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Abstract

Computer simulations of complex physical phenomena are used in many contexts, includ-
ing that of engineering design. Increasingly scientists and engineers have also been trying
to optimize problems defined by such simulations (e.g. to determine design parameters for
a physical product). However, these problems often have several features that hinder the
use of standard optimization techniques. The lack of derivative information and numerical
error induced by the simulation can cause problems for derivative-based optimization meth-
ods. Likewise, extreme computational expense can make the use of direct search methods
problematic.

The Model-Assisted Pattern Search (MAPS) algorithm, which is the subject of this re-
search, attempts to address the issue. While maintaining a pattern search framework, MAPS
makes use of easily constructed surrogates to the objective function in order to speed the op-
timization process. Numerical results for MAPS and several other algorithms are presented
here for a variety of different objective functions.
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Chapter 1

Introduction

1.1 Motivation

Scientists and engineers in all disciplines have turned to computer simulations to supple-
ment traditional methods of experimentation. Often these simulations replace expensive or
impossible physical tests, and allow for analysis of these physical systems at a significantly
reduced cost. Though the simulation may take hours or days to complete one run, the net
cost of the simulation is often far less than that of its physical counterpart. Increasingly,
scientists and engineers have also been using these simulations to find the “best” possible
design parameters for a physical product. This process is called optimization. One example
of optimizing such a simulated system is the helicopter rotor blade studied by Booker et
al. [3]. The goal of optimizing the design problem represented by this computer simulation
was the design of a better rotor blade by choosing certain properties of the blade. It is
this issue of the optimization of problems defined by computationally expensive computer
simulations, such as the rotor blade simulation, which this research addresses.

Functions represented by expensive simulations tend to have characteristics which make
traditional optimization methods unsuitable. Often, derivatives are unavailable. Further,
approximations to the derivative may be unreliable due to variations induced by numerical
error in the computer simulation of the objective. The T-WAFER problem [16, 12] is a
simulation with such variation, as shown in Figure 1.1. The “furrows” in this function have
the potential to cause problems for derivative-based optimization methods. Direct search
methods, which do not require derivatives, do require a relatively large number of function
evaluations. For the problems of interest to us, there is a high computational expense for
each evaluation of the objective function, which makes the use of direct search methods
problematic. Thus we turn to other alternatives.

The Surrogate Management Framework (SMF) outlined by Booker et al. [3], offers one
such alternative. The basic idea of SMF is to use a global approximation to the objective
function to accelerate the search for a minimizer. The SMF uses this approximation to guide
a pattern search, which is a type of direct search. The specific instantiation of the Surrogate
Management Framework that is described in [27] is called the Model-Assisted Grid Search
(MAGS); we have modified MAGS along the lines discussed in [24, 25, 27] and renamed it
the Model-Assisted Pattern Search (MAPS). The implementation and testing of MAPS is

7



6800
6700 [
6600
6500
6400
6300
6200
6100

950

Figure 1.1: The 2-D T-WAFER problem.

the topic of this research.

1.2 The Basic Concept of MAPS

The Model-Assisted Pattern Search algorithm is designed to solve problems of the form:
minimize f(z) : R" — R, subject to a < x < b, for some bounds a,b € R".

For engineering design problems, the goal frequently is to find a global minimizer of the
function. Except in rare circumstances, no optimization algorithm can produce such a result
on an extremely limited set of budget evaluations. Thus there are often two competing foals.
The first is to guarantee convergence to some stationary point or minimizer, even if it is not
a global minimizer. The second is to try to find a global minimizer. The Model-Assisted
Pattern Search algorithm is concerned primarily with the first goal, as will be discussed
further in Section 2.2. However, the MAPS methodology also addresses the the second goal.
The MAPS algorithm uses a global approximation to the objective function to guide its
search process tries to keep the approximation reasonably faithful to the objective function.
By keeping the global model faithful to the objective function, MAPS has the potential to do
a better job of identifying a global minimizer than more traditional nonlinear programming
techniques, which rely only on local information about the objective.

1.3 Issues to be Addressed

This work addresses two basic sets of issues. The first set involves the development and im-
plementation of MAPS. Chapter 2 focuses on this discussion. Mathematical, computational
and practical concerns in the implementation are addressed in Section 2.3. Similar concerns
about the parameter estimation process used by MAPS are addressed in Section 2.4.

8



The second set of issues involves empirical testing of MAPS, and are discussed in Chapter
3. By testing MAPS on functions which are known to be difficult to optimize, one can get
an idea of the effectiveness of the algorithm in general. The results obtained using MAPS
were compared to the results obtained using the algorithms from which MAPS was derived,
namely pattern search [19] and DACE [29], both of which are described more extensively
in Chapter 3. The results of these experiments show that MAPS is more efficient in terms
of function evaluations than either the DACE or the pattern search algorithms tested. In
addition to this efficiency, the tests show that MAPS is on average more likely to converge to
the global (rather than local) minimizers than either DACE or the pattern search algorithms
tested.



Chapter 2

Algorithmic Framework

The Model-Assisted Pattern Search (MAPS) algorithm walks the middle line between ag-
gressively searching for a global minimizer and guaranteeing convergence to some minimizer
or stationary point.

MAPS is a special case of the Surrogate Management Framework (SMF) outlined by
Booker et al. [3]. The idea behind the SMF is to use a global approximation to the objective
function f to accelerate the search for a minimizer. The SMF uses this approximation to
guide a pattern search, a type of direct search described in [22, 19]. The implementation of
the algorithm developed in this work uses a geostatistical process known as kriging to create
an interpolatory approximation from known values of the function [17, 30].

2.1 Two Illustrative Examples

Figure 1.1 shows a plot of the two-variable version of the silicon wafer heating problem (T-
WAFER) described in [12, 16]. The function f(z) defined by that computer simulation will
be the subject for optimization in this example. One important thing to note is that this
function is somewhat “noisy.” The small “waves” in the graph are the visual representation
of that noise. However, the noise is not representative of the physics underlying the prob-
lem definition; rather it is the result of using a relatively large tolerance to terminate the
PDE-solver within T-WAFER. Since this noise is considered to be an artifact of the compu-
tational process, we would like to see an optimization algorithm ignore the false minimizers
computation may introduce. Instead, we would like to see the algorithm converge to the
global minimizer in the correct part of the “valley” on the plot.

MAPS is a grid-based search, and thus some kind of initial grid I'y must be chosen for
a run of the MAPS algorithm. Next, some kind of initial design must be chosen to obtain
the sample data used to construct the global approximation for the problem. The initial
grid, Ty, for this problem is a simple rectangular grid with a spacing of 0.2 between grid
lines, starting at the lowest point in both dimensions (670,950). The initial design sites,
x1,--.,Z10 € Iy, have been generated using a Latin hypercube [13], a common method for
generating space-filling designs. The sites themselves are shown in Figure 2.1.

At each these initial design sites the simulation is evaluated, by running T-WAFER,
to yield values f(z1),..., f(zy). They are shown superimposed on the objective function

10
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f(z) in Figure 2.2. With this information, the process of kriging is used to generate an
initial approximation fo to the objective function f(x). This kriging process is discussed
in Section 2.4. A graph of the initial approximation is shown in Figure 2.3. Note that
this approximation smoothes out the “noise” apparent in 1.1, the graph of the simulation
outputs. This smoothing effect will allow MAPS to ignore the false minimizers which are
believed to be artifacts of the computational process.
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Figure 2.3: Approximation fo, 10 evaluations.

At this point, the iterative procedure of MAPS is ready to begin, and will continue until
termination, which is discussed further in Section 2.3.2. Figure 2.4 shows the approximation
superimposed on the graph generated by the simulation. One important thing to note is
that while the approximation has captured the general shape of the simulation graph, it is
imperfect. In this example, the approximation is poor near the corners of the feasible region.
But what if the global minimizer is near one of the corners of the feasible region? Acting on
the approximation alone, MAPS might miss it. Some method is necessary to force MAPS to
“spread out” and look around in areas of the function domain where not much data exists.

The concept of a “search criterion” Sy(z) was introduced in [4, 24, 25] to deal with this
concern. The goal of the function Sy(z) is to balance the need for exploration of the feasible
region with the desire to immediately find a minimizer. A detailed discussion of our choice
of a search criterion can be found in Section 2.2. For now, it suffices to say that our search
criterion is based on the value of the approximation at a given site x, but decreases the
weight given to the approximation’s value for values of sites far from sites at which f has
already been evaluated. A graph of our search criterion function for this example is shown in
Figure 2.5. It is this search criterion, rather than the approximation itself, that is optimized
directly to yield a prospective new point x; for the evaluation by T-WAFER. The point is
shown on the approximation fo in Figure 2.6.

After the evaluation of the new point x, the algorithm updates the model fo to yield a
new model fl, and the search criterion Sy to yield a new search criterion S, both of which

12
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Figure 2.4: Approximation fo, superimposed on T-WAFER.
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Figure 2.5: Search criterion Sy, 10 evaluations.
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Figure 2.6: Approximation fo, with z; and original design sites shown.

will be used in the next round of computation. The new model, fl is superimposed on the
simulation outputs and is shown in Figure 2.7. Note that the new model changes shape
to more accurately represent the simulation outputs, especially around the area of the new

point at which T-WAFER was evaluated. MAPS is now prepared for the next round, and
thus continues the optimization process.
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Figure 2.7: New approximation fl, superimposed on T-WAFER.

As stated before, the use of approximations in lieu of the simulation code (T-WAFER in
this example) “smooths” out the function. The goal here is to try to avoid being trapped
at the false minimizers created as artifacts of the simulation. Is this a legitimate concern?
Should one be worried at all about this occurrence? The answer is “yes.” Figure 2.8 shows
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the location of the solutions reported by 1,000 runs of the compass search variant of pattern
search [7], run to convergence for a fixed tolerance. Note that this algorithm was indeed
caught by those artifacts for several of these runs. The valley in which compass search (see
Section 3) got caught contains multiple points of discontinuity introduced by the simulation.
A more detailed graph of this valley, and the subset of solutions returned by compass search,
can be found in Figure 2.9. MAPS, however, did not fall victim to this problem. For
1,000 runs, with a function evaluation budget of 100, MAPS always returned a point in the
neighborhood of the global minimizer. Thanks to the effects of smoothing, MAPS missed
the ridge entirely.
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Figure 2.8: Minimizers located by compass search.
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In addition to the smoothing out of what are believed to be spurious discontinuities, in
our experiments MAPS has also been more likely to find a global minimizer. One example
found in the optimization literature is the Goldstein-Price function [6], which has the domain
[—2,2]% and and four distinct minimizers. For the purpose of this example, the Goldstein-
Price function has been rescaled to the domain [—20, 20]2. Figure 2.10 shows a graph of the
function, with the minimizers marked. It is important to note that this objective function
is very poorly scaled, and possesses ridges that cannot be seen in the plot at this level of
resolution.

1.2e+12
le+12
8e+11
6e+11
4e+11
2e+11
0

-10

Figure 2.10: Goldstein-Price function, with minimizers.

By playing a balancing game between a single-minded pursuit of the minimizer and a de-
sire to obtain a more accurate approximation of the function, MAPS is better able to find the
global minimizer. Figure 2.11 shows the Goldstein-Price function and MAPS’ approximation
after 10 initial function evaluations. After a total of 100 function evaluations (including the
initial 10 used to construct fo), MAPS’ approximation has improved significantly, as shown
in Figure 2.12. Thanks to its search criterion which promotes exploration of the feasible
region, MAPS has a very good idea of what the function looks like, at least on a macro scale.
After 100 evaluations, MAPS has neared the global minimizer, and its approximation near
that minimizer is shown in Figure 2.13.

2.2 The MAPS Algorithm

A statement of the MAPS algorithm can be found in Figure 2.14. One first selects a grid for
the search. Next, the initial design sites are chosen using some initial design method. Our
implementation of MAPS uses a Latin hypercube initial design, as Latin hypercubes are very
simple to generate [13]. Then one evaluates the objective function at these design points
and creates the initial approximation. The algorithm then moves sequentially, optimizing
the “search criterion” to yield a new point, evaluating the objective function at that point,

16
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and finally updating the search criterion. If the “core pattern” of the best point has been
evaluated, then the grid can be refined.

But what are the core pattern and the search criterion? The core pattern is specified
by the pattern search upon which MAPS is based. In order for a pattern search to refine
the grid underlying the search, a set of points known as its core pattern must have been
evaluated. This stipulation is made in order to guarantee the convergence of the pattern
search algorithm [22, 15]. Likewise, to ensure convergence, MAPS can refine its grid only
when this same condition is satisfied [23]. In our implementation of MAPS, the core pattern
is a simple compass pattern [7], consisting of steps in each of the positive and negative
coordinated directions.

The search criterion is a function that is best stated as follows:

Se(z) = fo(z) — weDe(z) (2.1)

At the current iteration ¢, the value of the search criterion S, at a given point x is equal
to the value of the approximation of this point f.(z), plus a weight w, times the “design
criterion” D.(z) at that point. The weight is a positive real number selected by some sort
of weighting scheme.

The design criterion used in MAPS was inspired by Cox and John [4], and can be stated
as follows:

Dz) = \/MSE ([fla)]) (22)

Note that MSE([f.(z)]) is the estimated mean squared error of the approximation.

The goal of the search criterion is to make the trade-off between single-minded pursuit
of a minimizer and a wider exploration of the feasible region to look for a more promising
solution. The design criterion promotes the investigation of previously unexplored areas of

18



1. Specify an initial grid, Iy, on bounds [a,b].
2. Perform an initial computer experiment :

(a) Select initial design sites x1,...,zy € L.

(b) Compute f(xl)a ceey f(l‘N)
(¢) Construct fy by kriging.

3. Let ', = Ty. Let z. = argmin (f(z1),..., f(zn)).
Let f. = fo and Eval, = {z1,...,2n}.

4. Do until convergence:

(a) Do until Core(z.) C Eval,:

i. Apply an optimization algorithm to S. (the search criterion) to obtain z; €
T',\Eval,.
ii. Compute f(x;). Let Eval, = Eval, U {z;}. Update S..
ili. If f(xy) < f(xc), then let 2, = ;.

(b) Refine T..

Figure 2.14: Statement of the Model-Assisted Pattern Search Algorithm.

the feasible region, whereas the approximation promotes the pursuit of a near-by minimizer.
The original Model-Assisted Grid Search (MAGS) algorithm [27] did not make use of a design
criterion. Instead, the algorithm optimized the approximation directly. Trosset [25] argues
that this single-minded pursuit of the minimizer may actually hinder the search’s quest for
the global minimizer, and introduced the search criterion described above.

2.3 Numerical Optimization

2.3.1 Algorithmic Considerations

As outlined in 2.2, the MAPS search criterion tries to strike a balance between the value
of the approximation f,(z) and the value of the design criterion D,(x) for a given z. The
important algorithmic question then becomes one of finding the right weighting scheme,
or set of w,.’s, that make MAPS work most effectively. Trosset [25] ruled out the scheme
of choosing w, = 0 for all ¢, as it would undermine the search for the global minimizer,
and lead to potential ill-conditioning of the correlation matrix that is at the heart of the
approximation. This variant of MAPS was called Model-Assisted Grid Search (MAGS) [24].
A second weighting scheme is inspired by a similar approach found in the literature. Since
the MAPS’ design criterion was inspired by Cox and John’s SDO algorithm [4], it is only
natural to use their choice of weight. While SDO differs from MAPS in several important
respects, both use the square root of the mean squared error (2.2) as a measure of how
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well the domain has been explored (our design criterion D.(z)). Unlike MAPS, the SDO
algorithm is not based on a pattern search and does not refine its initial grid. For optimizing
a specific grid, MAPS and SDO both use a search criterion of the form (2.1) to encourage
investigation in previously unexplored areas of the feasible region. However, SDO uses a
constant weight of two for the entire search. The choice of two is a natural one, as the search
criterion then approximates the lower bound of a 0.95-level confidence interval around the
expected value of the objective function. Thus, the SDO-inspired weighting scheme would
be w, = 2, for all c.

In addition, two fixed-schedule weighting schemes of the form w, = a, wer1 = b -
w,, for some a,b € RT have been tested. Likewise, several dynamic schemes were exam-
ined. The “Dynamic” scheme proved to be the most effective and so is the one presented
here. The Dynamic scheme can be stated as follows. For each iteration c:

Wors = { my - we, if ‘f(xc) - fc(xc)

mp - W, otherwise

|f($best)_fc (zo)
= 2 (2.3)

where wy = a, for some a € R. The value of m,; should be greater than one, and the value
of my less than one, in order to reflect the tradeoff discussed above.

The Dynamic weighting scheme forms an interval around the expected value of the last
point. If the actual value of f(z.) is in that interval, then the approximation is deemed to
be accurate. In that case, the weight is shifted in favor of the approximation. If the actual
value f(z) is not in the interval, then the approximation is deemed to be poor and weight
is shifted in favor of design criterion. Note that the weighting scheme scales well to almost
any problem, as the test condition can be restated as the ratio shown below.

‘ flxe) — ch(l'C)
f(xbest) - fc(mc)

The choice of % was arbitrary, but seems to work well in practice. The results in Chapter
4 use my = 0.75 and m;, = 1.25. Again the choices were arbitrary, but worked well for the
problems tested.

Finally, the statement of the MAPS algorithm in Figure 2.14 lends no clue as to how the
algorithm should be terminated. Obviously, if the function evaluation budget is exhausted,
then the algorithm terminates. But what if the algorithm gets sufficiently close a minimizer
before the budget is evaluated? A common criterion found in the literature is to stop when
the step size between successive points is small. Since MAPS is a pattern search, one can use
the grid resolution, the value of the step length control parameter A, to define a termination
criterion. The algorithm would terminate when A became less than a certain numerical
tolerance (we used 107'?). The viability of this criterion was demonstrated in [7]. Other
properties of this criterion, including its relation to commonly used gradient-based stopping
criterions, are discussed in [8].

% (2.4)

2.3.2 Computational Considerations

In addition to the algorithmic considerations outlined above, the MAPS implementation
leads to several computational considerations as well. Trosset [27] implemented a prototype
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version of the original MAGS algorithm in S-PLUS, but it suffered from three serious draw-
backs. First, the S-PLUS software is restricted by license to certain machines. Hence, this
prototype could not be ported to systems without a license for S-PLUS. Second, S-PLUS
scripts are not fully compiled binaries, so execution times for even modestly-sized problems
are unacceptably slow. Third, it could only optimize functions of two variables. Thus, Tros-
set’s implementation, while useful as a prototype, is unsuitable either for computationally
expensive problems or comprehensive algorithmic testing. Crafting a C++ implementation
of MAPS required that certain key concerns be addressed.

Capacity

The standard version of C++ comes with no implementation of mathematical vectors. The
standard template library does contain a vector class, but it has no mathematical operators
for it. The Template Numerical Toolkit (TNT), developed by Roldan Pozo at the National
Institute of Standards and Technology [20] does provide serviceable implementations of these
important constructs. A modified version of TNT, including an implementation of the Eu-
clidean vector norm adapted from the BLAS [14, 2], was used in the MAPS software.

Correctness

Throughout the construction of the computationally delicate parts of the software, specifi-
cally the kriging, the author continually compared results with Trosset’s S-PLUS prototype
for MAPS. The C++ implementation uses a different implementation of the SVD [1] than
that used in S-PLUS!. In addition, MAPS uses a pattern search to find the MLE, which
is used for the construction of the approximation. No such option exists within S-PLUS.
Finally, the two implementations use different methods of minimizing the search criterion.
In all other respects however, the two versions agree. Thus, for almost all cases tested using
both implementations, the results were identical. In those cases where the results differed,
the discrepancies could be traced back to either the SVD or different results from the nu-
merical optimization software. Use of graphical methods of analysis have also shown that
the processes involved in the MAPS algorithm are functioning properly in the software.

Portability

The goal of portability demanded that the software be implemented in some general-purpose
programming language that is widely and freely available. Due to such features as classes,
templates, inheritance and polymorphism, C++ was chosen to be the language of implemen-
tation for the MAPS software. Designed from the start with classes in mind, the software
takes advantage of these features to minimize the amount of code needed. Effort was made
in the development of the software to ensure that the software had enough flexibility to
compile on a variety of major systems and with a variety of compilers such as egcs (Linux),

g++ (SunOS) and xIC (AIX).

!Please examine the CLAPACK web page [5] for more details.
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Efficiency

The goal of efficiency demanded that the implementation be well-written and done in a
language with optimizing compilers available. Using debugging tools such as Pure Software’s
Purify and Electric Fence, the author has written the code in such a way to avoid memory
leaks and off-by-one errors. The use of C++ makes optimizing compilers available for MAPS
on almost every platform. Not too surprisingly, the speed gain over the S-PLUS version, in
terms of wall clock time on similarly equipped systems, is more than an order of magnitude.

Robustness

Simulations can be written in any of a number of languages (typically some mix of C, C++,
or Fortran). Thus, the MAPS software should be able to work with an optimization problem
written in almost any programming language in order to achieve the goal of robustness.
Thus, no system which required that MAPS compile and/or link with the objective function
would be appropriate, as cross-linking is a delicate process. The author decided that the
most reliable way to allow the MAPS software to work with any sort of objective function
is through the use of separate executables. The MAPS software runs the executable for the
objective function, using “fork” and “exec” kernel calls, and then communicates to the results
to the MAPS executable via the program’s standard input. The cost of this robustness is
a slight drop in portability. For instance, a separate function evaluation routine would be
needed for Windows operating systems. However, the software should function robustly on
all UNIX or other POSIX-compliant operating systems.

2.3.3 Practical Considerations

Numerical error is far and away the largest practical obstacle to making a numerical op-
timization algorithm like MAPS work. The imprecise nature of floating point arithmetic
posed many dangers to the successful implementation of this algorithm. This section will
detail some of these more important numerical concerns.

