);
for(int i = 0; i <= dimensions; i++) {

96

for (int j = 0; j < dimensions; j++) {
fp >> (*plex) [i]1[j];
} // inner for
} // outer for
(¥basePoint) = (*plex).row(dimensions);
InitGeneralSimplex(plex) ;
delete basePoint;
delete plex;
} // ReadSimplexFile()

bool SMDSearch: :Stop()
{
if (maxCalls > -1) {
if (functionCalls >= maxCalls)
return true;

}

if (delta < stoppingStepLength) {
toleranceHit = 1;
return true;

}
else
return false;

} // StopQ)

void SMDSearch: :GetMinPoint (Vector<double>* &minimum) const

{

minimum = new Vector<double>((*minPt)) ;
} // GetMinPoint ()

double SMDSearch: :GetMinVal() const
{

return minValue;
} // GetMinVal()

void SMDSearch::GetCurrentSimplexVBits(int* &simVBits) const
{
simVBits = new int[dimensions+1];
for(int i = 0; i <= dimensions; i++) {
simVBits[i] = simplexVBits[il;
} // for
} // GetCurrentSimplexValues ()

void SMDSearch::CreateRefSimplex()
{

97

// copy the known flip point over
for(int i = 0; i < dimensions; i++)

(*refSimplex) [currentIndex] [i] = (*simplex) [currentIndex][i];
refSimplexValues [currentIndex] = simplexValues[currentIndex];
refSimplexVBits [currentIndex] = simplexVBits[currentIndex];
refCurrentIndex = currentIndex;

// reflect the remaining points
for(int j = 0; j <= dimensions; j++) {
if(j !'= currentIndex) {
refSimplexVBits[j] = 0;
(*scratch) = ((*simplex).row(currentIndex) * 2.0) - (xsimplex).row(j);
for(int k = 0; k < dimensions; k++)
(*refSimplex) [j1[k] = (*scratch) [k];
Y // if
} // outer for
} // CreateRefSimplex()

void SMDSearch: :SwitchSimplices()

{
// this allows us to remove the need to delete and
// reallocate memory by simply swapping pointers
// and using the same two "simplex memory slots"
// for the entire search

Matrix<double> *tmpl = simplex;

double *tmp2 = simplexValues;
int *tmp3 = simplexVBits;
int tmp4 = currentIndex;

simplex = refSimplex;
simplexValues = refSimplexValues;
simplexVBits = refSimplexVBits;
currentIndex = refCurrentIndex;

refSimplex = tmpil;

refSimplexValues = tmp2;

refSimplexVBits = tmp3;

refCurrentIndex = tmp4;
} // SwitchSimplices()

void SMDSearch: :ShrinkSimplex ()

{
if (DEBUG) cout << "Shrinking Simplex.\n\n";

98

delta *= sigma;

currentIndex = minIndex;
Vector<double> *lowestPt = scratch;
*lowestPt = (*simplex).row(minIndex) ;
Vector<double> *tempPt = scratch2;

for(int i = 0; i <= dimensions; i++) {
if(i != minIndex) {
*xtempPt = (*simplex).row(i);
(xtempPt) = (xtempPt) + (sigma * ((xlowestPt)-(*tempPt)));
for(int j = 0; j < dimensions; j++) {
(*simplex) [i] [j1 = (*tempPt) [j];
} // inner for

simplexVBits[i] = 0;

Y /7 if
} // outer for
} // ShrinkSimplex()

int SMDSearch::GetAnotherIndex(int& index, int*& validBits)
{

if (!'validBits[index]) return 1;
int initiallndex = index;

do {
index++;
if(index > dimensions) index = 0;
} while ((index !'= initiallIndex) &&
(validBits[index]));

if(index == initiallIndex)
return O;
else
return 1;
} // GetAnotherIndex()

void SMDSearch::CalculateRefFunctionValue(int index)
{
xscratch = (xrefSimplex).row(index);
int success;
fcnCall(dimensions, (*scratch).begin(),
refSimplexValues[index], success);
if (!success) cerr<<"Error calculating point at index "

99

<< index << "in CalculateFunctionValue() .\n";
} // CalculateFunctionValue()

void SMDSearch::printSimplex() const
{

cout << "Primary Simplex:\n";

for(int i = 0; i <= dimensions; i++) {
cout << "Point: ";
for (int j = 0; j < dimensions; j++) {
cout << (xsimplex) [i][j] << " ";
} // inmner for
cout << " Value: " << simplexValues[i];

if(simplexVBits[i])

cout << " Valid\n";
else
cout << " Invalid\n";

} // outer for

cout << "FCalls: " << functionCalls
<< " Delta: " << delta << "\n\n";
} // printSimplex()

void SMDSearch::printRefSimplex() const
{

cout << "Reflection Simplex:\n";

for(int i = 0; i <= dimensions; i++) {
cout << "Point: ";
for (int j = 0; j < dimensions; j++) {
cout << (xrefSimplex)[i][j] << " ";
} // inner for
cout << " Value: " << refSimplexValues[i];

if (refSimplexVBits[i])

cout << " Valid\n";
else
cout << " Invalid\n";

} // outer for
cout << "FCalls: " << functionCalls

<< " Delta: " << delta << "\n\n";
} // printRefSimplex()