As stated in Section 2.2, MAPS works off of a grid. Thus, a means for moving a point
returned by the optimizer of the search criterion to the nearest grid point is needed. The
SnapToGrid function in PSGrid.cc takes care of this with the use of the process described
below. The source code is included in Appendix Section E.2.5.

Let the vector x € R" be the point to be moved to the nearest grid point, and let the
vector t € R™ represent the the grid “coarseness” in each of the n dimensions. Finally, let
a € R" represent the lower bound for the problem. Then let the “snapped” point & = [%J,
where the division operator represents element-wise division.

There is however, one more situation for which point verification is a concern. Assume
that at a given point the function has already been evaluated. Suppose that the minimizer of
the search criterion is this exact same point, but due to numerical error the program returns
a point close, but not identical to the search criterion’s minimizer. A test for equality
would fail as they are two different points. But they should be considered the same. This
implementation of MAPS uses a “non-strict” equality for such checks. It checks to see if the
point returned from optimizing the search criterion is within a given tolerance of one of the
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evaluated points. By asking “Is this point close to a previously evaluated point?” rather
than “Is this point equal to a previously evaluated point?”, MAPS can overcome potential
identification and verification problems introduced by numerical error.

One of the main dangers of the modeling approach used by MAPS is the degradation of
the approximation. If the approximation to the function ceases to accurately represent the
function even near known points, then the approximation is useless if not outright harmful.
The degradation of the approximation is a property of the parameter estimation. The reasons
behind the degradation are discussed further in Section 2.4; here we address the numerical
considerations specifically.

It has been found that the search criterion can yield function values for previously eval-
uated points that are different from the actual function values at these points. Operating
without the limits of finite precision, these values would indeed be identical since the kriging-
based approximation would directly interpolate these points, and the design criterion at these
points would equal zero. On a finite precision machine however, this need not be the case.
MAPS deals with the potential for numerical error by replacing the search value with that
of the previously evaluated function value at this point. This trick prevents the search crite-
rion’s optimizer from returning a point that has already been evaluated unless that point is
a minimizer of the search criterion. As an added safety precaution, if the core pattern of the
point returned by the search criterion and the point itself have all been evaluated, MAPS
will begin to evaluate the core pattern of the current best point.

2.4 Parameter Estimation

2.4.1 Mathematical Considerations

The kriging process used to generate the approximation requires the maximum likelihood
estimation (MLE) of the kriging parameters (3, 02, ), where (3 is a weighted function mean,
o? the function variance, and 6 the parameter of the chosen correlation family. A compre-
hensive introduction to the kriging process can be found in [27] or [17], which we will not
attempt to summarize here. However, it is important note that the kriging process requires
two things. First, it requires some kind of optimization algorithm to use to perform the
MLE. Second, determining (3, o2, 6), requires the inversion of a matrix.

Computing the maximum likelihood estimate of # requires the minimization of the expres-
sion n log 62(0) +log det R(#), where 6% is the MLE of o and R(6) is the matrix representing
the correlation between the previously evaluated points. This sub-problem is either a one
dimensional problem or a multi-dimensional problem, depending on the correlation family
used. Currently, MAPS uses a type of pattern search known as compass search [7] for this
optimization.

Computing the parameters also requires matrix inversions. This is non-trivial, as the
matrices that need to be inverted may be singular. MAPS uses an implementation of the
Moore-Penrose generalized inverse to achieve this goal. The Moore-Penrose generalized
inverse for a matrix A with singular value decomposition A = VEW?* is defined as Af =
WtV*, where £t is the transpose of ¥ with non-zero values replaced by their reciprocals
[11]. Thus, the Moore-Penrose generalized inverse allows the “pseudo-inversion” of singular
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matrices.

2.4.2 Computational Considerations

The computational considerations for the parameter estimation all center on inverting ma-
trices. As noted in Section 2.3.2, C4++ provides no suitable implementation of mathematical
matrices and vectors. Likewise, it has no standard implementation of important matrix
operations, such as the singular value decomposition. The CLAPACK library from netlib
[5] does provide this functionality, however. The library was converted from the Fortran
LAPACK [1] using the f2c¢ program.

For computational reasons, we modified the Moore-Penrose matrix pseudo-inversion al-
gorithm mentioned in Section 2.4.1 slightly. The SVD routine can return supposed singular
values that are very small, but non-zero. Mathematically these values might be equal to
zero, but floating-point mathematics this may not be the case. In the case of values this
small, we have opted to zero out all such values under a fixed tolerance, in an effort to be as
accurate as possible. Following the fairly standard practice in the literature, we have chosen
€mach - M - 01, where n is the size of our square matrix, o; is the largest singular value of the
matrix, and €,,,., is an estimate of machine epsilon. This particular tolerance is used in the
MATLAB software from MathWorks [21].

2.4.3 Practical Considerations

Much like the practical concerns of the optimization process, numerical error dominated the
practical concerns for the parameter estimation process. There are three main areas in this
process that involve such numerical error concerns. The first is the maximum likelihood
estimation (MLE) of the parameter 6, the second is the computation of the parameter o2,
and the third is the set of computations involved with the mean squared error (MSE) required
by the design criterion.

The main danger in the maximum likelihood estimation of # is having the parameter
run to either zero or infinity during the estimation process. For the Gaussian correlation
family, a very large 6 effectively eliminates any correlation between the points, reducing
the approximation to a flat function with a few very sharp spikes at the evaluated points.
Likewise, a very small # increases the correlation between points to almost one. This makes
the correlation matrix very poorly conditioned, if not numerically singular. This problem is
created in one of two ways. The first cause is created by an accumulation of numerical error
from previous calculations; the second is caused by the starting point for the optimizer used
for the MLE. The first cause is largely unavoidable. However, the second can be dealt with
in an intelligent fashion.

Initially, Trosset proposed using 6 = —l"g(Angg), where delta is the grid step-length, as an
upper bound with the Gaussian correlation family in mind. With the Gaussian family, the
upper bound forces adjacent points on the grid to have a correlation of 0.99. Practically,
this proved to be too strict an upper bound, as functions with rapid function variation often
have nearby points which are not so closely related. Thus we relaxed the upper bound to
0 = —log(ALfo). The initial guess for the first iteration of estimation was half of the upper
bound. During experimentation, we found that this was likely to promote # to increase to

24



infinity. A lower starting point would not lead to such a result as often. We settled on
%5(05), where L is the largest difference between the lower and upper bounds in any
dimension.

Secondly, the variance (02) would occasionally wind up equal to or even less than zero.
This error was due to accrued numerical error. Making the necessary corrections to safeguard
6 went a long way to solve this problem, but as a safety precaution, after each update of o2,
it is assigned to be max{10~'2, o?}.

In addition to the other sources of numerical error described above, the computation
of the design criterion is also potentially vulnerable to numerical error. Occasionally, the
computed MSE is slightly negative. This is problematic as the design criterion is the square
root of the MSE. This problem occurred with the highest frequency when the point was one
of the previously evaluated points. In case of this error, the entire design criterion is set to
Zero.

These errors might seem to be somewhat obscure, but they are indeed actual errors which
occurred in the early phases of testing. We refer to these difficulties because they actually
do occur in practice, and thus must be addressed in some fashion. These effects are most
probably due to an ill-conditioning of the approximation. As MAPS progresses toward a
minimizer, it tends to place evaluation sites close together. This has the effect of increasing
the condition number of the correlation matrix, and potentially leading to the sort of errors
discussed above.
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Chapter 3

Testing

The primary goal of the testing is to make a rigorous comparison between MAPS and the
algorithms upon which it is based. The other algorithms tested are listed below:

e Compass Search - one of the simplest pattern search methods. It steps one grid
length in both the positive and negative coordinate directions. In two dimensions, this
corresponds to steps “north,” “south,” “east,” and “west,” hence the name. A good
description of compass search and other related pattern search algorithms can be found
in [7].

e Latin Compass Search - a variant of compass search. The first ten evaluations of
the objective function f(z) are devoted to forming a Latin hypercube [13]. Then a
compass search is started at the best point in the hypercube.

e Hooke and Jeeves - another pattern search methods, first introduced in [10]. See [7]
for a further discussion and some comparisons with other pattern searches.

e DACE - a non-iterative (i.e. “one-shot”) approach to nonlinear optimization outlined
in [29]. This approach involves devoting the whole function budget, barring one eval-
uation, to the construction of an approximation to the objective function. Then this
approximation is optimized to yield the site for the last evaluation. Our implementa-
tion of DACE uses a Latin hypercube to choose points for the initial approximation,
and then optimizes the approximation with a compass search.

All of the pattern search algorithms were run with an initial step length control param-
eter A = 2, stopping either when the function evaluation budget was expended or when
A < \/€macn- For these trial runs, the budgets were always expended, and the other stop-
ping criterion were not satisfied. The DACE algorithm generated a Latin Hypercube on a
boundary-aligned mesh with resolution 10~7. The approximation generated by the DACE
algorithm was optimized using compass search with starting step length control parameter
A = 2 and termination when A < 1077.

Three variants of MAPS were tested against these algorithms. They vary according to
the search criterion used. The concept of the search criterion is discussed in Section 2.2.
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e Model-Assisted Grid Search (MIAGS) - outlined in [27]. This version of the algo-
rithm optimized the approximation directly and put no weight on the search criterion
at all.

e MAPS-like-SDO - uses a weighting scheme inspired by the work of Cox and John
on the SDO optimization algorithm [4]. This variant fixes the weight on the design
criterion at two.

e MAPS-Dynamic - uses the dynamic weighting scheme detailed in Section 2.3.1.

The MAPS variants were all run using the Gaussian isotropic correlation family for the
kriging parameter estimation, and were starting with a grid resolution of 1072. The maximum
likelihood estimator of the correlation family parameter § was solved using a compass search.
Its starting step length was 0.8 times the upper bound described in Section 2.4.3, and the
stopping step length was 10~° times the same upper bound. The algorithms were set to
terminate if the grid were refined to a resolution of 107!!, but this criterion was never
reached, due to evaluation budget constraints. The MAGS algorithm optimized its search
criterion using a compass search, while the MAPS-Dynamic and MAPS-SDO algorithms
optimized their search criterions using a multi-start compass search. The initial step size for
the appropriate pattern search was %, where m was the largest integer multiple of MAPS’
A times the grid resolution of coarsest grid dimension, such that this quantity would be less
than the distance between the bounds in that dimension. The optimization of the search
criterion would terminate when the A of the pattern search reached the current MAPS A.

The testing methodology itself was fairly simple. Each algorithm was run 1,000 times on
a given optimization problem, with each runs starting from a different point. Each run used
different seeds for the random number generator in order to generate its starting points.
However, the random seeds were the same across all of the algorithms. This means that
the Latin Hypercubes for the MAPS variants and the Latin Compass Search were exactly
the same. This consistency allows for meaningful comparisons between the algorithms. The
Latin hypercubes were generated by a random shuffling algorithm using the Lehmer pseudo-
random number generator described in [18].

All of the tests were run on a Intel machines running Linux 2.2.5-22 (RedHat 6.0). The
algorithm implementations were compiled using the egcs-g++ compiler (version 2.95.2) using
optimization level -0.

3.1 Common test functions in the literature

The optimization literature is full of proposed test functions for global optimization problems.
Five classic problems can be found in [6]. For use in the testing of MAPS, the author desired
not just single optimization problems, but rather families of such problems. Ideally, these
families of problems should have similar behavior, but vary in dimension or number of
minimizers. The two families of functions that were used to test MAPS were the Shekel and
Hartman families [6, 9].

The general statement of the Hartman family is:
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where for : = 1...m, ¢; € R, p; € R", and A; is a negative definite matrix. The choice of
m determines the number of minimizers of the function; n denotes the dimension of = (i.e.
xz € R"). The two members of the Hartman family used in this research had m =4, n =3
and m = 4, n = 6, respectively. Values of the other parameters can be found in [6].

The Shekel family is another extensible family. The general statement of this family is:

Ui 1

f@) = ; (x —a)'(xr—a;) + ¢

(3.2)

where for i = 1...m, a; € R" and ¢; € R". As in the Hartman family, m determines the
number of minimizers of the function, and n denotes the dimension. The three members of
the Shekel family that were used in this research had n = 4 and m = 5,7 and 10. Values for
the remaining parameters can be found in [6].

3.2 Real applications

The T-WAFER problem [12, 16] simulates silicon deposition in a hot-wall tubular reactor.
The T-WAFER simulation reduces to the numerical solution, within a given tolerance, of a
set of partial differential equations. The tolerance used for all of the results in this research
is 1073, This relatively large tolerance appears to yield many numerical artifacts in the
objective function, some of which are discussed more in depth in Section 2.1. The two-
dimensional of the problem is believed to to have one “real” minimizer; many more are
introduced by the simulation.

3.3 Krigifier-generated functions

The krigifier, proposed by Trosset [26] and implemented by Padula [17], is a software pack-
age for generating pseudo-random functions. It generates these functions using kriging, a
method for function approximation used in geostatistics [30]. The basic methodology used
for generating the objective functions used in this research is outlined below:

1. Specify a general trend; half of the functions generated used constant trends, the other
half use quadratic trends.

2. Specify an underlying stochastic process; kriging assumes that the the function is the
realization of a stochastic process, an infinite collection of normal random variables
corresponding to R". The functions tested in this research all assume a Gaussian
stationary stochastic process.
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3. Specify the number of random points at which to “observe” the stochastic process; for
an n dimensional function, 22" points were used. The more points that are used, the
more minimizers a function tends to have.

4. The krigifier evaluates the stochastic process at the observation sites.
5. The krigifier uses kriging to interpolate at these sites to create “noise.”

6. The noise and general trend are added together to produce the final function.

Different realizations of the krigifier are created by “observing” the stochastic process
at different points. By using different seeds for the random number generator, it was easy
to create these different observations. The suite of test functions for MAPS and the other
optimization algorithms tested includes five different realizations for each trend (constant
or quadratic), for each dimension tested (two, three, four and five). This brings the total
number of krigifier-generated test functions to forty.

An important point to note is that the random numbers used to generate the krigifier
functions were different from those used to create starting points or Latin hypercubes for the
optimizers. This was achieved using the “streams” of independent random numbers created
by the random number generator.

A second point of importance involves the relationship between the DACE algorithm
and krigifier-generated functions. The DACE algorithm assumes that objective functions
are realizations of some stochastic process, and uses this assumption in order to perform op-
timization. The krigifier-generated functions actually are realizations of a stochastic process.
Thus, since the DACE assumptions match reality in this class of functions, the algorithm
should perform at its best.
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Chapter 4

Summary of Results

For any given optimization algorithm, one can ask two types of questions. First of all,
does this algorithm perform reliably and is this revealed in the experimental results? This
question deals with the algorithm as an optimization algorithm, completely apart from any
concerns for global minimization. Results dealing strictly with reliability and performance
are described in Section 4.1. The second set of questions that can be explored involve global
optimization concerns. Is the algorithm likely to identify the function value associated with
the global minimizer in practice? If not, is it likely to avoid the higher function values of
poor local minimizers? Though the MAPS algorithm is not tailored specifically for global
optimization, the use of a global approximation to the objective function means that these
questions may still be of interest. Results pertaining to these questions are found in Section
4.2. Although additional plots are included in Appendix A, space constraints make it im-
possible to include the entirety of the results in this document. Arrangements are underway
for these plots to appear in electronic form.

The first round of results is represented in the form of individual kernel estimates with
a rectangular window [28], through the use of the S-PLUS density function. A sample
plot of this type is shown in Figure 4.1. Each of the plots represents 1,000 runs of the
given algorithm, each returning the function value of a purported minimizer. The kernel
estimate for the probability density of the function values returned by the algorithm is then
computed, yielding a plot that looks like a smoothed-out histogram. The horizontal axis of
the plot represents the value returned by the algorithm, and the vertical axis represents the
probability density at that value. The dashed vertical lines represent the function values
of the known stationary points of the function. Ideally, an optimization algorithm will
show a high probability density around these values, and a low density elsewhere. For global
optimization, a high density at the function value representing the global minimizer (leftmost
on the plot) would be ideal.

4.1 MAPS and Optimization

The question of the effectiveness of MAPS as an optimization algorithm can be broken
up into three different subquestions. First, can we demonstrate, empirically, that MAPS
consistently identifies the function value of a minimizer? The conformance of MAPS to the
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Distribution of Best Values for Hartman 6, MAPS (New Dynamic) V=50
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Figure 4.1: Hartman6 Function, 50 evaluations.

requirements of the pattern search analysis suggests that such convergence should occur.
Second, does the iterative nature of MAPS yield any advantage over a one-shot approach
represented by DACE? Rather than rely solely on the quality of a single approximation, as
DACE does, we want to ascertain if there is a clear advantage to refining the approximation
iteratively, as the optimization progresses. Finally, does the modeling in MAPS improve the
computational cost of the overall performance? The operating assumption throughout has
been that the cost of obtaining a single evaluation of the objective function dominates the
computational expense. The computational overhead for standard pattern search methods
[7] is negligible. Introducing the modeling aspect certainly adds appreciable computational
expense to the overhead associated with the optimization. We want to determine if this
additional expense is justified by the end results; i.e., leads to an appreciable reduction in
the total number of function values required to realize a satisfactory result.

4.1.1 The Reliability of MAPS

One desirable property of an optimization algorithm is reliability. Regardless of the problem
being solved, as more function evaluations are allocated to the algorithm, it should move
closer toward a solution. To put it simply, if we do more work, we should get a better
answer. Our results indicated that MAPS shows that sort of improvement for all the classes
of problems tested.

Using the T-WAFER problem discussed in Section 2.1, we can illustrate the improvement
MAPS makes as it is given more function evaluations to work with. The density plot in
Figure 4.2 represents a budget of V' = 20 function evaluations allotted to each of the MAPS,
Compass Search and Hooke and Jeeves algorithms. Clearly, as Figure 4.2 shows, the MAPS
algorithm is nearing the minimum function value with a high degree of probability. Adding
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thirty more evaluations, to a total of V' = 50, accentuates this trend. This scenario, which is
shown in Figure 4.3, shows that even the worst runs are returning a function value very close
to that of the global minimizer. In this case, the worst run returns a value of about 0.52
greater than the best, and the interval of width 0.015 above the minimum function value
contains over 99% of the probability mass.

Distribution of Best Values for TWAFER Zone02 Tol=10"-3, MAPS (New Dynamic) V=20
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Distribution of Best Values for TWAFER Zone02 Tol=10"-3, Compass Search V=20
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Distribution of Best Values for TWAFER Zone02 Tol=10"-3, Hooke and Jeeves V=20
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Figure 4.2: 2-D T-WAFER density plots, 20 evaluations.

These figures serve to illustrate what is typical of the experimental results, namely that
the MAPS algorithm consistently identifies the function values of known minimizers. Not a
single density plot for any of the over 45 functions MAPS was tested on shows the MAPS
algorithm yielding worse results when it is allocated a larger budget of function evaluations.
A similar example for a five-dimensional krigifier function is shown in Figures A.3 and A.4
in Appendix A. Notice that even with the large number of minimizers that the function has,
increasing the function evaluation budget tends to concentrate the probability mass near the
function values of known minimizers.

4.1.2 MAPS vs. One-shot Optimization

The MAPS algorithm uses modeling within an iterative framework, but is the iteration
useful? The DACE algorithm, advanced in [29], is a one-shot approach that relies exclusively
on a single approximation. If there is any advantage in using an iterative approach, then the
MAPS algorithm should perform better than the DACE algorithm.

The results from the three-variable function of the Hartman family (Hartman3; see Sec-
tion 3.1) illustrate the advantage of iterative optimization quite well. Figure 4.4 shows the
density plots for the Hartman3 function with an evaluation budget of V' = 20. Even for
this fairly meager evaluation budget, all three MAPS variants are showing far more evi-
dence of having identified two of the three function values associated with minimizers than
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Figure 4.3: 2-D T-WAFER density plots, 50 evaluations.

DACE. With a budget of V = 50, the situation is even worse for DACE. Figure 4.5 shows
these results. For almost all of the 1,000 runs, the MAPS variants have identified a function
value associated with a minimizer. DACE, however, shows little improvement. This strongly
suggests that there is an advantage to using an iterative approach.

Once again, these densities are typical of the results generated across all of the functions
tested. An example for a five-dimensional krigifier function is shown in Figures A.1 and A.2
in Appendix A. While the results are not as dramatic as those for Hartman3, MAPS is
clearly performing better than DACE.

4.1.3 The Advantage of Modeling

MAPS uses a modeling-based approach within a pattern search framework. A reasonable
question to ask is whether there is any advantage to the modeling, or will a pattern search
alone do just as well? Since our implementation of MAPS is based on a compass search, this
pattern search is used as one basis for comparison. The pattern search outlined by Hooke
and Jeeves [10], which has been shown to be one of the most effective of the classic pattern
search algorithms [7], will also serve as basis for comparison.

The results from the seven variable function of the Shekel family (Shekel7; see Section
3.1) illustrate the potential advantage of using modeling. Figure 4.6 shows the results of
the algorithms for a function evaluation budget of V' = 20. None of the algorithms show
convincing signs of having identified a function value associated with a known minimizer.
However, when we increase the function evaluation budget to V = 50, as shown in Figure
4.7, the MAPS algorithms show clear signs having identified these function values. The
same cannot be said for DACE or either of the traditional pattern searches. Results for a
four-dimensional krigifier function, which shows the same trends, can be found in Figures
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Figure 4.4: Hartman3 density plots, 20 evaluations.
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Figure 4.5: Hartman3 density plots, 50 evaluations.

35




A.3 and A.4 in Appendix A.
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This modeling, however, comes at a price. The modeling adds a substantial computa-
tional expense to the otherwise computationally inexpensive pattern search. While this cost
is insignificant compared to the costs of an expensive objective function, it is still worth
noting and will be discussed in further detail in Section 4.2.4. Nevertheless, these results,
and similar results on other families of functions, argue strongly for the advantage of using
a modeling approach over a regular pattern search when the cost of function evaluations
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Figure 4.6: Shekel7 density plots, 20 evaluations.

justify the additional expense introduced by the modeling.

36




Density

Density

Density

Density

Density

Density

Distribution of Best Values for Shekel 7, MAPS (New Dynamic) V=50

Best Value Found

Distribution of Best Values for Shekel 7, Original MAGS V=50

Best Value Found

Distribution of Best Values for Shekel 7, MAPS like SDO V=50

Best Value Found

Distribution of Best Values for Shekel 7, DACE V=50

Best Value Found

Distribution of Best Values for Shekel 7, Compass Search V=50

Best Value Found

Distribution of Best Values for Shekel 7, Hooke and Jeeves V=50

Best Value Found

Figure 4.7: Shekel7 density plots, 50 evaluations.
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4.2 MAPS and Global Optimization

Problems represented by computationally expensive computer simulations, such as the T-
WAFER problem described in Chapter 1 may require that the optimization algorithm at-
tempt to return a global minimizer. Though it is impossible for an algorithm to guarantee
to find the global minimizer on an extremely limited function evaluation budget, a desirable
algorithm for such problems will make some attempt to avoid the poorer minimizers, par-
ticularly those that may be no more than a computational artifact of the simulations, such
as those observed in Figures 2.8 and 2.9. Though MAPS is a pattern search, and thus only
guarantees convergence to a local constrained stationary point, the use of a global model sug-
gests that it is still reasonable to investigate how well MAPS may do at global optimization.
This question leads us into two major sub-discussions. First, does the modeling framework
alone yield empirical results that are closer to the function value of the global minimizer?
Second, does the use of a search criterion in MAPS improve the likelihood of finding a global
minima?

4.2.1 Global vs. Local Minimization

From a strictly global optimization perspective, the ideal algorithm would always return the
global minimizer of the functions it was asked to optimize. In some contexts (i.e. looking for
“stable” minima) this need not be the case, but more often than not the global minimizer is
what is sought. However, on a severely limited evaluation budget, guarantees of convergence
to a global minimizer usually are not possible. What we ask of MAPS is whether its is more
likely to find the function value associated with the global minimizer, or at least more likely
than the other algorithms tested to avoid the local minimizers with the highest function
values.

The T-WAFER problem illustrates MAPS’ ability to avoid local minimizers with high
function values. As noted in Section 2.1, the pattern search algorithms occasionally are
caught by the local minimizers generated by a discontinuity, or simply points of discontinuity
themselves created by the simulation in the T-WAFER problem. Figure 4.8 shows the
function density plots for the T-WAFER problem fun with an evaluation budget of V' = 20.
While all three algorithms show signs of clear convergence to the function value associated
with the global minimizer, MAPS appears to have the shortest “tail.” Figures 4.9 and 4.10
show the density plots for evaluation budgets V' = 50 and V' = 100, respectively. Note
that the pattern search algorithms both have some runs which appear to have identified the
function values that are presumed to represent simulation artifacts. The MAPS algorithm
on the other hand, only shows signs of having identified the function value at the global
minimizer. Empirically, this avoidance of these poorer minima holds true for MAPS across
all functions tested. The density plots of a three-dimension krigifier function shown in Figures
A.5 and A.6 of Appendix A also illustrate this trend quite well.

The tables in Appendix B also show MAPS’ ability to return “good” function values.
These tables compare the results of all the algorithms tested to the 95th percentile of the
value of the runs returned by DACE. These charts show that especially as dimension in-
creases, MAPS tends to be more likely to return better values than DACE. Though MAPS
is not primarily a global optimization algorithm, it seems to have performed well relative to
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Figure 4.8: T-WAFER density plots, 20 evaluations.
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Figure 4.9: T-WAFER density plots, 50 evaluations.
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Figure 4.10: T-WAFER density plots, 100 evaluations.

DACE.

4.2.2 The MAPS Search Criterion

Throughout Section 2.1, the point that the use of a search criterion is beneficial is often
made. If this is the case, then there should be some kind of demonstrable difference in
results between the MAGS implementation, which uses only the approximation, and the
Dynamic and SDO-style implementations which factor in a measure of the quality of the
overall design. Though this difference is not as obvious as the difference between the MAPS
and DACE algorithms, the difference is noticeable nonetheless.

The difference in results due to the use of the search criterion shows itself in the frequency
with which a solution near the global minimizer of the function is found. The 5-minimizer
function in the Shekel family is a problem that illustrates this difference quite well. Density
plots for this function are shown in Figures 4.11 and 4.12. Note that after 50 evaluations
(Figure 4.12), the “peak” for the function value of the global minimizer for MAPS-Dynamic
and MAPS-SDO is higher than the peak for the function value of the global minimizer
for MAGS. According to the statistics in Figure C.5 in Appendix C, the MAPS-Dynamic
algorithm has shown itself to be, for this set of experiments, almost twice as likely as MAGS
to find the function value associated with the global minimizer. Likewise for this set of
experiments, MAPS-SDO proved to be roughly 50% more likely to find the function value
associated with the global minimizer than MAGS. The density plots of a three-dimension
krigifier function shown in Figures A.7 and A.8 of Appendix A also illustrate this trend.
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Figure 4.11: Shekel10 density plots, 20 evaluations.
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Figure 4.12: Shekel10 density plots, 50 evaluations.
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4.2.3 Global Optimization and the “Curse of Dimensionality”

One of the attractive features of the krigifier family of functions is that they easily scale
across a variety of dimensions. Since the functions are drawn from the same family, with a
comparative density of krigifier evaluation sites among all of the dimensions, some compari-
son can be made across these functions. The tables in Appendix C show the number of runs
returned by the algorithm that are “near” the function value of the global minimizer (the
Appendix itself defines that nearness). One trend to note is that as the dimension increases,
all of the algorithms tend to do worse in terms of finding the function value associated with
global minimizer. This is not unexpected, as the number of minimizers in these functions
have increased. What is interesting to note, however, is that in the 5-dimensional krigifier
functions detailed in Figure C.4, the MAPS algorithms are the only ones identifying the
function value at the global minimizer with any degree of frequency. This suggests that
MAPS performs reliably as we increase the dimension of the problem to be solved. While
the “curse of dimensionality” does appear to take its toll, MAPS seems to resist the “curse”
much better than any of the other direct search algorithms tested.

In terms of comparisons between the MAPS algorithms, the differences are much less
significant than those between MAPS and other algorithms. The choice of search criterion has
an effect on how well MAPS responds to increasing dimensions. As the tables in Appendix
C show, MAPS-Dynamic and MAPS-SDO improve relative to MAGS. The MAPS-Dynamic
algorithm also does better than the MAPS-SDO on the lower dimension functions tested.
It is our conjecture that the MAPS-Dynamic algorithm will also do better relative to SDO
with an evaluation budget of say V' = 100 on a higher dimensional function.

4.2.4 Costs of the MAPS Approach

The extra effort the Model-Assisted Pattern Search algorithm invests in building a global
approximation of the function comes with a computational cost. Recalling that the algorithm
is intended primarily for computationally expensive objective functions, this cost may still
be reasonable.

The critical computational path in the current implementation of MAPS comes from
the linear algebra routines used in the computation of the singular-value decomposition of
matrices, used for the Moore-Penrose generalized inverse described in Section 2.4.1. Since
parameter estimation for the kriging process requires a matrix pseudoinversion for each
iteration of the estimation process, this expense accounts for the overwhelming majority of
MAPS’ computational cost. The time complexity for computing one of these pseudoinverses
is O(k®), where k is the number of points at which the function has been evaluated. The
cost grows in this fashion since we find the pseudoinverse of a k£ X k correlation matrix.

Figure 4.2.4 shows partial results from gprof, the UNIX/Linux profiling utility, for a
sample run of MAPS. The algorithm was run on the 5-minimizer function of the Shekel
family, with an evaluation budget of V' = 50. For this example, the cost of evaluating the
objective is insignificant, so we can concentrate on the computational overhead involved in
executing MAPS. The results show quite clearly that the vast majority of time spent by the
MAPS algorithm was spent in BLAS and CLAPACK routines used by the SVD routine.
(The number of calls are not reported for the BLAS and CLAPACK routines, because
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gathering that information would have required recompiling the BLAS and CLAPACK.)
The other major contributors to the total execution time included linear algebra procedures
that performed operations like vector subtraction and matrix transposition. Computation of
the correlation matrix also added some computational expense as GenerateCorrelationMatrix
calls the function Cor_Gauss_lIsotropic in the given example. The process of generating this
matrix occurs with time complexity O(k?p), where k is the number of points at which the
function has been evaluated, and p is the dimension of the problem. It is precisely this
matrix which is inverted during the estimation process of the kriging parameter #. Though
other computational expenses are evident, clearly the dominant factor is the cost of the

pseudoinversion.
% | Cumulative Self Number of | Self Total | Function

Time | Seconds | Seconds Calls ms/call | ms/call | Name
20.83 2.11 2.11 dgemv_ (used by SVD)
20.04 4.14 2.03 dlasr_ (used by SVD)
14.81 5.64 1.50 dger_ (used by SVD)
11.06 6.76 1.12 1,121 1.00 1.23 pseudoinvert
6.02 7.37 0.61 597,774 0.00 0.00 Cor_Gauss_Isotropic
5.53 7.93 0.56 dlartg_ (used by SVD)
3.46 8.28 0.35 dbdsqr_ (used by SVD)
2.07 8.49 0.21 dnrm2_ (used by SVD)
1.58 8.65 0.16 599,186 0.00 0.00 Vector operator-
1.38 8.79 0.14 1,081 0.13 0.70 GenerateCorrelationMatrix
1.28 8.92 0.13 2,242 0.06 0.06 Matrix transpose
1.28 9.05 0.13 1,121 0.12 0.12 ComputeSVD

Figure 4.13: gprof Results for one MAPS run on Shekel5.
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Chapter 5

Conclusions and Future Research

Although the results presented here are preliminary, they do strongly suggest certain con-
clusions that can be drawn about the MAPS algorithm. The MAPS algorithm enjoys a
theoretical guarantee of asymptotic convergence to a constrained stationary point, inherited
from pattern search [15] and our empirical results show this is born out in practice. On all
of the problems tested, MAPS performs well, even when alloted a fairly meager budget for
function evaluations.

It is also important to note that the MAPS algorithm compares favorably with the
algorithms from which it draws inspiration. The iterative nature of pattern search gives
MAPS an empirical advantage over a one-shot approach such as DACE. MAPS outperformed
the Latin compass search, thus indicating that the empirical effectiveness shown by MAPS
is more than simply a result of its initial space-filling Latin hypercube design. On the other
side of the coin, the global modeling gives MAPS an advantage over the simpler model-
free pattern searches. The fact that MAPS resists the “curse of dimensionality” better than
both DACE and pattern search, speaks for the robustness of the algorithm. Admittedly, this
advantage comes at a computational cost, but the MAPS algorithm may still be appropriate
for objective functions with their own high computational cost. In this case, the effort put
into modeling is recovered due to the use of fewer function evaluations.

Even though MAPS is based on a local optimization algorithm like pattern search, it has
shown its worth in terms of global optimization. Our results strongly suggest that MAPS is
far more capable at global minimization on a limited budgets especially as the dimension of
the problem increases, than either the pattern search or DACE algorithms. The choice of the
search criterion also made a difference. The MAPS-Dynamic and MAPS-SDO algorithms
seemed to perform better than the MAGS algorithm. Thus, the balancing act between
immediate convergence and space exploration, represented by our search criterion, does
indeed seem to be worthwhile.

In terms of future research, there are several different tests we would like to see performed.
First, we would like to see tests of MAPS done in higher dimensions. Five dimensional
problems are still fairly small by engineering design standards, and it would be of value to
see the performance of MAPS on problems of that scale. Second, we would like to see MAPS
compared to other model-based optimization algorithms. Comparisons to quasi-Newton
methods could certainly yield interesting results. We would also like to see MAPS compared
with algorithms specifically proposed for global optimization. Though global optimization
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is not MAPS’ primary role, it has fared well in that context compared to pattern search and
DACE. Further comparison with global optimization algorithms would thus be of interest.

Further “tweaking” of the MAPS algorithm itself could also be a line for future research.
The experimental design literature has offered a variety of experimental designs which are
“better” at space-filling than Latin hypercubes. Maximin and orthogonal array designs would
be two such examples. Would changing the initial design effect the final results yielded by
MAPS? It is certainly plausible that this may be the case. The kriging process in MAPS
is currently implemented using only a constant trend. If it was known a priori that the
objective function was basically quadratic, would kriging with a quadratic trend be helpful?
This may be a useful endeavor, as many objective functions of interest tend to have a vaguely
quadratic shape.

In terms of mitigating the computational expense of MAPS, lessening the frequency with
which the estimation of the correlation parameter @ (used in the kriging), may prove to lessen
the computational expense of MAPS considerably, without any appreciable deterioration
in overall performance. Currently, the implementation follows the algorithm specification
strictly, and re-estimates the parameter € in each iteration. If # does not change much
between iterations, perhaps computational efficiency could be increased by simply reusing
the current value of 6.

We hope to see these questions answered by future researchers. The MAPS algorithm has
a great deal of potential for application to computationally expensive problems in industrial
application. It is our hope that this potential is realized.
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Appendix A

Graphs of Results
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Figure A.1: 5-D Krigifier(1C) density plots, 20 evaluations.
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Figure A.2: 5-D Krigifier(1C) density plots, 50 evaluations.
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Figure A.4: 4-D Krigifier(1C) density plots, 50 evaluations.
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Figure A.5: 3-D Krigifier(1C) density plots, 20 evaluations.
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Figure A.6: 3-D Krigifier(1C) density plots, 50 evaluations.
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Figure A.7: 3-D Krigifier(1Q) density plots, 20 evaluations.
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Appendix B
Global Comparisons with DACE

This appendix is composed of tables detailing the results of each of the seven optimization

algorithms run. The baseline for the comparison shown is the 95th percentile of results
returned by the DACE algorithm, for a budget of V' = 50 evaluations. The number listed
in the columns is the number of runs which returned a value better than the baseline value,
for a budget of V' = 50 evaluations. The results are shown for each of the ten krigifier
realizations for all dimensions tested. The realizations denoted with a “c” possess a constant
trend, and the realizations denoted with a “q” possess a quadratic trend. Results are also

shown for the Shekel and Hartman families of test functions.

Figure B.1: Krigifier 2-D — Runs better than DACE’s 25th percentile.
Algorithm /Realization | R1lc | R1q | R2c | R2q | R3¢ | R3q | Rdc | R4q | Rbe | R5q
MAPS(New Dynamic) | 891 | 927 | 514 | 466 | 503 | 760 | 656 | 909 | 389 | 421

MAGS 685 | 501 | 199 | 158 | 109 | 202 | 219 | 301 | 147 | 152

MAPS like SDO 855 | 806 | 372 | 245 | 432 | 639 | 496 | 739 | 347 | 315
Hooke & Jeeves 426 | 283 | 118 | 61 | 181 | 274 | 167 | 228 | 75 | 97
Compass Search 437 | 191 | 94 | 60 | 191 | 251 | 172 | 215 | 57 | 62
Latin Compass Search | 717 | 588 | 229 | 143 | 372 | 499 | 448 | 584 | 169 | 86
DACE 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250

Figure B.2: Krigifier 3-D — Runs better than DACE’s 25th percentile.
Algorithm /Realization | R1c | R1q | R2c | R2q | R3¢ | R3q | R4c | R4q | Rbe | R5q
MAPS(New Dynamic) | 724 | 947 | 839 | 764 | 505 | 343 | 825 | 851 | 782 | 900

MAGS 606 | 728 | 711 | 628 | 396 | 244 | 744 | 681 | 616 | 719

MAPS like SDO 673 | 882 | 804 | 735 | 468 | 286 | 810 | 811 | 725 | 874
Hooke & Jeeves 420 | 680 | 643 | 668 | 398 | 329 | 578 | 628 | 464 | 682
Compass Search 391 | 634 | 626 | 618 | 357 | 201 | 591 | 653 | 444 | 639
Latin Compass Search | 619 | 813 | 698 | 643 | 464 | 301 | 715 | 687 | 611 | 676
DACE 250 | 249 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250
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Figure B.3: Krigifier 4-D — Runs better than DACE’s 25th percentile.

Algorithm /Realization | Rlc | R1q | R2c | R2q | R3¢ | R3q | R4c | R4q | Rbe | R5q
MAPS(New Dynamic) | 804 | 843 | 816 | 862 | 860 | 875 | 812 | 896 | 814 | 853
MAGS 673 | 777 | 633 | 721 | 741 | 801 | 660 | 790 | 691 | 727
MAPS like SDO 740 | 863 | 758 | 833 | 807 | 891 | 757 | 906 | 766 | 858
Hooke & Jeeves 580 | 657 | 477 | 521 | 613 | 687 | 493 | 558 | 536 | 586
Compass Search 591 | 654 | 492 | 507 | 596 | 667 | 485 | 528 | 536 | 566
Latin Compass Search | 643 | 724 | 603 | 636 | 654 | 725 | 637 | 696 | 630 | 697
DACE 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250

Figure B.4: Krigifier 5-D — Runs better than DACE’s 25th percentile.
Algorithm /Realization | R1lc | R1q | R2c | R2q | R3¢ | R3q | Rdc | R4q | Rbe | R5q
MAPS(New Dynamic) | 900 | 896 | 939 | 870 | 892 | 872 | 889 | 859 | 919 | 891
MAGS 778 | 871 | 848 | 891 | 795 | 855 | 813 | 841 | 792 | 843
MAPS like SDO 851 | 933 | 932 | 938 | 863 | 915 | 888 | 915 | 875 | 920
Hooke & Jeeves 646 | 642 | 650 | 625 | 620 | 637 | 604 | 629 | 612 | 654
Compass Search 663 | 627 | 687 | 661 | 670 | 643 | 631 | 647 | 626 | 659
Latin Compass Search | 722 | 726 | 721 | 752 | 712 | 768 | 683 | 734 | 736 | 776
DACE 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250

Figure B.5: Shekel Family — Runs better than DACE’s 25th percentile.

Algorithm/Realization

R5

R7 | R10

MAPS(New Dynamic)
MAGS
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DACE

Figure B.6: Hartman Family — Runs better than DACE’s 25th percentile.
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Algorithm/Realization | R3 | R6
MAPS(New Dynamic) | 981 | 999
MAGS 897 | 960

MAPS like SDO 954 | 1000
Hooke & Jeeves 404 | 233
Compass Search 385 | 172
Latin Compass Search | 467 | 169
DACE 249 | 250
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Appendix C

“Nearness” to the Global Minimizer

This appendix is composed of tables detailing the performance at global optimization for each
of the algorithms tested. For each algorithm, for all of the 1,000 runs with evaluation budget
V =50, the number of runs returning results “near” to the function value corresponding to
the global minimizer is listed. The “nearness” criterion used for a given result is that the
point must be less than half the distance to the function value of the next best stationary
point. The results are shown for each of the ten krigifier realizations for all dimensions
tested. The realizations denoted with a “c” possess a constant trend, and the realizations
denoted with a “q” possess a quadratic trend. Results are also shown for the Shekel and

Hartman families of test functions.

Figure C.1: Krigifier 2-D — Runs “near” the function value of the global minimizer.

Algorithm /Realization | Rlc | R1q | R2c | R2q | R3¢ | R3q | R4c | R4q | Rbe | R5q
MAPS(New Dynamic) | 897 | 928 | 515 | 467 | 515 | 768 | 660 | 909 | 401 | 427
MAGS 685 | 501 | 201 | 160 | 160 | 274 | 270 | 396 | 198 | 192

MAPS like SDO 855 | 806 | 372 | 245 | 432 | 645 | 496 | 748 | 347 | 323
Hooke & Jeeves 426 | 283 | 118 | 61 | 181 | 274 | 167 | 228 | 75 97
Compass Search 437 | 191 | 94 | 60 | 191 | 251 | 172 | 215 | 57 | 62
Latin Compass Search | 722 | 592 | 229 | 144 | 378 | 504 | 456 | 592 | 171 | 88
DACE 566 | 583 | 259 | 264 | 411 | 463 | 386 | 451 | 381 | 374
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Figure C.2: Krigifier 3-D — Runs “near” the function value of the global minimizer.

Algorithm /Realization | Rlc | R1q | R2c | R2q | R3¢ | R3q | R4c | R4q | Rbe | R5q
MAPS(New Dynamic) | 123 | 130 | 73 | 118 | 218 | 213 | 181 | 421 | 211 | 156
MAGS 102 | 102 | 62 | 95 | 155 | 129 | 126 | 257 | 157 | 120

MAPS like SDO 118 | 121 | 64 | 92 | 198 | 169 | 149 | 367 | 180 | 149
Hooke & Jeeves 79 | 143 | 39 | 98 | 210 | 247 | 60 | 140 | 9 43
Compass Search 72 | 144 | 44 | 84 | 184 | 151 | 75 | 154 | 10 29
Latin Compass Search | 68 78 | 62 | 117 | 218 | 203 | 119 | 166 7 66
DACE 6 5 3 4 43 | 39 9 1 0 8

Figure C.3: Krigifier 4-D — Runs “near” the function value of the global minimizer.

Algorithm /Realization | R1lc | R1q | R2c | R2q | R3¢ | R3q | Rdc | R4q | Rbe | R5q
MAPS(New Dynamic) | 101 | 49 | 24 | 216 | 37 | 18 | 163 | 354 | 28 | 116
MAGS 70 44 13 | 151 | 25 19 | 126 | 211 | 23 | 113

MAPS like SDO 94 49 16 | 201 | 29 17 | 155 | 315 | 27 | 112
Hooke & Jeeves 23 | 20 1 50 ) 0 25 | 48 7 25
Compass Search 38 | 31 1 59 5 0 40 | 61 6 30
Latin Compass Search | 45 | 34 0 44 2 0 40 | 61 2 82
DACE 1 0 0 1 1 0 0 0 0 0

Figure C.4: Krigifier 5-D — Runs “near” the function value of the global minimizer.