100

A.4 Functions Common to All Three Searches

void Search::ReplaceSimplexPoint(int index, const Vector<double>& newPoint)
{
for(int i = 0; i < dimensions; i++) {
(*simplex) [index] [i] = newPoint[i];
Y // for
} // ReplaceSimplexPoint ()

void Search::CalculateFunctionValue(int index)
{

xscratch = (*simplex) .row(index);

int success;

fcnCall(dimensions, (*kscratch).begin(), simplexValues[index], success);

if (!success) cerr<<"Error calculating point in CalculateFunctionValue().\n";
} // CalculateFunctionValue()

void Search::fcnCall(int n, double *x, double& f, int& flag)
{

fen(n, x, £, flag);

functionCalls++;
} // fcnCall()

int Search::GetFunctionCalls() const
{

return functionCalls;
} // GetFunctionCalls()

void Search::GetCurrentSimplex(Matrix<double>* &plex) const
{

plex = new Matrix<double>((*simplex));
} // GetCurrentSimplex()

void Search::GetCurrentSimplexValues(double* &simValues) const
{
simValues = new double[dimensions+1];
for(int i = 0; i <= dimensions; i++) {
simValues[i] = simplexValues[i];
} // for
} // GetCurrentSimplexValues()

int Search::GetVarNo() const

{

return dimensions;
} // GetVarNo()

101

int Search::GetTolHit() const
{

return toleranceHit;
} // GetTolHit ()

void Search::SetSigma(double newSigma)

{
sigma = newSigma;
} // SetSigma()

102

Bibliography

[1] Mordecai Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[2] P. R. Benyon. Remark AS R15. Function minimization using a simplex proce-
dure. Applied Statistics, 25(1):97, 1976.

[3] John M. Chambers and J. E. Ertel. Remark AS R11. A remark on algorithm
AS 47 ‘Function minimization using a simplex procedure’. Applied Statistics,
23(2):250-251, 1974

[4] Elizabeth D. Dolan. Pattern search behavior in nonlinear optimization. Honors
Thesis, Department of Computer Science, College of William & Mary, Williams-
burg, Virginia 23187-8795, May 1999. Accepted with Highest Honors.

[5] I. D. Hill. Remark AS R28. A remark on algorithm AS 47: Function minimization
using a simplex procedure. Applied Statistics, 27(3):380-382, 1978.

[6] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence properties of the Nelder-Mead simplex method in low dimensions.
SIAM Journal on Optimization, 9(1):112-147, 1998.

[7] K. I. M. McKinnon. Convergence of the Nelder-Mead simplex method to a
nonstationary point. SIAM Journal on Optimization, 9(1):148-158, 1998.

[8] J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308-313, January 1965.

[9] O’Neill, Chambers, Ertel, Benyon, and Hill. nelmin.f. Found in Statlib at
http://lib.stat.cmu.edu/apstat/47, 1971.

[10] R. O’Neill. Algorithm AS 47. Function minimization using a simplex procedure.
Applied Statistics, 20(3):338-345, 1971.

[11] Anthony Padula. Interpolation and pseudorandom function generation. Honors
Thesis, May 2000. Department of Mathematics, College of William & Mary,
Williamsburg, Virginia 23185-8795. Accepted with High Honors.

[12] S. K. Park and K. W. Miller. Random number generators: good ones are hard
to find. Communications of the ACM, 31:1192-1201, 1988.

103

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Michael J. D. Powell. A direct search optimization method that models the objec-
tive and constraint functions by linear interpolation. In Advances in Optimization
and Numerical Analysis, Proceedings of the 6th Workshop on Optimization and
Numerical Analysis, Oazaca, Mezico, volume 275, pages 51-67, Dordrecht, 1994.
Kluwer Academic Publishers.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes In C: The Art of Scientific Computing: Second Edition.
Cambridge University Press, The Pitt Building, Trumpington Street, Cambridge
CB2 1RP, 1992.

D. E. Shaw, R. W. M. Wedderburn, and Alan Miller. minim.f. Found in Statlib
at http://1lib.stat.cmu.edu/apstat/47, August 1991.

Christopher Siefert. Model-assisted pattern search. Honors Thesis, May 2000.
Department of Computer Science, College of William & Mary, Williamsburg,
Virginia 23185-8795. Accepted with Highest Honors.

W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex
designs in optimisation and evolutionary operation. Technometrics, 4(4):441—
461, November 1962.

Virginia Torczon. Multi-Directional Search: A Direct Search Algorithm for Paral-
lel Machines. PhD thesis, Department of Mathematical Sciences, Rice University,
Houston, Texas, 1989; available as Tech. Rep. 90-07, Department of Computa-
tional and Applied Mathematics, Rice University, Houston, Texas 77005-1892.

Michael W. Trosset. The krigifier: A procedure for generating pseudorandom
nonlinear objective functions for computational experimentation. Technical Re-
port ICASE Interim Report 35, Institute for Computer Applications in Science
and Engineering, Mail Stop 132C, NASA Langley Research Center, Hampton,
Virginia 23681-2199, 1999.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-PLUS.
Statistics and computing. Springer-Verlag, New York, 1999.

104