Algorithm /Realization | Rlc | R1q | R2c | R2q | R3¢ | R3q | R4c | R4q | Rbe | R5q
MAPS(New Dynamic) | 30 | 114 | 30 | 38 | 55 | 47 | 21 58 | 67 | 16
MAGS 17 1 60 | 25 | 29 | 33 | 33 | 12 | 39 | 49 | 11

MAPS like SDO 26 | 114 | 38 | 49 | 46 | 47 | 29 | 73 | 70 | 14
Hooke & Jeeves 2 2 0 2 10 3 0 4 2 0
Compass Search 2 4 0 1 9 6 0 8 2 0
Latin Compass Search | 0 0 0 1 3 1 0 7 0 0
DACE 0 0 0 0 0 0 0 0 0 0

Figure C.5: Shekel Family — Runs “near” the function value of the global minimizer.

Algorithm/Realization | R5 | R7 | R10
MAPS(New Dynamic) | 276 | 374 | 369
MAGS 261 | 213 | 181
MAPS like SDO 260 | 293 | 280
Hooke & Jeeves 58 | 39 | 32
Compass Search 28 | 25 | 19
Latin Compass Search | 13 | 17 | 12
DACE 0 0 0
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Figure C.6: Hartman Family — Runs “near” the function value of the global minimizer.
Algorithm /Realization | R3 | R6
MAPS(New Dynamic) | 983 | 621
MAGS 897 | 566
MAPS like SDO 954 | 664
Hooke & Jeeves 560 | 0
Compass Search 525 | 0
Latin Compass Search | 812 | 0
DACE 629 | 0

Figure C.7: T-WAFER — Runs “near” the function value of the global minimizer.
Algorithm/Realization | R
MAPS(New Dynamic) | 1000
Hooke & Jeeves 972
Compass Search 935
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Appendix D

Source Code for Approximation

D.1 Headers

D.1.1 Approximate

VAL L

Approximate Class - 5/24/99 cmsief

This is an abstract base class for approximations
*kokk /

#ifndef _MAPS_APPROX_

#define _MAPS_APPROX_

#include "maps_general.h"

#define A_KRIG_APPROX 1
#define A_NULL_APPROX 2

class Approximate {

public:
Approximate () ;
Approximate (Approximate &A);
Approximate(long dim);
/*call AutoGeneratex/
virtual ~Approximate();
virtual Approximate& operator=(Approximate &A)=0;
// virtual void copy(Approximate &A) ;

/*%x%%QUERY FUNCTIONS***sk*/
virtual long GetDim() const =0;

VAL L

OUTPUT: Returns the dimension of the space.
*okkok /
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virtual long GetType() const=0;

VAL L

OUTPUT: returns the proper code for type of approximation
*okkok /

virtual void debug(char *code) const=0;
VAL L

EFFECT: Outputs a state dump.

*okkok /

/*x%x%x ACTION FUNCTIONS**%*%x*/

virtual bool EvaluateApprox(const mp_vector &x, const pt_collect &Eval_c,
doublex Approx, double* D_c)=0;

VAL L

INPUT: The location to evaluate at, the location of evaluated sites, and two

double pointers for return values.

OUTPUT: Returns true if the operation was sucessful.

EFFECT: It Approixmates, and returns the Approximation and Design Criterion

Values in the two pointers

*okokok /

virtual bool UpdateApprox(pt_collect &Eval_c, mp_vector &f_values, long
numpoints, double delta,const Bounds &b)=0;

VAL

INPUT: The collection of evaluated sites, their values, the number of points

evaluated, delta and the bounds.

OUTPUT: Returns true if the operation was sucessful.

EFFECT: This updates the approximation.

Kok ok /

};/*end class*/

#endif

D.1.2 KrigApprox

VAL
KrigApprox Class - 6/7/99 cmsief
Derived from Approximate. This class is a kriging-based function approximation.

NOTE: You must call Update before Evaluate the first time.
*kkk /

#ifndef _MAPS_KRIG_APPROX_
#define _MAPS_KRIG_APPROX_

#include "maps_general.h"
#include "ParamEstimate.h"
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#include "Approximate.h"

/*estimation trend codesx*/
#define TREND_CONSTANT O
#define TREND_QUADRATIC 1
#define TREND_CUSTOM 2

class KrigApprox: public Approximate {

public:

KrigApprox();

KrigApprox(long dim);

/*Call SetDefault*/

KrigApprox (KrigApprox &K) ;

KrigApprox (ParamEstimate &PE1, long dim);

virtual “KrigApprox() ;

KrigApprox& operator= (Approximate &A)
{if (A.GetType ()==A_KRIG_APPROX) *this=(KrigApprox&)A;
return *this;}

KrigApprox& operator= (KrigApprox &K);
/*%x%%*xRESET FUNCTIONS**x**x*/

void ResetKrigApproxState(ParamEstimate &PE1);
VAL L

INPUT: ParamEstimate object.

EFFECT: Resets this object’s state.

*kkk /[

bool ResetEstimateConstantTrend();

VAL L

OUTPUT: Always returns true.

EFFECT: Chooses Estimation with a constant trend. Since the trend is a
constant, no parameter is needed.

*kkk /[

bool ResetEstimateQuadraticTrend(mp_vector& a);

VAL L

INPUT: A vector signifying quadratic trend.

OUTPUT: True if the vector is reasonable.

EFFECT: Chooses Estimation with that quadratic trend.
NOTE: IMPLEMENTATION DEFERRED!

*okk ok /

bool ResetEstimateCustomTrend(void(*fcn) (const mp_vector &, mp_vector&),
long fcn_dim);
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VAL L L

INPUT: A function pointer, the vector-valued trend function and its dimension.
OUTPUT: Always returns true.

EFFECT: Chooses Custom trend Estimation.

*kkk [

bool ResetCorrelationFamily(long cor);

VAL L

INPUT: Correlation family number (see ParamEstimate.h).
OUTPUT: true if correlation family number is valid.
EFFECT: return PE.ResetCorrelationFamily(cor);

*okokok /

/*xxx*xQUERY FUNCTIONS %%/

long GetDim() const;
VAL L

OUTPUT: Returns the dimension of the space.
Kok ok /

long GetType() const {return A_KRIG_APPROX;}

VAL

OUTPUT: returns the proper code for type of approximation
*okokok /

void debug(char *code) const;

VAL

EFFECT: Outputs a state dump to stdout.
*kkk [

/*xx** ACTION FUNCTIONS*x**x*x*/

bool EvaluateApprox(const mp_vector &x, const pt_collect &Eval_c,
double* Approx, double* D_c);
VAL
INPUT: The location to evaluate at, the location of the previously
evaluated sites, and two double pointers for return values.
OUTPUT: Returns true if the operation was successful.
EFFECT: Using kriging to evaluate the approximation at this point. It also
evaluates the design criterion.
*okkk /

bool UpdateApprox(pt_collect &Eval_c, mp_vector &f_values, long
numpoints, double delta,const Bounds &b);
VAL
INPUT: The collection of evaluated sites, their values, the number of points
evaluated, the iteration number, the current delta and the bounds;
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OUTPUT: Returns true if the operation was successful.

EFFECT: This updates the weighting scheme and then rekrigs the function,
calling for parameter estimation as needed. Also, it updates the Design
Criterion.

*kkk /[

private:

void SetDefault(long dim);

VAL L

INPUT: Dimension of space. Used for parameter estimation.

EFFECT: Constant Trend Estimation, and ParamEstimate’s default family.
*okk ok /

double EvaluateTrend(const mp_vector& x);

VAL

INPUT: A mp_vector, x

OUTPUT: The value of the trend at that particular point. This is assembled
from the betas, as appropriate.

*okk ok /

long P; /*Dimension of Space*/
mp_vector* v; /*from estimation*/
mp_vector* theta; /*Estimatedx*/

mp_vector* beta; /*Estimatedx*/

double sigma2; /*Estimated*/
ParamEstimate* PE;

mp_vector* quad; /*For quadratic estimatex/

void(*custom_f) (const mp_vector &, mp_vector&);/*For custom function estimatex/
int estimation_trend;/*see top for codes*/
pt_collect* MLE; /*the MLE matrix... from estimation*/
long fdim; /*dimension of the vector-valued function fcn*/
bool first_time;
};/*end classx/

#endif

D.1.3 ParamEstimate

VAL

ParamEstimate Class - 6/1/99 cmsief

This wonderfully useful class should take care of all of your parameter
estimation needs.

*kkk /

#ifndef _MAPS_PARAM_
#define _MAPS_PARAM_
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#include "maps_general.h"
#include "PatternSearch.h"
#include "f2c.h"

/*CLAPACK Double-Precision SVD routine*/

extern "C" {

int dgesvd_(char *, char *, long*, long*, double *, long *, doublex,
double *, long *, double *, long *, double *, long *, long *) ;

};

#define START_THETA_STEP (0.8 * GetThetaUpperBound(curr_delta))
#define STOP_THETA_STEP (0.00001 * GetThetaUpperBound(curr_delta))

/*correlation family numbers*/

/*There are to be used to pick your correlation function type.
See the private member functions for more details.*/

#define COR_EXP_ISOTROPIC O

#define COR_GAUSS_ISOTROPIC 1

#define COR_EXP_PRODUCT 2

#define COR_GAUSS_PRODUCT 3

#define COR_CUBIC_ISOTROPIC 4

class ParamEstimate {

public:
ParamEstimate () ;
ParamEstimate (ParamEstimate &PE);
ParamEstimate (long dim) ;
/*Prep work and call SetDefault. This is the default.*/
ParamEstimate (int correlate, long dim, PatternSearch &PS1);
/*WARNING: REQUIRES A FULLY INITIALIZED PATTERNSEARCH*/
~“ParamEstimate() ;
ParamEstimate& operator=(ParamEstimate &PE);

/**x*x*x*xRESET FUNCTIONS%%**x%/

void ResetParamEstimateState(int correlate, long dim, PatternSearch &PS1);
VAL

INPUT: Correlation family number (see above), dimension of space, and

a PatternSearch.

EFFECT: Resets all the major state variables.

*okkk [

void ResetPatternSearch(PatternSearch &PS1);
VAL
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INPUT: PatternSearch Object.
EFFECT: Sets PS to be this PatternSearch.
*okkk [

bool ResetCorrelationFamily(int correlate);

VAL L

INPUT: Correlation family number (see above).
OUTPUT: True if number is valid.

EFFECT: Sets function pointer r to correct function.
*okkok /

bool ResetDim(long dim);

VAL

INPUT: Dimension of the space.
OUTPUT: True if dimension is valid.
EFFECT: P=dim;

*okkok /

/**%*QUERY FUNCTIONS**x*x*/

long GetDim() const;

VAL

OUTPUT: Returns the dimension of the space.
*okokok /

long GetThetaSize() const;

VAL

OUTPUT: Returns the size of the theta vector
*okkk [

void debug(char *code) const;

VAL L

EFFECT: Does a complete state dump to stdout.
*okkok /

static double GetThetaUpperBound(double delta);

VAL L

INPUT: delta.

OUTPUT: Returns a double representing the upper bound for
theta = -1o0g(0.8) / curr_delta"2.

*okkok /

/****xxESTIMATION FUNCTIONS***%x*/
bool EstimateConstantTrend(pt_collect &pts, mp_vector &fvals, double delta,

double* beta, double* sigma2, mp_vector* theta,
pt_collect* MLE_Matrix, mp_vector* v);
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VAL L L

INPUT: Collection of evaluated points, their values, delta , and pointers for
the parameters to be returned. theta should come in with a ’guess’ value for
the optimizer to start with.

OUTPUT: Returns true if the operation was successful.

EFFECT: This estimates the parameters, assuming a constant trend, and returns
them.

*okkk /

bool EstimateQuadraticTrend(pt_collect &pts, mp_vector &fvals, double delta,
mp_vector &a, mp_vector* beta,
double* sigma2, mp_vector* theta, pt_collect*
MLE_Matrix, mp_vector* v);
VAL T2
INPUT: Collection of evaluated points, their values, and pointers for the
parameters to be returned. theta should come in with a ’guess’ value for the
optimizer to start with.
OUTPUT: Returns true if the operation was successful.
EFFECT: This constructs the appropriate function vector and calls
EstimateCustom, using the Correlation function specified as the function
pointer parameter.
NOTE: IMPLEMENTATION DEFERRED TO A LATER DATE. DON’T CALL THIS.
*okk ok /

bool EstimateCustomTrend(pt_collect &pts, mp_vector &fvals, double delta, void
(*fcn2) (const mp_vector &, mp_vector&), long
dimf, mp_vector* beta, double* sigma2, mp_vector* theta,
pt_collect* MLE_Matrix, mp_vector* v);

VAL

INPUT: Collection of evaluated points, their values, and pointers for the

parameters to be returned. There is also a function pointer for the

’a’ function, and the dimension of the vector it returns. theta should come

in with a ’guess’ value for the optimizer to chew on.

OUTPUT: Returns true if the operation was successful.

EFFECT: This estimates the function.

*okk ok /

friend void OptimizeMLEConstant(void* PE,long dimtheta, double *x,

double &f, int &success)
{(x(ParamEstimate*)PE) .MLEConstant (dimtheta,x,f,success) ; }

VAL L

INPUT: Modified PatternSearch calling scheme. See PatternSearch.h

EFFECT: Indirection to get around C++’s inability to let function pointer

point to class member functions. This gets optimized by PatternSearch.

*okokok /

friend void OptimizeMLECustom(void * PE, long dimtheta, double *x,
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double &f, int &success)
{(*(ParamEstimatex*)PE) .MLECustom(dimtheta,x,f,success);}
VAL
INPUT: Modified PatternSearch calling scheme. See PatternSearch.h
EFFECT: Indirection to get around C++’s inability to let function pointer
point to class member functions. This gets optimized by PatternSearch.
*okokok /

double EvaluateMyCorrelation(long dim, const mp_vector &x1,
const mp_vector &x2, const mp_vector &theta);
VAL
INPUT: Dimesion of space, two points, and a ’vector’ theta. For the
Isotropic functions, this theta is a one dimensional vector, for the
Product functions, this is a P-dimensional vector.
OUTPUT: Correlation between the two points.
*okkk/

private:

void SetDefault(long dim);

VAL

INPUT: Dimension of the space.

EFFECTS: This will use a happy default set of values to set up the parameter
estimation.

Kok ok /

/*For the Optimizationx*/

void MLEConstant(long dimtheta, double *x, double &f, int &success);

VAL L

INPUT: Modified PatternSearch calling scheme. See PatternSearch.h

EFFECT: Evaluates the MLE for a given theta. Uses the constant trend. This
is to be optimized by the Pattern Search, via a little bit of indirection.
*okkk /

void MLECustom(long dimtheta, double *x, double &f, int &success);

VAL L

INPUT: Modified PatternSearch calling scheme. See PatternSearch.h

EFFECT: Evaluates the MLE for a given theta. Uses the custom trend. This is
to be optimized by the Pattern Search, via a little bit of indirection.

*okkk /

bool pseudoinvert(pt_collect &M, mp_vector* d);

VAL

INPUT: A matrix M, and a pointer to a mp_vector.

OUTPUT: true if svd can be computed, else false.

EFFECT: Replaces M with the pseudoinverse of M. If d!=NULL, an mp_vector with
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the one over the singular values, with those singular values below TOLERENCE
instead to zero, is returned. The matrix has to be *SYMMETRIC AND SQUAREx* for
this to work.

*okkok /

inline void GenerateCorrelationMatrix(pt_collect &R, const mp_vector &theta);
VAL L

INPUT: A np x np pt_collect, and the correlation family parameter vector, theta.
EFFECT: Replaces R with the appropriate correlation matrix.

*okkk /

bool ComputeSVD(const pt_collect &A, pt_collect* U, pt_collect* D,
pt_collect* VT);

VAL L

INPUT: Matrix A, to take the SVD of, and pointers to three matrices that will

contain what is returned by the SVD routine.

OUTPUT: true if CLAPACK’s dgesvd returns ok.

EFFFECT: Calls CLAPACK’s degsvd routine to compute the Singular Value

Decomposition(SVD) of A. Recall that a SVD of A yields U, D, and V’,

s.t. A=UxD* V’, where U and V are orthogonal matrices, and D is a diagonal

matrix with the singular values on its main diagonal.

*kkk /[

/*
Correlation Functions
INPUT: Dimesion of space, two points, and a ’vector’ theta. For the
Isotropic functions, this theta is a one dimensional vector, for the
Product functions, this is a P-dimensional vector.
NOTE: You specify these by use of the integer #defined correlation family
numbers, and ResetCorrelationFamily(). These are static class member functions.

*/

static double Cor_Exp_Isotropic(long dim, const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta);
/*Exponential Isotropic Correlation Family
r_theta(s,t) = exp(-theta |lIs-t||)
*/
static double Cor_Gauss_Isotropic(long dim, const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta);
/*Gaussian Isotropic Correlation Family
r_theta(s,t) = exp(-theta ||s-t|])"2
*/
static double Cor_Exp_Product(long dim, const mp_vector &x1,
const mp_vector &x2, const mp_vector &theta);
/*Exponential Product Correlation Family
r_theta(s,t) = \prod_{j=1}"{P} exp(-theta_j * [|s_j - t_jl)
*/
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static double Cor_Gauss_Product(long dim, const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta);
/*Gaussian Product Correlation Family
r_theta(s,t) = \prod_{j=1}"{P} exp(-theta_j * Is_j - t_jl|"2)
*/
static double Cor_Cubic_Isotropic(long dim, const mp_vector &x1, const mp_vector &x2,
const mp_vector &theta);
/*Cubic Product Correlation Family
r_theta(s,t)={ 1-1.5%(||s-t||)/theta + 0.5 ((||s-t||)/theta)"3, for ||s-t|| < theta }
{ 0 otherwise }

*/

private:
pt_collect* points; /*pointer to the evaluated points*/
mp_vector* values; /*pointer to function values*/
long np; /*number of point evaluated*/
PatternSearch* PS; /*some kind of optimizer*/
long P; /*dimension of the spacex*/

double (*r)(long dim,const mp_vector&, const mp_vector&, const mp_vector& );
/*for pointing to the correlation functionx/

long fdim; /*dimension of the vector returned by fcnx/

void (*fcn) (const mp_vector &, mp_vector&) ;

/*for pointing to the ’A’ function in custom estimation*/

double curr_delta; /*Current delta. Used for bounds on theta*/

double MACH_EPS; /*Machine Epsilonx*/

};/*end classx*/

double GetMachineEpsilon();

VAL L

OUTPUT: An estimate of Machine Epsilon. See Heath’s
Scientific Computing, chapter 1.

*kkk /

#endif

D.2 Code

D.2.1 Approximate

VAL L

Approximate Implementation - 6/2/99 cmsief

This is an abstract base class for approximations
*okokk /
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#include "Approximate.h"
Approximate: : Approximate (O {;}
Approximate: : Approximate (Approximate &A){;}
Approximate: : Approximate(long dim){;}
Approximate: : “Approximate () {;}

D.2.2 KrigApprox

VALL L

KrigApprox Implementation - 6/3/99 cmsief
*kkk /

#include "KrigApprox.h"

/ FF Rk ko kR ook ok kokokokokkokokokCONSTRUCTORS  + DESTRUCT QR sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok k sk k ok sk ok ok ok /

KrigApprox: :KrigApprox() {

P=0; v=NULL;

theta=NULL; beta=NULL;

sigma2=0; PE=NULL;

quad=NULL;

estimation_trend=TREND_CONSTANT;

custom_f=NULL ;MLE=NULL; fdim=1;first_time=true;
}/*end KrigApprox*/

KrigApprox: :KrigApprox(long dim) {

/*Call SetDefault*/
v=NULL; theta=NULL;beta=NULL;PE=NULL;quad=NULL;MLE=NULL;first_time=true;
SetDefault(dim) ;

}/*end special constructor*/

KrigApprox: :KrigApprox (KrigApprox &K) {
P=K.P;sigma2=K.sigma2;estimation_trend=K.estimation_trend;
if (K.v!=NULL) v=new mp_vector(*K.v);
else v=NULL;
if(K.theta!=NULL) theta=new mp_vector (*K.theta);
else theta=NULL;
if(K.beta!=NULL) beta=new mp_vector (*K.beta) ;
else beta=NULL;
if (K.PE!=NULL) PE=new ParamEstimate (*K.PE) ;
else PE=NULL;
if (K.quad!=NULL) quad=new mp_vector (*K.quad);
else quad=NULL;
if (K.MLE!=NULL) MLE=new pt_collect(*K.MLE);
else MLE=NULL;
custom_f=(K.custom_f);
fdim=K.fdim;first_time=K.first_time;

}/*end copy constructor*/
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KrigApprox: :KrigApprox(ParamEstimate &PE1l, long dim) {
SetDefault(dim) ;first_time=true;
(*PE)=PE1;
(*theta) .newsize ((*PE) .GetThetaSize());

}/*end special constructor*/

KrigApprox: :“KrigApprox() {
if (PE!=NULL) delete PE;
if(v!=NULL) delete v;
if (theta!=NULL) delete theta;
if(beta!=NULL) delete beta;
if (quad!=NULL) delete quad;
if (MLE!=NULL) delete MLE;
}/*end destructor*/

KrigApprox& KrigApprox::operator= (KrigApprox &K) {
if (this!=&K) {

if (PE!=NULL) delete PE;

if (v!=NULL) delete v;

if (theta!=NULL) delete theta;
if (beta!=NULL) delete beta;
if (quad!=NULL)delete quad;

P=K.P;sigma2=K.sigma2;estimation_trend=K.estimation_trend;
custom_f=K.custom_f;fdim=K.fdim;first_time=K.first_time;

if (K.PE!=NULL) PE=new ParamEstimate (*K.PE) ;
else PE=NULL;

if(K.v!=NULL) v=new mp_vector(*K.v);

else v=NULL;

if (K.theta!=NULL) theta=new mp_vector (*K.theta);
else theta=NULL;

if (K.beta!=NULL) beta=new mp_vector (*K.beta) ;
else beta=NULL;

if (K.quad!=NULL) quad=new mp_vector (*K.quad) ;
else quad=NULL;

if (K.MLE!=NULL) MLE=new pt_collect (*K.MLE);
else MLE=NULL;

}/*end ifx/
return (*this);

}/*end overloaded =%/

/3K skok sk ke ok ok ok ok sk ok s ok ok sk ok ko skok ok k sk ok k RESET  FUNGCT T QIS sk s sk sk sk sk sk sk e ok sk sk e sk sk ok ok sk sk sk ok sk sk sk ke sk ok /
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void KrigApprox::ResetKrigApproxState(ParamEstimate &PE1) {
VALL L
INPUT: ParamEstimate object.
EFFECT: Resets this object’s state.
*kkk /
(¥PE)=PE1;
}/*end ResetKrigApproxState*/

bool KrigApprox::ResetEstimateConstantTrend() {
VALL L
OUTPUT: Always returns true.
EFFECT: Chooses Estimation with a constant trend. Since the trend is a
constant, no parameter is needed.
*kkok /
estimation_trend=TREND_CONSTANT;fdim=1;
return true;
}/*end ResetEstimateConstantTrend*/

bool KrigApprox::ResetEstimateQuadraticTrend(mp_vector& a) {return false;}
VAL
INPUT: A vector signifying quadratic trend.
OUTPUT: True if the vector is reasomable.
EFFECT: Chooses Estimation with that quadratic trend.
NOTE: IMPLEMENTATION DEFERRED!
*okkk [

bool KrigApprox::ResetEstimateCustomTrend(void(*fcn) (const mp_vector &,
mp_vector&), long fcn_dim){
VAL L
INPUT: A function pointer, the the vector-valued trend function.
OUTPUT: Always returns true.
EFFECT: Chooses Custom trend Estimation.
*kkok /
custom_f=fcn;
estimation_trend=TREND_CUSTOM;
fdim=fcn_dim;
return true;
}/*end ResetEstimateConstantTrend*/

bool KrigApprox::ResetCorrelationFamily(long cor) {
VALI L
INPUT: Correlation family number (see ParamEstimate.h).
OUTPUT: true if correlation family number is valid.
EFFECT: return PE.ResetCorrelationFamily(cor) ;
*okokok /

bool s;

if (PE!=NULL) {
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s=(*PE) .Res

etCorrelationFamily(cor);

if (s) (*theta) .newsize((*PE).GetThetaSize());

return s;
}/*end ifx/

else return false;
}/*end ResetCorrelationFamily*/

/**************

long KrigApprox
VALL L
OUTPUT: Returns
*kkk /

return P;
}/*end GetDim*/

void KrigApprox
VALL L
EFFECT: Outputs
*kkk /
cout<<code<<"
cout<<code<<"
if(estimation
cout<<code<
else if(estim
cout<<code<
else if(estim
cout<<code<

sk ok skokokokokokkQUERY  FUNCT T OIS sk sk sk s s sk sk sk sk sksese s s ke sk ks s ek sk s s s/
::GetDim() const {

the dimension of the space.

: :debug(char *code) const{
a state dump to stdout.

1*¥x*KrigApprox: :debug () ***\n" ;

:P="<<P<<" sigma2="<<sigma2<<" fdim="<<fdim<<endl;
_trend==TREND_CONSTANT)

<":Constant Trend Estimation\n";
ation_trend==TREND_QUADRATIC)

<":Quadratic Trend Estimation, quad="<<quad;
ation_trend==TREND_CUSTOM)

<":Custom Trend Estimation\n";

else cout<<code<<":Trend unknown\n";

if (PE!=NULL)

(*PE) .debug(code) ;

else cout<<code<<":PE=NULL\n";
if(v!=NULL) cout<<code<<":v="<<(*v);
else cout<<code<<":v=NULL\n";

if (beta!=NULL
else cout<<co
if (theta!=NUL
else cout<<co
if (MLE!=NULL)
else cout<<co
cout<<code<<"
}/*end debug*/

/**************

bool KrigApprox

VALL L

) cout<<code<<":beta="<<(x*beta);
de<<" :beta=NULL\n";
L) cout<<code<<":theta="<<(*theta);
de<<" :theta=NULL\n";

cout<<code<<" :MLE="<< (*MLE) ;
de<<" :MLE=NULL\n";

s*xxkend KA::debug()***\n";

sokokokok ok kokok ok okok ACTTON FUNCT TONS ook sk ke ok sk sk ok sk sk sk ke k s s ok sk ok sk sk sk ke ek s s sk ok ok /

: :EvaluateApprox(const mp_vector &x, const pt_collect &Eval_c,
double* Approx, double* D_c){
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INPUT: The location to evaluate at, the location of the previously
evaluated sites, and two double pointers for return values.

OUTPUT: Returns true if the operation was successful.

EFFECT: Using kriging to evaluate the approximation at this point. It also
evaluates the design criterion.

*kkok /

#if DEBUG>=3
cout<<"KAEA :function called\n";
Cout<<"KAEA 1 X="<<x;

#endif

if(first_time) return false;/*Update not run yet*/
long points=(*v).dim();

long i;

mp_vector r(points);

mp_vector MLE_r(points+fdim) ;

/*Create the correlation vector between the points and the design sites*/
for(i=0;i<fdim;i++) MLE_r[i]=1;
for (i=0;i<points;i++) {
r [i]=(*PE) .EvaluateMyCorrelation(P,x,Eval_c.row(i), (*theta));
MLE_r[i+fdim]=r[i];
}/*end forx*/
#if DEBUG>=4

cout<<"KAEA 1 r="<<r;
cout<<"KAEA : MLE_r="<<MLE_r;
#endif

/*evaluate the value of the approximation herex/
(xApprox)=EvaluateTrend(x) + (*v) * r;

/*evaluate the sqrt of the mean squared error for the design criterion*/
double MLE_X = MLE_r * ((*MLE) * MLE_r);
/*Uses special multiply operator to use 1st MLE_r as row vector*/
#if DEBUG>=3
COut<<"KAEA :MLE_X="<<MLE_X<<endl;
#endif

/*Deal with a common numerical error*/
if (sigma2<0) {
#if DEBUG>=2
cout<<"KAEA : ERROR(non-fatal) sigma2="<<sigma2
<<" Zeroing D_C..."<<endl; (*D_c)=0;
#endif
}/*end ifx/
else if ((1-MLE_X)<0)
{
#if DEBUG>=2
cout<<"KAEA : ERROR(non-fatal) 1-MLE_X="<<1-MLE_X
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<<" Zeroing D_C..."<<endl

<<"KAEA : ERROR(non-fatal) x="<<x;
#endif
(*D_c)=0;
}/*end ifx/
else

(*¥D_c) = sqrt(sigma2 * ( 1.0 - MLE_X));

#if DEBUG>=3

COut<<"KAEA :function completed\n";
#endif

return true;

}/*end EvaluateApprox*/

bool KrigApprox::UpdateApprox(pt_collect &Eval_c, mp_vector&
f_values, long numpoints, double delta,
const Bounds &b){

VALL L
INPUT: The collection of evaluated sites, their values, the number of points
evaluated, the iteration number, delta and the bounds.
OUTPUT: Returns true if the operation was successful.
EFFECT: This updates the weighting scheme and then rekrigs the function,
calling for parameter estimation as needed. Also, it updates the Design
Criterion.
*kokok /

if (MLE==NULL) MLE=new pt_collect(1,1);

(*MLE) .newsize (fdim+numpoints, fdim+numpoints);

if (v==NULL) v=new mp_vector(1l,1);

(*v) .newsize (numpoints) ;

bool s=false;
if(first_time) {
first_time=false;
if (theta==NULL) theta=new mp_vector ((*¥PE) .GetThetaSize());

/*New Initial Theta Schemex*/
double L=b.upper[0]-b.lower[0];
for(long i=1;i<P;i++)
if (b.upper[il-b.lower[i] > L) L=b.upper[i]l-b.lower[i];

(*theta)=-100%1og(0.5) / sqr(L);
}/*end ifx*/

switch(estimation_trend) {

case TREND_CONSTANT:
s=(*PE) .EstimateConstantTrend(Eval_c, f_values, delta, (*beta).begin(),
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&sigma2, theta, MLE, v);
break;
case TREND_QUADRATIC:
break;
case TREND_CUSTOM:
s=(*PE) .EstimateCustomTrend(Eval_c, f_values, delta, custom_f, fdim,
beta, &sigma2, theta, MLE, v);
break;
default:
s=false;
};/*end switchx/
return s;
}/*end UpdateApprox*/

void KrigApprox::SetDefault(long dim) {
VALL L
INPUT: Dimension of space. Used for parameter estimation.
EFFECT: Constant Trend Estimation, and ParamEstimate’s default family.
*kkok /
PE=new ParamEstimate(dim);
P=dim;
v=new mp_vector(l) ;/*it needs to be numpoints later*/
theta=new mp_vector ((*¥PE) .GetThetaSize());

(*theta)=0.0001; /*assigns a guess to all elements of theta*/
estimation_trend=TREND_CONSTANT;
beta=new mp_vector(1l) ;/*Assumes Trend Constant*/
sigma2=0;
quad=NULL; fdim=1;
custom_f=NULL;
MLE=new pt_collect(1l,1);/*will be resized laterx*/
}/*end SetDefault*/

double KrigApprox::EvaluateTrend(const mp_vector& x){
VAL L
INPUT: A mp_vector, x
OUTPUT: The value of the trend at that particular point. This is assembled
from the betas, as appropriate.
*kkk /
switch(estimation_trend) {
case TREND_CONSTANT:
return (*beta) [0];/*for constant trend, value is in beta[0]*/
break;
case TREND_QUADRATIC:
return ERROR;
break;
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case TREND_CUSTOM:
return ERROR;
break;

default:
return ERROR;

};/*end switch*/

}/*end EvaluateTrend*/

D.2.3 ParamEstimate

VAL L

ParamEstimate Implementation - 6/3/99 cmsief

It slices, it dices, it does singular value decomposition!
*kkk /

#include "ParamEstimate.h"

#include "CompassSearch.h"

#include <math.h> /*e"whatever and sqrt*/
#include <malloc.h>

#include <stdlib.h>

#include <iostream.h>

// #define COR_EXP_ISOTROPIC 0
// #define COR_GAUSS_ISOTROPIC 1
// #define COR_EXP_PRODUCT 2

// #define COR_GAUSS_PRODUCT 3
// #define COR_CUBIC_ISOTROPIC 4

/ Fdk kR okokkokokkokokokokkokokokCONSTRUCTORS + DESTRUCT QR sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok /

ParamEstimate: :ParamEstimate() {
PS=NULL;
P=0;
np=0;
r=NULL;
fdim=0;
fcn=NULL;
curr_delta=0;
points=NULL;
values=NULL;
MACH_EPS=GetMachineEpsilon() ;
}/*end default constructor*/
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ParamEstimate: :ParamEstimate (ParamEstimate &PE)<{
PS=new CompassSearch;
(¥PS)=(*PE.PS);

P=PE.P;

r=PE.r;

np=PE.np;

fcn=PE.fcn;

fdim=PE.fdim;
curr_delta=PE.curr_delta;
MACH_EPS=PE.MACH_EPS;

/*Pointers to these are copiedx*/
points=PE.points;
values=PE.values;

}/*end copy constructor*/

ParamEstimate: :ParamEstimate(long dim) {
/*Prep work and call AutoGeneratex*/
PS=NULL;
points=NULL;
values=NULL;
MACH_EPS=GetMachineEpsilon() ;
SetDefault (dim) ;
}/*end special constructor*/

ParamEstimate: :ParamEstimate(int correlate, long dim, PatternSearch &PS1) {
P=dim;
points=NULL;
values=NULL;
np=0;
fcn=NULL;
fdim=0;
curr_delta=0;
PS=NULL;
r=NULL;
ResetCorrelationFamily(correlate);
ResetPatternSearch(PS1);
MACH_EPS=GetMachineEpsilon() ;
}/*end special constructor*/

ParamEstimate: : “ParamEstimate () {
points=NULL;/*I know that I’m doing this*/
values=NULL;
if (PS!'=NULL) {delete PS;PS=NULL;}

}/*end destructor*/

ParamEstimate& ParamEstimate::operator=(ParamEstimate &PE){

83



if (this!=&PE) {
if (PE.PS!=NULL) ResetPatternSearch(*PE.PS);
else if(PS!=NULL) {delete PS;PS=NULL;}
P=PE.P;
r=PE.r;
fcn=PE.fcn;
fdim=PE.fdim;
np=PE.np;
curr_delta=PE.curr_delta;
MACH_EPS=PE.MACH_EPS;
/*Pointers to these are copied#*/
points=PE.points;
values=PE.values;

}/*end ifx*/

return (*this);

}/*end overloaded=*/

[/ kKK k ok sk ok ok ok ok ok ok ok ok ok ok ko k ok k ok ko kRESET  FUNCT TON S okesk sk ke k sk sk ok ok sk sk ke ok s sk ok sk ok sk k k3 ok ek sk ok ok ok /

void ParamEstimate::ResetParamEstimateState(int correlate, long dim,
PatternSearch &PS1){
VAL L
INPUT: Correlation family number, dimension of space, and a PatternSearch.
EFFECT: Resets all the major state variables.
*kkk /
ResetCorrelationFamily(correlate);
ResetDim(dim) ;
ResetPatternSearch(PS1);
}/*end ResetParamEstimateState*/

void ParamEstimate::ResetPatternSearch(PatternSearch &PS1) {
VAL L
INPUT: PatternSearch Object
EFFECT: Sets PS to be this PatternSearch
*kkk /
if (PS==NULL) PS=new CompassSearch;
(*PS)=(PS1);

}/*end ResetPatternSearchx*/

bool ParamEstimate::ResetCorrelationFamily(int correlate)q{
VALL L
INPUT: Correlation family number
OUTPUT: True if number is valid
EFFECT: Sets function pointer r to correct function
*kkk /
switch(correlate) {
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case COR_EXP_ISOTROPIC:
r=Cor_Exp_Isotropic;
return true;

case COR_GAUSS_ISOTROPIC:
r=Cor_Gauss_Isotropic;
return true;

case COR_EXP_PRODUCT:
r=Cor_Exp_Product;
return true;

case COR_GAUSS_PRODUCT:
r=Cor_Gauss_Product;
return true;

case COR_CUBIC_ISOTROPIC:
r=Cor_Cubic_Isotropic;
return true;

default:
return false;

};/*end switchx/

}/*end ResetCorrelationFamily*/

bool ParamEstimate::ResetDim(long dim) {
VAL L
INPUT: Dimension of the space.
OUTPUT: True if dimension is valid.
EFFECT: P=dim;
*kkok /
if (dim>0) {P=dim;return true;}
else return false;
}/* ResetDim*/

/kokokkok ok okl kokkokokokok ok ok ok ok QUERY . FUNCT TON S sk ok ke ke ke ke ke ke ke ke ke ke ke ok ke ke ok sk ok sk sk ko sk sk sk ok /

long ParamEstimate::GetDim() const {

VALL L
OUTPUT: Returns the dimension of the space.
*kkk /

return P;

}/*end GetDimx/

long ParamEstimate::GetThetaSize() const {

VALL L
OUTPUT: Returns the size of the theta vector
*kkk /
if (r==Cor_Exp_Isotropic || r==Cor_Gauss_Isotropic
| [r==Cor_Cubic_Isotropic) return 1;
else if (r==Cor_Exp_Product || r==Cor_Gauss_Product) return P;
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else return ERROR;
}/*end GetThetaSizex/

double ParamEstimate::GetThetaUpperBound(double delta){
VAL L
INPUT: delta.
OUTPUT: Returns a double representing the upper bound for
theta = -1og(0.8) / delta"2.
*kkk /
return (-log(.8) / sqr(delta));
}/*end GetThetaUpperBound*/

void ParamEstimate::debug(char *code) const{
VAL L
EFFECT: Does a complete state dump to stdout.
*kkk /
cout<<code<<":***ParamEstimate: :debug() ***\n";
cout<<code<<":P="<<P<<" curr_delta="<<curr_delta<<" fdim="<<fdim<<" np='"<<np<<endl;
if (r==Cor_Exp_Isotropic)
cout<<code<<" :Exponential Isotropic Correlation\n";
else if(r==Cor_Gauss_Isotropic)
cout<<code<<":Gaussian Isotropic Correlation\n";
else if (r==Cor_Exp_Product)
cout<<code<<":Exponential Product Correlation\n";
else if (r==Cor_Gauss_Product)
cout<<code<<":Gaussian Product Correlation\n";
else if (r==Cor_Cubic_Isotropic)
cout<<code<<":Cubic Isotropic Correlation\n";
else cout<<code<<":Correlation unknown\n";
if (points!=NULL) cout<<code<<":points="<<(*points);
else cout<<code<<":points=NULL\n";
if(values!=NULL) cout<<code<<":values="<<(*values);
else cout<<code<<":values=NULL\n";
cout<<code<<":***end PE::debug()***\n";
}/*end debug*/

/oK sk sk ke ok s sk ok sk sk ke ok s sk ok sk sk sk ko ok skokokok ACT TON  FUNCT T OIS sk sk sk ok sk s ok sk sk sk sk k sk sk sk ook sk sk ok ok ok sk sk ok skok /

bool ParamEstimate::EstimateConstantTrend(pt_collect &pts, mp_vector &fvals,
double delta, double* beta,
double* sigma2, mp_vector* theta, pt_collect*
MLE_Matrix, mp_vector* v) {

VALI L

INPUT: Collection of evaluated points, their values, and pointers for the

parameters to be returned. theta should come in with a ’guess’ value for the

optimizer to chew on.

OUTPUT: Returns true if the operation was sucessful.

86



EFFECT: This estimates the parameters, assuming a constant trend, and returns them.
*kkk /
#if DEBUG>=2
COut<<"PEECT :Started\n";
#endif
bool success;
curr_delta=delta;
np=pts.num_rows () ;
pt_collect R(np,np);
mp_vector A(np);
A=1;/%£fills A with 1’sx*/
long i,j;
/*Pointers for these to save memory*/
points=&pts;
values=&fvals;

/*Pattern Search w/bounds on OptimizeMLEConstant*/

double* pstheta=(double*)malloc((*theta).dim()*sizeof (double));

double* ret_theta=(double*)malloc((*theta).dim()*sizeof (double));
for(i=0;i<(*theta) .dim() ;i++) psthetal[i]l=(*theta) [i];

Bounds bds;

bds.lower.newsize ((*theta) .dim()) ;bds.lower=0;

bds.upper.newsize ((*theta) .dim()) ;bds.upper=GetThetaUpperBound (curr_delta);

(*PS) .CleanSlate ((*theta).dim(), pstheta,START_THETA_STEP, STOP_THETA_STEP,
this, bds,OptimizeMLEConstant) ;

#if DEBUG >=3
COut<<"PEECT :Initialized PS\n";
#endif
(*xPS) .ExploratoryMoves();
#if DEBUG >=3
cout<<"PEECT :PS.ExploritoryMoves() complete\n";
#endif
(¥PS) .GetMinPointFLOP (ret_theta);

for(i=0;i<(*theta).dim() ;i++) (*theta) [i]=ret_thetalil;
free(ret_theta);
free(pstheta) ;

for(i=0;i<(*theta) .dim() ;i++)
/*Make sure that theta is non-zero*/

if ((*theta) [i{]<TOLERANCE) (*theta) [i{]=TOLERANCE;

/*Generate the corration matrix for thetax/
GenerateCorrelationMatrix (R, (xtheta));
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/*Generate MLE_Matrix - This is a block matrix as follows:
| 0 A |
| AT R |
*/
(*MLE_Matrix) [0] [0]=0.0;
for(i=1;i<np+1;i++) {
(*MLE_Matrix) [0] [i]=A[i-1];
(*MLE_Matrix) [1] [0]=A[i-1];
for (j=1;j<np+1;j++)
(*MLE_Matrix) [i] [j1=R[i-1][j-1];
}/*end forx*/
#if DEBUG >=3
cout<<"PEECT :MLE Matrix Constructed:"<<(*MLE_Matrix) ;
#endif

success=pseudoinvert (R,NULL) ;
if(!success) return (success); /*break out!*/
success=pseudoinvert (*MLE_Matrix,NULL);
if (!success) return (success); /*break out!*/
#if DEBUG >=3
cout<<"PEECT :Pseudoinversions complete\n";
#endif
(*v)=A*R;/*this multiply assumes that A is actually AT */
(¥beta)=((*v) * (*values)) / ((*v)*A); /*a special form for the constant trend case*/
(*v)=((*values) - Ax(*beta));
(*sigma2)=((*v) * R * (*v))/np; /*again, the special multiply assumes that the first v
is vT*/
(*v)=(*v)*R;/*special multiply which assumes v=vT*/

#if DEBUG >=2
cout<<"PEECT :terminating success="<<success<<"\n";
COout<<"PEECT :theta ="<<(*theta) [0]<<endl;
COout<<"PEECT :beta ="<<(*beta)<<endl;

#endif

return (success);
}/*end EstimateConstantTrendx*/

bool ParamEstimate::EstimateQuadraticTrend(pt_collect &pts, mp_vector &fvals,
double delta, mp_vector &a, mp_vector* beta,
double* sigma2, mp_vector* theta,
pt_collect* MLE_Matrix, mp_vector*
v){return false;}

VAL L

INPUT: Collection of evaluated points, their values, and pointers for the

parameters to be returned. theta should come in with a ’guess’ value for the
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optimizer to chew on.

OUTPUT: Returns true if the operation was sucessful.

EFFECT: This constructs the appropriate function vector and calls
EstimateCustom, using the Corellation function specified as the function
pointer parameter.

NOTE: IMPLEMENTATION DEFERRED TO A LATER DATE. DON’T CALL THIS.

*okokok /

bool ParamEstimate::EstimateCustomTrend(pt_collect &pts, mp_vector &fvals,
double delta, void
(*fcn2) (const mp_vector &, mp_vector&), long
dimf, mp_vector* beta, double* sigma2,
mp_vector* theta, pt_collect* MLE_Matrix,
mp_vector* v){
VAL L
INPUT: Collection of evaluated points, their values, and pointers for the
parameters to be returned. There is also a function pointer for the
’a’ function, and the dimension of the vector it returns. theta should come
in with a ’guess’ value for the optimizer to chew on.
OUTPUT: Returns true if the operation was successful.
EFFECT: This estimates the function.
*okkk [
#if DEBUG >=2
cOout<<"PEECUT :Started\n";
#endif
bool success;
curr_delta=delta;
np=pts.num_rows () ;
fcn=fcn2;
points=&pts;
values=&fvals;
fdim=dimf;

pt_collect R(np,np);

pt_collect A(np,fdim);

pt_collect AT(fdim,np); /*A transpose*/
mp_vector ai(fdim);

pt_collect temp(fdim,fdim);

long i,j;/*countersx/

/*Pattern Search w/bounds on MLECustom*/

double* pstheta=(double*)malloc((*theta).dim()*sizeof (double));

double* ret_theta=(doublex)malloc((*theta).dim()*sizeof (double));

Bounds bds;

bds.lower.newsize((*theta).dim()) ;bds.lower=0;

bds.upper.newsize ((*theta) .dim()) ;bds.upper=GetThetaUpperBound (curr_delta);
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for (i=0;i<(*theta) .dim() ;i++) psthetal[il=(*theta) [i];

(*xPS) .CleanSlate ((*theta).dim(), pstheta,START_THETA_STEP,STOP_THETA_STEP,
this, bds,OptimizeMLECustom) ;
#if DEBUG >=3
COut<<"PEECUT :Initialized PS\n";
#endif
(*PS) .ExploratoryMoves () ;
#if DEBUG >=3
cout<<"PEECUT :PS.ExploritoryMoves() complete\n";
#endif
(¥PS) .GetMinPointFLOP (ret_theta);

for(i=0;i<(*theta).dim() ;i++) (*theta) [i]=psthetal[il;
free(pstheta);
free(ret_theta);

for(i=0;i<(*theta) .dim() ;i++)
/*Make sure that theta is non-zero*/
if ((xtheta) [1]<TOLERANCE) (*theta) [i]=TOLERANCE;

/*Generate the correlation matrix for thetax/
GenerateCorrelationMatrix (R, (*theta));

/*Generate A and AT*/
for(i=0;i<np;i++) {
(xv)=(*points) .row(i);
(xfcn) (*xv,ai);
for (j=0; j<fdim;j++) {
A[i]1[j1=ailj]1;
AT[j1[il=ailj]l;
}/*end forx/
}/*end forx*/

/*Generate MLE_Matrix - This is a block matrix as follows:
[ 0 A |
| AT R |
*/
for(i=0;i<fdim+np;i++)
for(j=0; j<fdim+np;j++)
if (i<fdim && j<fdim) (*MLE_Matrix) [i][j]1=0;
else if(i<fdim) (*MLE_Matrix) [i][j1=AT[i][j-fdim]; /*and j>fdim*/
else if(j<fdim) (*MLE_Matrix)[i][jl=A[i-fdim][j]; /*and i>fdim*/
else (*MLE_Matrix) [i][jI1=R[i-fdim] [j-fdim];
#if DEBUG >=3
cout<<"PEECUT :A, AT and MLE Matrix Constructed:"<<(*MLE_Matrix);
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#endif
success=pseudoinvert (R,NULL) ;
if (!success) return (success); /*break out!*/
success=pseudoinvert (*MLE_Matrix,NULL);
if (!success) return (success); /*break out!*/
#if DEBUG >=3
cout<<"PEECUT :Pseudoinversions complete\n";
#endif
/*Get the Params*/
temp=AT*R*A;
success=(int)pseudoinvert (temp,NULL) ;
if(!'success) return (success); /*break out!x*/
(*¥beta)=temp*AT*R*fvals;
(*v)=fvals— Ax(xbeta);
(*sigma2)=((*v)*R*(*v))/np; /*the special multiply assumes that the first v is vT*/
(#v)=(*v) * R;
#if DEBUG >=2
cout<<"PEECUT :terminating success="<<success<<"\n";
#endif
return(success) ;
}/*end EstimateCustomTrend*/

void ParamEstimate::SetDefault(long dim){
VALL L
INPUT: Dimension of the space.
EFFECTS: This will use a happy default set of values to set up the
parameter estimation. Specifically, it chooses Gaussian Isotropic
Correlation and uses a Compass Search.
*kokok /
P=dim;
r=Cor_Gauss_Isotropic;
PS=new CompassSearch();
np=0;
fdim=0;
curr_delta=0;
fcn=NULL;
}/*end SetDefault*/

void ParamEstimate::MLEConstant(long dimtheta, double *x, double &f, int &success){
VALL L

INPUT: Modified PatternSearch calling sequence

EFFECT: Evaluates the MLE for a given theta. Uses the constant trend.

NOTES: 5/31/99 - tested and functions well.
*kkok /

long i;
double temp=GetThetaUpperBound(curr_delta);
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#if DEBUG>=3
cout<<"PEMC :MLEConstant Called\n";
cout<<"PEMC :trial_theta=(";
for(i=0;i<dimtheta;i++) cout<<x[i]<<" ";
cout<<")\n";

#endif
double beta, sigma2, sum=0.0;

for(i=0;i<dimtheta;i++)
if ((x[i]>temp) | | (x [1]1<TOLERANCE)){
#if DEBUG>=3
cout<<"PEMC :Theta value invalid bound="<<temp<<"\n";
#endif
success=(int)false;return;
}
mp_vector d(np);
mp_vector v(np);
mp_vector theta(dimtheta,x) ;/*creates the mp_vector out of a bunch of doubles*/
pt_collect R(np,np);
mp_vector A(np);
A=1; /*fills A with 1’s*/

GenerateCorrelationMatrix (R,theta);
success=(int)pseudoinvert (R,&d) ;
#if DEBUG>=4
cout<<"PEMC :Pseudoinverse Complete\n";
#endif
if(success) {
temp=1log (TOLERANCE) ; /*temporary for extra execution speedx*/
/*Compute log determinant of matrix via singular values = eigenvalues*/
for(i=0;i<np; i++)
if (fabs(d[i])<TOLERANCE) sum+=temp;
else sum+=log(d[il);

v=A*R; /*this multiply assumes that A is actually AT */
beta=(v * (*values)) / (v*A); /*a special version for the constant trend casex/
v=((*values) - Axbeta);
sigma2=(v * R * v)/np; /*again, the special multiply assumes that the first v
is vT*/
#if DEBUG>=4
cout<<"PEMC :beta="<<beta<<endl;
cout<<"PEMC :sigma2="<<sigma2<<endl;
#endif
if (sigma2<TOLERANCE) {
#if DEBUG>=1
cout<<"PEMC  :ERROR(non-fatal) sigma2="<<sigma2<<" resetting to TOLERANCE..\n";
#endif
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sigma2=TOLERANCE;

}/*end ifx*/

f=np*log(sigma2) +sum;/*returned value*/
#if DEBUG>=3

cout<<"PEMC :Call Complete\n";
#endif

}/*end ifx*/

}/*end MLEConstant*/

void ParamEstimate::MLECustom(long dimtheta, double *x, double &f, int &success){
VALL L
INPUT: Modified PatternSearch calling sequence
EFFECT: Evaluates the MLE for a given theta. Uses the custom trend.
*kkok /

long 1i;

double dtemp=GetThetaUpperBound(curr_delta);
#if DEBUG>=2

COut<<"PEMCU :MLECustom Called\n";

cout<<"PEMCU :trial_theta=(";

for(i=0;i<dimtheta;i++) cout<<x[i]<<" ";

cout<<")\n";
#endif

double sigma2, sum=0.0;

for(i=0;i<dimtheta;i++)

if (x[i]>dtemp| | x [1] <TOLERANCE){
#if DEBUG>=3
cout<<"PEMCU :Theta value invalid bound="<<temp<<"\n";
#endif
success=(int)false;return;

}

pt_collect R(np,np);

mp_vector d(np);

mp_vector v(np);

mp_vector theta(dimtheta,x) ;/*creates an mp_vector out of a bunch of doubles*/
mp_vector beta(fdim);

pt_collect temp(fdim,fdim);

mp_vector ai(fdim);

pt_collect A(np,fdim);

pt_collect AT(fdim,np); /*A transposex/

/*Generate the correlation matrix and pseudoinvert it*/
GenerateCorrelationMatrix(R,theta);
success=(int)pseudoinvert (R,&d);

#if DEBUG>=3
cout<<"PEMCU :Pseudoinverse Complete\n";
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#endif

if (success) {
dtemp=log (TOLERANCE); /*temporary for extra execution speed*/
/*Compute log determinant of matrix via singular values = eigenvalues*/
for(i=0;i<np; i++)
if (fabs(d[i])<TOLERANCE) sum+=dtemp;
else sum+=log(d[il);

/*Generate A and ATx*/
for(i=0;i<np;i++) {
v=(*points) .row(i);
(xfcn) (v,ai);
for(long j=0;j<fdim;j++) {
A[il1[j1=ailj]1;
AT[j1[il=ailj]1;
}/*end forx/
}/*end forx/
#if DEBUG>=3
COut<<"PEMCU :A,AT computed\n";
#endif
temp=AT*R*A;
success=(int)pseudoinvert (temp,NULL) ;
if (success) {
beta=temp*AT*R#* (*values) ;
v=(*values)- Axbeta;
sigma2=(v*R*v) /np; /*the special multiply assumes that the first v is vT*/
#if DEBUG>=3
cout<<"PEMCU :beta='"<<beta<<endl;
cout<<"PEMCU :sigma2='"<<sigma2<<endl;
#endif
if (sigma2<TOLERANCE) {
#if DEBUG>=1
cerr<<"PEMCU :ERROR(non-fatal) sigma2="<<sigma2<<" resetting to TOLERANCE..\n";
#endif
sigma2=TOLERANCE;
}/*end ifx/

f=np*log(sigma2)+sum;
}/*end ifx/
}/*end ifx/
#if DEBUG>=2
COut<<"PEMCU :Call Complete\n';
#endif
}/*end MLECustom*/

inline void ParamEstimate::GenerateCorrelationMatrix(pt_collect &R, const
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mp_vector &theta) {
VALL L
INPUT: A np x np pt_collect, and the correlation family parameter vector, theta.
EFFECT: Replaces R with the appropriate correlation matrix.
*okokok /
mp_vector temp(P);
for(long i=0;i<np;i++) {
R[i][i]=1.0;
temp=(*points) .row(i);
for(long j=i+1l;j<np;j++) {
R[i] [j1=(*r) (P,temp, (*points).row(j), theta);
R[j1[i1=R[i]1[j];
}/*end forx/
}/*end forx*/
}/*end GenerateCorrelationMatrix*/

bool ParamEstimate::pseudoinvert(pt_collect &M, mp_vector* d) {
VALI L
INPUT: A matrix M, and a pointer to a mp_vector.
OUTPUT: true if svd can be computed, else false.
EFFECT: Replaces M with the pseudoinverse of M. If d4!=NULL, an
mp_vector with the one over the singular values, with those singular
values below TOLERENCE instead to zero, is returned. The matrix has
to be *SYMMETRIC AND SQUARE* for this to work.
*kokok /

if (M.num_rows () !=M.num_cols()) return false;

long md = M.num_rows();
#if DEBUG >=3

cout<<"PEPI :Pseudoinverse Commencing md="<<md<<"\n";
#endif

bool ret_val;

double t_tolerance;

pt_collect U(md,md) ;

pt_collect VT(md,md);

pt_collect D(md,md);
#if DEBUG >=3

cout<<"PEPI  :Alloc complete\n";
#endif

ret_val=ComputeSVD(M,&U,&D,&VT) ;
#if DEBUG >=3

cout<<"PEPI :SVD complete - returning "<<ret_val<<endl;
#endif
if (ret_val) {
if (d!=NULL)

for(long j=0;j<md;j++) (*d)[j1=D[j1[j]1;
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t_tolerance=MACH_EPS * M.num_rows() * D[0][0];
/*Tolerance as per Trossetx*/

for(long i=0;i<md;i++) {
if (fabs(D[i] [i])<t_tolerance) D[i] [1i]=0;
else D[i][i]=1/D[i][i];

}
#if DEBUG >=3

cout<<"PEPI :D has been reconstructed, reallocs complete\n";
#endif

//M=UxD*VT should work for symmetric matrices, but alas, numerical
//error seems to have bested this timesaver.
M=transpose(VT) * D * transpose(U);

#if DEBUG >=3
cout<<"PEPI :M is computed\n";

#endif

}/*end ifx/
#if DEBUG >=3

cout<<"PEPI  :terminating\n";
#endif

return ret_val;
}/*end pseudoinvert*/

bool ParamEstimate::ComputeSVD(const pt_collect &A, pt_collect* U,
pt_collect* D, pt_collect* VT){

VAL L

INPUT: Matrix A, to take the SVD of, and pointers to three matrices that will

contain what is returned from dgesvd_.

OUTPUT: true if CLAPACK’s dgesvd_ returns ok.

EFFFECT: Calls CLAPACK’s degsvd routine to compute the Singular Value

Decomposition(SVD) of A. Recall that a SVD of A yields U, D, and V’,

s.t. A=UxD* V’, where U and V are orthogonal matrices, and D is a diagonal

matrix with the singular values on its main diagomal.

*kkk /

if (A.num_rows () !=A.num_cols()) return false;

long md=A.num_rows() ;

long idx, LWORK=md*md+5*md;

double* MA=(double*)malloc(sizeof (double)*md*md) ;
double* MU=(double*)malloc(sizeof (double)*md*md) ;
double* MVT=(double*)malloc(sizeof (double) *md*md) ;
double* MS=(double*)malloc(sizeof (double)*md) ;
double* WORK=(double*)malloc(sizeof (double)*LWORK) ;
char ch=’A’;

long i,j;/*countersx/
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for(i=0;i<md;i++)
for(j=0; j<md;j++)
MA[md*j+i]=A[i] [j]; /*This should flip the Matrix into column-major order
ala Fortran.*x/

dgesvd_(&ch,&ch,&md, &md,MA, &md ,MS,MU, &mnd ,MVT, &md , WORK , &LWORK , &idx) ;

if (idx<0) {free(MA) ;free(MU) ;free(MVT) ;free(MS) ;free(WORK) ;return false;}
#if DEBUG>0
else if (idx>0) cerr<<"PECSVD : WARNING - SVD has "<<idx
<<" unconverged superdiagonal values\n";
#endif

/*Copy data to all the outgoing matrices*/
for(j=0; j<md;j++) {/*colsx/
idx=md*j;/*Partial computation of index... for speedx/
for(i=0;i<md;i++) {/*rows*/
(*U) [i]1 [j1=MU[idx+i];
(*VT) [1] [j1=MVT [idx+i];
if (i==j) («D) [i][j1=MS[il;
else (*D)[i]1[j]1=0.0;
}/*end forx/
}/*end forx*/

#if DEBUG>=4
cout<<"PECSVD :A="<<(A);
cout<<"PECSVD :U="<<(xU);
cout<<"PECSVD :D="<<(*D);
Cout<<"PECSVD :VT="<<(*VT);
cout<<"PECSVD :UxD*VT="<<((*U)*(*D)* (*VT)) ;
#endif
/*Free memory!x*/
free(MA) ;free (MU) ;free (MVT) ;free (MS) ;free (WORK) ;
return true;
}/*end ComputeSVD*/

/% kkskok sk kook ok sk ok ok ok ok sk kok ok kkok CORRELATTION  FUNCT T QNS sk sk sk sk sk ok sk sk s ok sk ok e sk sk ok ok sk sk sk k sk sk sk ke sk ok /

double ParamEstimate::Cor_Exp_Isotropic(long dim, const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta) {

/*Exponential Isotropic Correlation Family

r_theta(s,t) = exp(-theta ||s-tl||)

*/

/*This assumes that the theta of value is thetal[0]*/

mp_vector temp(dim);

temp=x2-x1;
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return exp(-theta[0] * temp.l2norm());
}/*end Cor_Exp_Isotropic*/

double ParamEstimate::Cor_Gauss_Isotropic(long dim, const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta) {

/*Gaussian Isotropic Correlation Family

r_theta(s,t) = exp(-theta ||s-t|])"2

*/

/*This assumes that the theta of value is thetal[0]*/

mp_vector temp(dim) ;

temp=x2-x1;

return exp(-theta[0] * temp.l2norm_sqr());
}/*end Cor_Gauss_Isotropic*/

double ParamEstimate::Cor_Exp_Product(long dim, const mp_vector &x1,
const mp_vector &x2, const mp_vector &theta) {
/*Exponential Product Correlation Family
r_theta(s,t) = \prod_{j=1}"{P} exp(-theta_j * |s_j - t_jl)
*/
double sum=1.0;
for(long i=0;i<dim;i++) sum*=exp(-thetal[il*fabs(x2[i]-x1[i]));
return sum;
}/*end Cor_Exp_Productx*/

double ParamEstimate::Cor_Gauss_Product(long dim,const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta) {

/*Gaussian Product Correlation Family

r_theta(s,t) = \prod_{j=1}"{P} exp(-theta_j * Is_j - t_jl|~2)

*/

double sum=1.0;

for(long i=0;i<dim;i++) sum*=exp(-thetal[il*sqr(x2[i]-x1[i]));

return sum;
}/*end Cor_Gauss_Product*/

double ParamEstimate::Cor_Cubic_Isotropic(long dim, const mp_vector &x1,
const mp_vector &x2,const mp_vector &theta) {

/*Cubic Product Correlation Family

r_theta(s,t)={ 1-1.5%(||s-t||)/theta + 0.5 ((lIs-t||)/theta)"~3, for ||s-t|| < theta }
{ 0 otherwise }

*/

/*This assumes that the theta of value is thetal[0]*/

mp_vector temp(dim) ;

temp=x2-x1;

double norm=temp.l2norm() ;

double norm3theta= (norm*norm*norm)/(thetal[0]*theta[0]*thetal[0]);

if (norm < thetal[0])
return 1.0 - 1.5*%(norm / theta[0]) + 0.5 * norm3theta;

98



else
return 0.0;

}/*end Cor_Cubic_Isotropic*/

double ParamEstimate::EvaluateMyCorrelation(long dim, const mp_vector &xli,
const mp_vector &x2, const mp_vector &theta) {
VAL L
INPUT: Dimesion of space, two points, and a ’vector’ theta.
For the Isotropic functions, this theta is a one dimensional vector,
for the Product functions, this is a P-dimensional vector.
OUTPUT: Correlation between the two points.
*okk ok /
return (*r)(dim,x1,x2,theta);
}/*end EvaluateMyCorrelationx/

double GetMachineEpsilon() {
/*¥From Heath*/

return fabs( 3.0 * (4.0/3.0 - 1.0) - 1.0 );
}/*end GetMachineEpsilon*/
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Appendix E

Source Code for Optimization

E.1 Headers
E.1.1 MAPS

VALL L

maps class - 6/17/99 cmsief

This IS the Model-Assisted Pattern Search. To run without any sort of
difficulty:

call the maps(long V1, long P1, const Bounds &B1, char*fn) constructor,
call RunSearch,

call RetrieveBestSeen.

NOTE : Make sure the Grid and Pattern Search Core Patterns are compatible!
I am not responsible for what this might do if you don’t.

FLAGS:
define ITERATE_DEBUG to output statistics iteration by iteration.

*kkok /

#ifndef _MAPS_

#define _MAPS_

#include "maps_general.h"
#include "PSGrid.h"

#include "PatternSearch.h"
#include "InitialDesign.h"
#include "LatinHCDesign.h"
#include "SearchCriterion.h"
#include "rngs.h"

class maps {

public:
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maps () ;
/*status=NOTINIT*/

maps(long V1, long N1, long P1, const Bounds &B1l, char* fn, const PSGrid &G1,
const InitialDesign &I, const SearchCriterion &S1, const PatternSearch &PS1);

/*Prep work and call ResetMAPSStatex/

maps(long V1, long P1, Bounds &B1, char*fn);

/*Prep work and call SetDefaultx*/

maps (maps& old);

“maps () ;

/**%**xRESET FUNCTIONS***x/

bool ResetMAPSState(long V1, long N1, long P1, const Bounds &B1, char* fn,
const PSGrid &G1, const InitialDesign &I1,
const SearchCriterion &S1, const PatternSearch &PS1);

VAL

INPUT: A partial set of state parameters for MAPS

OUTPUT: Returns true if the operation was successful.

EFFECT: Sets all the parameters, and sets status=READY, clears out Eval_c and

f_values. This wipes out everything else entirely.

*okkokk /

void NewMAPSRun() ;

VAL

EFFECT: If status=MAPS_DONE, clears the Eval_c and F_values, resets C=0
and sets status=READY.

This allows you to reset MAPS between runs on a given function.

*okk ok /

bool ResetGrid(const PSGrid &G1);

VAL L

INPUT: A PSGrid

OUTPUT: If it copies G1 it returns true, else it returns false.
EFFECT: If status==READY, it copies G1 to G, else no effect.
Kok ok /

bool ResetDesign(const InitialDesign &I);

VAL L

INPUT: An InitialDesign.

OUTPUT: If it copies I it returns true, else it returns false.
EFFECT: If status==READY and I.IsDesignInitialized()==true, it copies
I to ID, else no effect.

*kkok /

bool ResetSearchCriterion(const SearchCriterion &S);

101



VAL L L

INPUT: A SearchCriterion.

OUTPUT: If it copies S it returns true, else it returns false.
EFFECT: If status==READY, it copies S to SC, else no effect.
*kkk /[

bool ResetPatternSearch(const PatternSearch &PS1);

VAL L

INPUT: A PatternSearch object.

OUTPUT: If it copies S it returns true, else it returns false.
EFFECT: If status==READY, it copies PS1 to PS, else no effect.
Kok ok /

bool ResetFunction(char* fn);

VAL L

INPUT: String containing the name of the function to be optimized.
OUTPUT: Returns true if file exists and is executable.

EFFECT: Fname gets fn.

*okkk [

/*x*x%*xQUERY FUNCTIONS****x%/

bool RetrieveBestSeen(mp_vector* bpoint, double* bvalue) const;
VAL

INPUT: Two Pointers, one for a mp_vector, one for a value

OUTPUT: True if status==DONE, false if otherwise.

EFFECT: If status==DONE, it finds the best point and its value.
Malloc’s memory for a copy, and assigns it to the pointers. This
will be done with a linear search.

*okk ok /

void debug(char* code) const;

VAL L

EFFECT: Does a complete state dump to stdout. This should do
state dumps of all components.

*okkokk [

void GenerateMAPSGraphics(char* fpref) const;

VAL L

INPUT: Filename prefix.

EFFECT: Outputs to fpref.MAPS.dat stuff that would be nice in
producing pictures via GNUplot. Due to limits in visualization
technology, this feature is only available for functions from R or R72.
To produce said pictures in GNUPlot, do the following for f:R"2 -> R:
gnuplot> set parametric

gnuplot> splot "fpref.MAPS.NAME.dat" with lines

To produce said pictures in GNUPlot, do the following for f:R -> R:
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gnuplot> plot "fpref.MAPS.NAME.dat" with lines

GenerateMAPSGraphics will also produce a file with the evaluation

sites in it, that can be graphed with the above plots as such:

gnuplot>splot "fpref.MAPS.GRAPH.dat" with lines, "fpref.MAPS.PTS.dat" with points
or:

gnuplot>plot "fpref.MAPS.GRAPH.dat" with lines, "fpref.MAPS.PTS.dat" with points
*okkok /

void GenerateIterationHistory() const;

VAL

EFFECT: Outputs the chosen points, their values and the best point

and values returned to stdout. To convert these data files into LaTeX
tables with ease, use the included mdat2tex.awk script with the
following syntax :

awk -f mdat2tex.awk <mapsdatafile>

awk will output the LaTeX to stdout.

*okkk [

/*x%x%x ACTION FUNCTIONS***x%x*/
bool RunMAPS(){return RunMAPS(NULL);}

bool RunMAPS(char * fpref);

VAL L

INPUT: a pointer that specifies the filename prefix for
iteration-by-iteration graphics. Set this to NULL for no graphics, or
call the parameter-free version above.

OUTPUT: Returns true if nothing crashed.

EFFECT: Assume status=READY. Then it evaluates the function at the
initial design sites. Then it begins the iterative process of looping
until we use up the evaluation budget (or converge). When it finishes,
it sets status=MAPS_DONE. This will call EvalF. If fpref!=NULL, then
this will output graphics to files named :

<fpref><C>.MAPS.AP.dat and <fpref><C>.MAPS.SC.dat .

Kok ok /

private:

void SetDefault(long V1, long P1, Bounds &B1, char*fn);

VAL

INPUT: The evaluation budget, dimension of space, bounds and
function name.

EFFECT: This will automagically take care of generating an
InitialDesign, PSGrid, Search Criterion and a PatternSearch.
Life couldn’t be easier. Sets status=READY. This gives you
SearchCriterion’s default, Latin Hypercube initial design and
a CompassSearch.
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*okkk /

static bool PCSubset(const pt_collect &A, const pt_collect &B);

VAL LS

INPUT: Two collections of points, with each point forming a row vector
OUTPUT: Returns true if A is a subset of B.

*kkk [

static bool IsElement(const mp_vector &A, const pt_collect &B);
VAL L

INPUT: A point, and a collection of points.

OUTPUT: Returns true if A is in B.

*okkk [

double EvalF(const mp_vector& point, bool &success);

VAL

INPUT: The point at which to evaluate the function, a boolean flag.
OUTPUT: The function value.

EFFECT: This function will do the fork/exec dance, sending the

program the parameters on its stdin, then after waiting, it will get a
double from the program’s stdout. If the program exited with an error,
it will return ERROR and set success to false. Otherwise success will
be true.

*kkk [

long V; /*Evaluation Budget*/

long N; /*Initial Design Allotment*/

long C; /*Current Point Numberx/

long P; /*Dimension of the Spacex*/

Bounds b; /*Problem Bounds*/

PSGrid *g; /*The Grid - a real matrix*/

pt_collect* Eval_c; /*List of Evaluated Points - stored by row not column*/
mp_vector* f_values; /#List of Function Values*/

char* Fname; /*File Name of function to be optimized*/

int status; /*See above #defines*/

long x_c; /*The x_c’th element of Eval_c contains the current point*/
InitialDesign* ID; /*Initial Designx*/

SearchCriterion* SC; /*Search Criterionx*/

PatternSearchx* PS; /*This will take care of optimizing S_c*/

};/*end class*/

#endif

E.1.2 SearchCriterion
VAL L
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SearchCriterion Class - 7/15/99 cmsief
This is the search criterion class.
*kkk /

#ifndef _MAPS_SC_

#define _MAPS_SC_

#include "maps_general.h"
#include "Approximate.h"
#include "NullApprox.h"
#include "KrigApprox.h"

/*weighting schemesx*/

#define SC_WEIGHT_MULTIPLE O
#define SC_WEIGHT_TARGET_VALUE 1
#define SC_WEIGHT_DELTA_MULTIPLE 2
#define SC_WEIGHT_DYNAMIC_GUESS 3
#define SC_WEIGHT_DYNAMIC_BEST 4

class SearchCriterion {

public:
SearchCriterion();
SearchCriterion(long dim,Bounds &b) ;
/*prep work and invokes SetDefault*/
SearchCriterion(const SearchCriterion &S);
SearchCriterion(Approximate &A, Bounds &b);
~“SearchCriterion();
SearchCriterion& operator=(SearchCriterion &S);

/**x%x*x*xRESET FUNCTIONS%%**x%/

bool ResetSearchCriterionState(Approximate &A, int scheme_number,
mp_vector &params) ;

VAL L

INPUT: An Approximation, a weight scheme number and its parameters.
OUTPUT: returns true iff ResetWeightScheme returns true.

EFFECT: Calls ResetApproximateion, and ResetWeightScheme.

*okokok /

void ResetApproximation(Approximate &A);
VAL L

INPUT: An Approximation.
EFFECT: (*APX) = A; P=A.GetDim();
*okkk [

bool ResetWeightScheme (int scheme_number, mp_vector &params) ;
VAL
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INPUT: The scheme number and its parameters.

OUTPUT: Returns true if everything is valid.

EFFECT: This sets the w_scheme integer, and then sets w_params.
This will also set w_c to the correct value, based on the current
evaluation number.

*okkok /

/*%x*xxxQUERY FUNCTIONS* k%% /

void debug(char *code) const;

VAL

EFFECT: does a complete state dump to stdout.
*okkk [

/**%xxx ACTION FUNCTIONS***%x*/

void EvaluateSearchCriterion(long P, double *x, double &f, int &success);
VAL

INPUT: The dimension of the space, a list of values, a reference

passed value of the function, and a reference-passed flag. The input
syntax is this convoluted to ensure that it works with Liz Dolan’s
PatternSearch.

EFFECT: This evaluates the search criterion at a given point,

calling Approximate::EvaluateApprox to do so, and takes the weighting
schedule into account. If the evaluation was a success, then success is
1, else it is set to O.

Kok ok /

bool UpdateSearchCriterion(pt_collect &points, mp_vector& values, long
numpoints, long n, double delta);

[ Fkkk

INPUT: The list of evaluated sites, the values, and the number of

points listed, the number of points in the initial design, and the

curent delta.

OUTPUT: Returns true if the operation was sucessful.

EFFECT: This will call Approximate: :UpdateApprox to update the

approximation, then will update the weighting scheme by calling the

appropriate UpdateWeight function.

*okkk /

friend void OptimizeSearchCriterion(void* SC,long dimx, double *x,
double &f, int &success)
{(*(SearchCriterion*)SC) .EvaluateSearchCriterion(dimx,x,f,success);}
VAL
INPUT: Modified PatternSearch calling scheme. See PatternSearch.h
EFFECT: Indirection to get around C++’s inability to let function pointer
point to class member functions. This gets optimized by PatternSearch.
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*okkk /

void GetApproximationGraphics(long P, double *x, double &f, int &success);
VALL:

INPUT: Modified PatternSearch Interface

OUTPUT: Value of the Approximation only at that point. Meant for use by
GenerateMAPSGraphics ().

*okkok /

private:

void SetDefault(long dim);

VAL

INPUT: Dimension of space.

EFFECT: Automagically generates one of these objects, uses (2,0.8)
WeightMultiple scheme and Kriging Approximation.

*okkk /

/*Weighting Scheme functions*/

void CreateWeightTargetValue(mp_vector &params) ;
/*This does the computation of w_params[3]
m = (p[1] / pl[01)~(1/p[2]1)*/
void UpdateWeightTargetValue(long c);
/[ Fkkk
INPUT: The iteration number.
EFFECT: Multiply w_c by the correct multiplier in order to reach
the level of insignificance by the specified iteratiom.
PARAMS FORMAT: [0] - w_O
[1] - target value of insignificance
[2] - iteration number to reach insignificance
Though w_params[3] is not specified by the user, when you install the
Target Value weighting scheme, the multiple is computed and stored here.
*okkok /

void UpdateWeightMultiple(long c);
VAL L
INPUT: The iteration number.
EFFECT: This will multiply w_c by w_params[1]
PARAMS FORMAT: [0] - w_O

[1] - m, s.t. w_c = m * w_{c-1}
*okkk [

void UpdateWeightDeltaMultiple(double curr_delta);

VAL L

INPUT: current delta

EFFECT: If delta has been refined, the weight is multiplied by w_1
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PARAMS FORMAT: [0] - w_O, the weight before delta refinement
[1] - m, s.t. w_c = m¥xw_{c-1}, if delta was refined last iteration

= w_{c-1}, if delta wasn’t refined last iteration
Kok ok /

void UpdateWeightDynamicGuess(long lastsite, mp_vector& values);
[ F%kk
INPUT: number of last site eval’d and vector of function values
EFFECT: If the approximation was ’close’ to correct at the last site, then we
reduce the weight, less we increase it.
PARAMS FORMAT: [0] - w_O
[1] - t, the threshhold percentage
[2] - m_b, multiplier if approximation is ’bad’
[3] - m_g, multiplier if approximation is ’good’

w_c=m_g * w_{c-1}, if [£f(x_{c-1}) -\hat{f_{c-1}(x_c-1)}| <= txfrange
=m_b * w_{c-1}, otherwise
Kok ok /

void UpdateWeightDynamicBest(long lastsite, mp_vector& values) ;
VAL
INPUT: number of last site eval’d and vector of function values
EFFECT: If the approximation was ’close’ to correct at the last site, then we
reduce the weight, less we increase it. Similar to DynamicGuess, except it uses
|expval - bestpoint| / 2 as the threshold.
PARAMS FORMAT: [0] - w_0O
[1] - m_b, multiplier if approximation is ’bad’
[2] - m_g, multiplier if approximation is ’good’

w_c=m_g * w_{c-1}, if [f(x_{c-1}) -\hat{f_{c-1}(x_c-1)}| <= |expval-best|/2
=m_b * w_{c-1}, otherwise

*okkk /

Bounds *bds; /*the boundsx*/

long P; /*dimension of spacex*/

int w_scheme; /*Weighting scheme numberx*/

mp_vector* w_params; /*Parameters for that scheme. In general w_params[0]
will always be w_0*/

long np; /*The number of points evaluated so far*/

Approximate* APX; /*Some kind of Approximation*/

pt_collect* Eval_c; /*A pointer to the evaluated points list*/

mp_vector* f_values; /*A pointer to the function vals*/

double w_c; /*w_c for the current iterationx*/

double original_delta; /*original delta - for Delta Based Weight Scheme*/

};/*end class*/
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#endif

E.1.3 InitialDesign

VAL L

InitialDesign Class - 5/24/99 cmsief

This is the parent class from which all InitialDesign derived classes
shall be derived. Derived classes will include: Latin Hypercubes.
*kokok /

#ifndef _MAPS_ID_
#define _MAPS_ID_

#include "maps_general.h"
#include "PSGrid.h"

class InitialDesign {

public:
InitialDesign(); /*default constructor*/
/*init_done=falsex/
InitialDesign(long dim); /*sets the dimension of the spacex*/
/*init_done=false*/
InitialDesign(const InitialDesign &I); /*cc*/
virtual “InitialDesign();
virtual InitialDesign& operator=(const InitialDesign &I);

void SetDimension(long dim);

VAL

INPUT: The dimension of the problem
EFFECTS: P=dim;

*okkk [

virtual bool GenerateDesign(const Bounds &b, long num_points, const PSGrid
&grid, long stream);
VAL
INPUT: The problem’s bounds, the number of points to put in the design,
the grid and a random stream number. This assumes, of course that you’ve set
up rngs right.
OUTPUT: Returns true if the operation was sucessful.
EFFECTS: Sets init_done=true, and calls MoveToGrid(b,grid)
Derived classes must call this..
*kkk [

void GetDesign(pt_collect* outptr);
VAL L
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INPUT: Pointer of type pt_collect*.
EFFECTS: Copies points to outptr if init_done==true.
Kok ok /

long GetDesignSize() {return N;}
VAL

OUTPUT: returns N.

*okkk /

bool IsDesignInitialized()const {return init_done;}
VAL

OUTPUT: Returns true iff design is done.

Kok ok /

virtual void debug(char *code);

VAL

EFFECT: Outputs a state dump of the object.
*okkk [

protected:
long P; /*dimension*/
long N; /*number of points for designx/
pt_collect* points;

private:

void MoveToGrid(const Bounds &b, const PSGrid &grid);

VAL
INPUT: The problem’s bounds and grid.

EFFECTS: Moves all the points in ’points’ to grid position.
Calls grid.SnapToGrid, and uses that to do the snapping.
Then it just fixes the point list.

*okkk /

bool init_done;
};/*end class*/

#endif

E.1.4 LatinHCDesign

VAL L

LatinHCDesign Class - 5/18/99 cmsief
Derived from InitialDesign

*okkok /
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#ifndef _MAPS_ID_LHC_
#define _MAPS_ID_LHC_

#include "maps_general.h"
#include "InitialDesign.h"
#include "rngs.h"

#include "rvgs.h"

class LatinHCDesign: public InitialDesign {

public:
LatinHCDesign(); /*default constructorx*/
LatinHCDesign(long dim); /*sets the dimension of the space*/
LatinHCDesign(const LatinHCDesign &I);
“LatinHCDesign() ;

bool GenerateDesign(const Bounds &b, long num_points,
const PSGrid &grid, long stream);

VAL L

INPUT: The problem’s bounds, the number of points to put in
the design, and the grid.

OUTPUT: Returns true if the operation was sucessful.
EFFECTS: Generates the initial design via latin hypercubes.
Then calls InitialDesign’s GenerateDesign.

*okkk [

};/*end classx*/

#endif

E.1.5 PSGrid

VALL L

PSGrid class - 6/4/99 cmsief

This deals with the grid. It assumes Compass Search for the

Core Pattern. In terms of the grid object, view it as if it

were a real honest to God matrix, unlike its counterpart in maps.h.

NOTE: When choosing your grid or delta, it is probably a good
idea that you pick them s.t. delta*grid[i][i] divides evenly
into the amount of space in the ith dimension. This allows the
program to be guaranteed to pick up on minima on the boundaries.
SetDefault should do this automatically.

ANOTHER NOTE: The implementation of SnapToGrid only deals with
grids parallel to the bounds. You will have to re-enable the LU
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factorization in order to deal with these other grids. Sorry.
*kkk /

#ifndef _MAPS_PSGRID_
#define _MAPS_PSGRID_
#include "maps_general.h"
#include "lu.h"

#define PSG_DEFAULT_RESOLUTION 0.01

/*aka the default grid resolution is 1/100th of the spacex*/
#define PSG_DEFAULT_REFINE 0.5

/*aka halve delta by default*/

class PSGrid {
public:
PSGrid () ;
PSGrid(const PSGrid &g);
PSGrid(long P1, const mp_vector& o, const pt_collect& g,
double ref, double d);
PSGrid(long P1, const Bounds &b);
/*if you aren’t sure what to use, use this.x*/
PSGrid(long P1, const Bounds &b, const mp_vector &resolution);
/*Resolution is in actual units, not percent of the space*/

“PSGrid();
PSGrid & operator=(PSGrid &g);

/*%*x*x*RESET FUNCTIONS***%*/

void ResetPSGridState(long P1, const mp_vector& o, const pt_collect& g,
double ref, double delta);

VAL L

INPUT: A complete set of state values for the grid.

EFFECT: It copies these into the object’s state. As for your

choice of delta and the grid, see the note above.

*okkok /

bool ReadGridFromFile(char* fn);
VAL L
INPUT: File name string.
OUTPUT: Returns true if read was sucessful.
EFFECT: Reads the grid data from a file.
FILE FORMAT: dimension<cr>

delta<cr>

origin(P)<cr>

refine (P)<cr>
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grid (PxP)
NOTES: Watch VERY carefully what you do with directionms,
when you write your grid to a file, assume that it is written
like a real matrix. Also, keeping the grid vectors positive
would be a good idea. As for your choice of delta and the
grid, see the note above.
*okkok /

/*x%x*x*xQUERY FUNCTIONS%%**%/

void debug(char *code) const;

VAL L

EFFECT: does a complete state dump to stdout.
*okokok /

double GetDelta() const;
VAL L

OUTPUT: returns delta.
*okkok /

bool IsFeasible(const Bounds &b, const mp_vector &x) const;

VAL

INPUT: The bounds and an mp_vector.

OUTPUT: True if the point is within the founds, false if otherwise
*okkk [

long FindBestPSMultiple(const Bounds &b);
VAL L
INPUT: The bounds of the space.
OUTPUT: Finds the best multiple for delta for use in the PatternSearch.
It does so with the following methodology:
1) Find i s.t. i maximizes delta*grid[i] / b.upper[i]l-b.lower[i].
2) Returns half the biggest multiple s.t.
mult * delta*grid[i] < b.upper[i]-b.lower[i].
*okkk [

/*x%xxx ACTION FUNCTIONS***%x*/

void SnapToGrid(const Bounds &b, const mp_vector &old_pt,

mp_vector* new_pt) const;

VAL L

INPUT: The bounds and two mp_vectors - one reference and one pointer.
OUTPUT: The nearest grid point to old_pt will be returned in new_pt
*okkk [

void GetCore(const Bounds &b, const mp_vector &x,
pt_collect& core, long &pts);
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VAL L L

INPUT: The bounds, a point, a reference to point collection

to be returned, and a reference passed number of points.

EFFECT: Returns a the list of points in the Core Pattern of x,

and the number of points in this pattern. This should also call
IsFeasible, and return only those points within the bounds. Note
that the returned values are stored on the rows (aka each row
represents a point in P-space), much as Eval_c is stored in maps.h.
*okkok /

void RefineGrid();

VAL

EFFECT: Actually refines the grid. delta *= refine;
*okkok /

private:

void SetDefault(long P1, const Bounds &b, const
mp_vector &resolution);

VAL

INPUT: Dimension, bounds and a grid resolution.

EFFECT: This will automagically generate a simple grid
that is parallel to the axes. It will be similar to the
default settings you give it, but not exactly that.

*okkk [
long P; /*dimension of spacex*/
mp_vector* origin; /*The origin for the purpose of the grid (P)*/

pt_collect* gridvect; /*The grid matrix. This is in terms of
multiples of delta, hence it does not
take scaling into account in and of itself.x/

double refine; /*Grid refinement constant - aka what delta is
multiplied by when the grid is refinedx/
double delta; /*delta from PatternSearch - it is the

current ’step size’*/
};/*end class*/

#endif
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E.2 Code
E.2.1 MAPS

/*MAPS IMPLEMENTATION FILE - 6/17/99%/

#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include "maps.h"
#include "CompassSearch.h"

/*Iteration History Field Widths*/
#define _GFN 4

#define _GFP 10

#define _GFV 10

maps: :maps() {

/*status=NOTINIT*/
V=N=C=P=x_c=0;
status=NOTINIT;g=NULL;
Eval_c=NULL;f_values=NULL;Fname=NULL;
ID=NULL; SC=NULL ; PS=NULL;

}/*end default constructor*/

maps: :maps(long V1, long N1, long P1, const Bounds &B1l, char* fn,
const PSGrid &G1, const InitialDesign &I,
const SearchCriterion &S1, const PatternSearch &PS1) {
/*Prep work and call ResetMAPSStatex/
ID=NULL; SC=NULL; PS=NULL;g=NULL;
ResetMAPSState(V1,N1,P1,B1,fn,G1,1,51,PS1);
}/*end special constructor*/

maps: :maps(long V1, long P1, Bounds &B1, char*fn) {
/*Prep work and call SetDefaultx*/
ID=NULL; SC=NULL; PS=NULL;g=NULL;
SetDefault (V1i,P1,B1,fn);

}/*end special constructor*/
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maps: :maps (maps& 01d){

ID=NULL; SC=NULL ; PS=NULL ; g=NULL;
bool success=true;
V=01d.V;N=01d.N;P=01d.P;b=0ld.b;x_c=0ld.x_c;
status=READY;/*just temporary*/
Fname=NULL;
if (old.Fname!=NULL) success=ResetFunction(old.Fname);
g=NULL;
if(old.g!=NULL) success=success&&ResetGrid(*old.g);
ID=NULL;
if(0ld.ID!=NULL) {

ID = new InitialDesign;

(*ID) =(*01d.ID);
}/*end ifx*/
SC=NULL;
if(01d.SC!=NULL) success=success&&ResetSearchCriterion(*0ld.SC);
PS=NULL;
if (01ld.PS!=NULL) success=success&&ResetPatternSearch(*0ld.PS);
if(0ld.Eval_c!=NULL) Eval_c = new pt_collect(*0old.Eval_c);
else Eval_c=NULL;
if (old.f_values!=NULL) f_values = new mp_vector(*old.f_values);
else f_values=NULL;

status=o0ld.status;
#if DEBUG>=1

if (!success) cerr<<"MPCC : One items in the copy failed.\n";
#endif
}/*end Copy Constructor*/

maps: : “maps () {
if (ID!=NULL) delete ID;
if (SC!=NULL) delete SC;
if (PS!=NULL) delete PS;
if(Eval_c!=NULL) delete Eval_c;
if (f_values!=NULL) delete f_values;
if (Fname!=NULL) delete Fname;
if(g!=NULL) delete g;

}/*end destructor*/

/***x+*RESET FUNCTIONS**x*/

bool maps::ResetMAPSState(long V1, long N1, long P1, const Bounds &B1,
char*x fn, const PSGrid &G1,
const InitialDesign &I1,
const SearchCriterion &S1,
const PatternSearch &PS1) {
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VAL L
INPUT: A partial set of state parameters for MAPS
OUTPUT: Returns true if the operation was successful.
EFFECT: Sets all the parameters, and sets status=READY,
clears out Eval_c and f_values. This wipes out everything
else entirely.
*kkkk /
bool success;
NewMAPSRun () ; /*wipes out Eval_c and f_values*/
V=V1;N=N1;P=P1;b=B1;
success=ResetFunction(fn)&&ResetGrid(G1) &&ResetDesign(I1)&&
ResetSearchCriterion(S1)&&ResetPatternSearch(PS1);
#if DEBUG>=1
if (!success) cerr<<"MPRMS : One or more resets failed.\n";
#endif
return success;
}/*end ResetMAPSStatex/

void maps: :NewMAPSRun() {
VALL L
EFFECT: If status=MAPS_DONE, clears the Eval_c and F_values,
resets C=0 and sets status=READY. This allows you to reset MAPS
between runs on a given function.
*okokok /
if (Eval_c!=NULL) {delete Eval_c;Eval_c=NULL;}
if (f_values!=NULL) {delete f_values;f_values=NULL;}
C=0;x_c=0;
status=READY;
}/*end NewMAPSRun*/

bool maps::ResetGrid(const PSGrid &G1) {
VALL L
INPUT: A PSGrid
OUTPUT: If it copies G1 it returns true, else it returns false.
EFFECT: If status==READY, it copies Gl to G, else no effect.
*kkok /
if (status==READY) {
if(g!=NULL) delete g;
g = new PSGrid(G1);
return true;
}/*end ifx/
else return false;
}/*end ResetGrid*/

bool maps::ResetDesign(const InitialDesign &I) {
VALL L

117



INPUT: An InitialDesign.
OUTPUT: If it copies I it returns true, else it returns false.
EFFECT: If status==READY and I.IsDesignInitialized()==true,
it copies I to ID, else no effect.
*kkk /
if (status==READY&&I.IsDesignInitialized()) {
if (ID!=NULL) delete ID;
ID = new InitialDesign;
(*ID) =I;
N=(*ID) .GetDesignSize();
return true;
}/*end ifx*/
else return false;
}/*end ResetDesignx*/

bool maps::ResetSearchCriterion(const SearchCriterion &S){
VALL L
INPUT: A SearchCriterion.
OUTPUT: If it copies S it returns true, else it returns false.
EFFECT: If status==READY, it copies S to SC, else no effect.
*kkok /
if (status==READY) {
if (SC!=NULL) delete SC;
SC = new SearchCriterion(S);
return true;
}/*end ifx/
else return false;
}/*end ResetSearchCriterion*/

bool maps::ResetPatternSearch(const PatternSearch &PS1) {
[ ®kkx
INPUT: A PatternSearch object.
OUTPUT: If it copies S it returns true, else it returns false.
EFFECT: If status==READY, it copies PS1 to PS, else no effect.
*kkk /
if (status==READY) {
if (PS!=NULL) delete PS;
PS = new CompassSearch;
(xPS) = PS1;
return true;
}/*end ifx/
else return false;
}/*end ResetPatternSearchx/

bool maps::ResetFunction(char* fn){

VAL
INPUT: String containing the name of the function to be optimized.
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OUTPUT: Returns true if file exists and is executable.
EFFECT: Fname gets fn.
*kkk /[

struct stat m;

if ((stat (fn,&m)==0)&&(m.st_mode&&S_IXUSR) ) {

/*if it exists and the owner can execute it.
This doesn’t check ownership and permissions.

*/
if (Fname!=NULL) free(Fname);
Fname=(char*)malloc(strlen(fn)+1);
strcpy (Fname,fn) ;
return true;

}

return false;

}/*end ResetFunction*/

/*xxx*xQUERY FUNCTIONS*%**%/

bool maps::RetrieveBestSeen(mp_vector* bpoint, double* bvalue) const{
VAL L
INPUT: Two Pointers, one for a mp_vector, one for a value
OUTPUT: True if status==DONE, false if otherwise.
EFFECT: If status=DONE, it finds the best point and its value.
Malloc’s memory for a copy, and assigns it to the pointers. This
is done using a linear search.
*kkk /
long best;
double bval;

if (status==MAPS_DONE) {
best=0;bval=(xf_values) [0];
for(long i=0;i<V;i++)
if ((xf_values) [i]<bval) {
bval=(*f_values) [i];
best=i;
}/*end ifx/

(*bpoint)=(*Eval_c) .row(best);
(*bvalue)=bval;
return true;
}/*end ifx/
else return false;
}/*end RetrieveBestSeen*/

void maps: :debug(char* code) const{
VALL L
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EFFECT: Does a complete state dump to stdout. This should do state dumps of
all components.
*kkkk /
cout<<code<<" :***maps: : debug () ***\n" ;
cout<<code<<" : V="<<V<<" N="<<N<<" C="<<C<<" P="<<P<<" x_c="<<x_c<<endl;
cout<<code<<":status=";
switch(status) {
case NOTINIT:
cout<<"NOTINIT";break;
case READY:
cout<<"READY";break;
case MAPS_DONE:
cout<<"MAPS_DONE" ;break;
default:
cout<<"ERROR!";
};/*end switchx*/
cout<<" Fname="<<Fname<<endl;

cout<<code<<":b.lower="<<b.lower;
cout<<code<<":b.upper="<<b.upper;
if (Eval_c!=NULL) cout<<code<<":Eval_c="<<(*Eval_c);
else cout<<code<<":Eval_c=NULL!\n";
if (f_values!=NULL) cout<<code<<":f_values="<<(x*f_values);
else cout<<code<<":f_values=NULL!\n";
if(g!=NULL) (*g) .debug(code) ;
else cout<<code<<":g=NULL!\n";
if (SC!=NULL) (*SC).debug(code);
else cout<<code<<":SC=NULL!\n";
cout<<code<<":**x*end MP:debug()***\n";

}/*end debug*/

void maps: :GenerateMAPSGraphics(char* fpref) const{

VALL L

INPUT: Filename prefix.

EFFECT: Outputs to fpref.MAPS.dat stuff that would be nice

in producing pictures via GNUplot. Due to limits in

visualization technology, this feature is only available for
functions from R or R"2.

To produce said pictures in GNUPlot, do the following for f:R"2 -> R:
gnuplot> set parametric

gnuplot> splot "fpref.MAPS.NAME.dat" with lines

To produce said pictures in GNUPlot, do the following for f:R -> R:
gnuplot> plot "fpref.MAPS.NAME.dat" with lines

GenerateMAPSGraphics will also produce a file with the evaluation sites

in it, that can be graphed with the above plots as such:
gnuplot> splot "fpref.MAPS.GRAPH.dat" with lines, "fpref.MAPS.PTS.dat" with points
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or:
gnuplot> plot "fpref.MAPS.HRAPH.dat" with lines, "fpref.MAPS.PTS.dat" with points
*kkk /

if (status!=MAPS_DONE && status!=MAPS_RUNNING) return;

if (status==MAPS_DONE) {

(*SC) .UpdateSearchCriterion(*Eval_c,*f_values,V,N, (*g) .GetDelta());
}/*end ifx/
/*this is to update the SC for the last point.x*/

if(P==1) {
ofstream ofs_sc,ofs_ap,ofs_gf;
char* fn_sc (char*)malloc(strlen(fpref) +13);
char* fn_ap = (char*)malloc(strlen(fpref) +13);

char* fn_gf = (char*)malloc(strlen(fpref) +14);
double* y=(double*)malloc (sizeof (double)*P);
double f£f;

int s;

mp_vector diff=(b.upper-b.lower) * (1.0/500.0);

sprintf(fn_sc,"%s.MAPS.SC.dat" ,fpref);
sprintf(fn_ap,"%s.MAPS.AP.dat" ,fpref);
sprintf (fn_gf,"%s.MAPS.PTS.dat",fpref);
ofs_sc.open(fn_sc,ios::out);
ofs_ap.open(fn_ap,ios::out);
ofs_gf.open(fn_gf,ios::out);
ofs_sc<<"# This Graphics File has been brought to you by MAPS\n"
<<"# implemented by: Chris Siefert, College of William and Mary\n"
<<"# for parameters V="<<V<<" N="<<N<<" P="<<P;
if(g!=NULL) ofs_sc<<" delta="<<(*g).GetDelta();
ofs_sc<<endl
<<"# on function: "<<Fname<<endl;
ofs_sc<<"# Current Search Criterion Graph:\n";
ofs_ap<<"# This Graphics File has been brought to you by MAPS\n"
<<"# implemented by: Chris Siefert, College of William and Mary\n"
<<"# for parameters V="<<V<<" N="<<N<<" P="<<P;
if(g!=NULL) ofs_ap<<" delta="<<(*g).GetDelta();
ofs_ap<<endl
<<"# on function: "<<Fname<<endl;
ofs_ap<<"# Current Approximation Graph:\n";
ofs_gf<<"# This Graphics File has been brought to you by MAPS\n"
<<"# implemented by: Chris Siefert, College of William and Mary\n"
<<"# for parameters V="<<V<<" N="<K<N<L" P="<<P;
if(g!=NULL) ofs_gf<<" delta="<<(*g).GetDelta();
ofs_gf<<endl
<<"# on function: "<<Fname<<endl;
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ofs_gf<<"# Current Evaluated sites:\n";

for (long m=0;m<C;m++)
ofs_gf<<setprecision(4)<<(*Eval_c) [m] [0]<<" "<<(*f_values) [m]<<endl;

for(double k=b.lower [0] ;k<b.upper[0] ;k+=diff[0]) {
y [01=k;
(*SC) .EvaluateSearchCriterion(P,y,f,s);
ofs_sc<<setprecision(4)<<y[0]<<" "<<setprecision(8)<<f<<"\n";
(*SC) .GetApproximationGraphics(P,y,f,s);
ofs_ap<<setprecision(4)<<y[0]<<" "<<setprecision(8)<<f<<"\n";
}/*end forx*/

free(y);
free(fn_sc);
free(fn_ap);
free(fn_gf);
ofs_gf.close();
ofs_sc.close();
ofs_ap.close();
}/*end if P==1x%/
else if(P==2) {
ofstream ofs_sc,ofs_ap, ofs_gf;
char* fn_sc (char*)malloc(strlen(fpref) +13);
char* fn_ap = (char*)malloc(strlen(fpref) +13);

char* fn_gf = (char*)malloc(strlen(fpref) +14);
double* y=(double*)malloc(sizeof (double) *P);
double f;

int s;

mp_vector diff=(b.upper-b.lower) * (1.0/50.0);

sprintf(fn_sc,"%s.MAPS.SC.dat" ,fpref);
sprintf(fn_ap,"%s.MAPS.AP.dat" ,fpref);
sprintf (fn_gf,"%s.MAPS.PTS.dat",fpref);
ofs_sc.open(fn_sc,ios::out);
ofs_ap.open(fn_ap,ios::out);
ofs_gf .open(fn_gf,ios::out);

ofs_sc<<"# This Graphics File has been brought to you by MAPS\n"
<<"# implemented by: Chris Siefert, College of William and Mary\n"
<<"# for parameters V="<<V<<" N="<<N<L" P="<<P;
if(g!=NULL) ofs_sc<<" delta="<<(*g).GetDelta();
ofs_sc<<endl
<<"# on function: "<<Fname<<endl;
ofs_sc<<"# Current Search Criterion Graph:\n";
ofs_ap<<"# This Graphics File has been brought to you by MAPS\n"
<<"# implemented by: Chris Siefert, College of William and Mary\n"
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<<"# for parameters V="<<V<<" N="<<N<<" P="<<P;
if(g!=NULL) ofs_ap<<" delta="<<(*g).GetDelta();
ofs_ap<<endl

<<"# on function: "<<Fname<<endl;
ofs_ap<<"# Current Approximation Graph:\n";

ofs_gf<<"# This Graphics File has been brought to you by MAPS\n"
<<"# implemented by: Chris Siefert, College of William and Mary\n"
<<"# for parameters V="<<V<<" N="<<N<L" P="<<P;

if(g!=NULL) ofs_gf<<" delta="<<(*g).GetDelta();

ofs_gf<<endl
<<"# on function: "<<Fname<<endl;

ofs_gf<<"# Current Evaluated sites:\n";

for (long m=0;m<C;m++)
ofs_gf<<setprecision(4)<<(*Eval_c) [m] [0]<<" "
<<(*Eval_c) [m] [1]<<" "<<(*f_values) [m]<<endl;

for(double i=b.lower[0];i<b.upper[0];i+=diff[0]) {
y[0]=1i;
for(double j=b.lower[1];j<b.upper[1];j+=diff[1]) {
y[11=j;
(*SC) .EvaluateSearchCriterion(P,y,f,s);
ofs_sc<<setprecision(4)<<y[0]<<" "<<y[1]<<" "<<setprecision(8)<<f<<"\n";
(*SC) .GetApproximationGraphics(P,y,f,s);
ofs_ap<<setprecision(4)<<y[0]<<" "<<y[1]<<" "<<setprecision(8)<<f<<"\n";
}/*end forx*/
ofs_sc<<"\n";
ofs_ap<<"\n";
}/*end forx*/

free(y);
free(fn_sc);
free(fn_ap);
free(fn_gf);
ofs_sc.close();
ofs_ap.close();
ofs_gf.close();

}/*end ifP==2x/

else return;

}/*end GenerateMAPSGraphics*/

void maps: :GenerateIterationHistory() const{

VALL L

EFFECT: Outputs the chosen points, their values and the best point and values
returned to stdout. To convert these data files into LaTeX tables with ease,
use the included mdat2tex.awk script with the following syntax :
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awk —f mdat2tex.awk <mapsdatafile>
awk will output the LaTeX to stdout.
*kkk /

if (status!=MAPS_DONE) return;

cout<<'"sk*x***xMAPS ITERATION HISTORY******\n"

<<"# for parameters V="<<V<<" N="<<N<<K" P="<<P;
if(g!=NULL) cout<<" delta="<<(*g).GetDelta();
cout<<endl

<<"# on function: "<<Fname<<endl;

cout<<setw(_GFN)<<"NUM ";
for(long k=0;k<P;k++) cout<<setw(_GFP)<<k+1<<" ";/*+1 notation as per Trosset*/
cout<<setw(_GFV)<<"VAL\n";

for(long i=0;i<V;i++) {
cout<<setw(_GFN)<<i+1<<" ";/*+1 notation as per Trosset*/
for(long j=0;j<P;j++) cout<<setw(_GFP)<<setprecision(_GFP-3)<<(*Eval_c)[i][jl<<" ";
cout<<setw(_GFV)<<setprecision(_GFV-2)<<(*f_values) [i]<<endl;
}/*end ifx/
cout<<"\nBest Point found is #"<<x_c+1<<", value="<<setw(_GFV)<<(*f_values) [x_c]<<endl;
/*+1 notation as per Trosset*/

COUL KK M akakkk ko ok ok ok ok ook ok ook ok Kok ok sk ko kok ok ok ok \ 1
}/*end GeneratelterationHistory*/

/*x%x%x ACTION FUNCTIONS**%*x%x*/

bool maps::RunMAPS(char * fpref){

VAL L

INPUT: a pointer that specifies the filename prefix for iteration-by-iteration
graphics. Set this to NULL for no graphics, or call the parameter-free
version above.

OUTPUT: Returns true if nothing crashed.

EFFECT: Assume status=READY. Then it evaluates the function at the initial
design sites. Then it begins the iterative process of looping until we use up
the evaluation budget. When it finishes, it sets status=MAPS_DONE. This will
call EvalF. If fpref!=NULL, then this will output graphics to files named :
<fpref><C>.MAPS.AP.dat and <fpref><C>.MAPS.SC.dat .

*kkk /

/*Sanity checks*/
if (status!=READY| | g==NULL| | ID==NULL| | SC==NULL | | PS==NULL) {
#if DEBUG>=1
cerr<<"MPRM  :MAPS not initialized correctly\n";
#endif
return false;
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}/*end ifx*/

if (Eval_c!=NULL) delete Eval_c;
if (f_values!=NULL) delete f_values;
status=MAPS_RUNNING;

/*Variable Declarations*/
pt_collect temp_eval(V,P);/*a size VxP array, for resizing Eval_c*/

pt_collect temp_core(1,P);/*an array for the core pattern... this will be resized*/
mp_vector prosp_pt(P); /*a prospective pointx*/

mp_vector prosp_pt2(P); /*a prospective point... for the SnapToGrid Checks*/
mp_vector temp_fval(V); /*a size V array for resizing f_values*/

long temp_core_pts; /*number of points in the core patternx/

double temp_f; /*value from a function evaluation*/

bool success; /*you just always need a bool:) */

double *temp_pspoint; /*pointer to feed values to PatternSearch’s CleanSlatex/
double *temp_retpoint; /*pointer to get values back from PS*/

int s; /*for calling EvaluateSearchCriterion*/

long i,j; /*loop counters to the stars*/

char *gfx_fp=NULL; /*augmented fname for graphics*/

bool converged=false; /*stopping due to convergencex*/

if (fpref!=NULL) gfx_fp=(char*)malloc(1*sizeof (char));//just for 1st iteration

/*Sanity Check - design sizex*/
if (N!'=(*ID) .GetDesignSize()) {
#if DEBUG>=1
cerr<<"MPRM  :WARNING - Initial Design Size(N) set incorrectly, resetting...\n";
#endif
N=(*ID) .GetDesignSize();
}/*end ifx/

/*Memory Allocs*/
Eval_c=new pt_collect(N,P);
f_values=new mp_vector(N);

/*Get initial design sites, and evaluate the function at them*/
(*ID) .GetDesign(Eval_c);

#if DEBUG>=3
cout<<"MPRM :Before evals...Eval_c="<<(*Eval_c);

#endif

for (i=0;i<N;i++) {
temp_f=EvalF((*Eval_c).row(i),success);

if (success) {
(xf_values) [i]=temp_T;
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temp_fval[i]=temp_f;
for(j=0; j<P;j++) temp_evall[i][jl=(*Eval_c)[i]l[j];
}/*end ifx/

else {
#if DEBUG>=1
cerr<<"MPRM :Evaluation failed at point="<<(*Eval_c).row(i);
#endif
/*SUPPORT FOR EVALUATION FAILURE SHOULD BE ADDED HERE....x*/
abort();

}/*end elsex/
}/*end forx/

/*Find point with minimal value and make it x_c*/
x_c=0;
temp_f=(*f_values) [0];
for(i=0;i<N;i++)
if ((*f_values) [i]l<temp_£f) {
temp_f=(*f_values) [i];
X_c=i;
}/*end ifx/

#ifdef ITERATE_DEBUG
/*For outputting information iteration by iteration....*/
for (long w=0;w<N;w++) {
cout<<w<<" ";
for (long r=0;r<P;r++) cout<<setprecision(10)<<(*Eval_c) [w] [r]<<" ";
cout<<(*f_values) [w]<<" delta="<<(*g) .GetDelta()<<endl;
}/*end forx/
#endif

/*ENTER THE MAIN LOOPx*/
for (C=N; !converged&&C<V;C++) {

/*Main block*/
#if DEBUG>=2

cout<<"MPRM txkkkkkBEGIN ITERATION C="<<C<<'#kkkkkk\n'";
cout<<'"MPRM :xX_c="<<x_c<<endl;
cout<<"MPRM :Eval_c="<<(*Eval_c);
cout<<"MPRM :Best Value ="<<(xf_values) [x_c]<<endl;
cout<<"MPRM :Best Point ="<<(*Eval_c).row(x_c);
(*g) .debug("MPRM ");

#endif

#ifdef ITERATE_DEBUG
/*For outputting information iteration by iterationm....*/
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if (C1=N) {
cout<<C-1<<" ";
for(long g=0;q<P;q++) cout<<setprecision(15)<<(*Eval_c) [C-1] [q]<<" ";
cout<<(*f_values) [C-1]<<" delta="<<(*g).GetDelta()<<endl;
}
#endif

/*Get the Core Pattern of x_cx*/
(*g) .GetCore(b, (*Eval_c).row(x_c), temp_core, temp_core_pts);

/*if all pts in core have been evaluated, refine the grid*/
if (PCSubset (temp_core, *Eval_c)) {
(*g) .RefineGrid() ;
#if DEBUG>=2
cout<<"MPRM  :Grid Refined to delta="<<(*g).GetDelta()<<endl;
#endif
if ((*g) .GetDelta() < 10*TOLERANCE) {
converged=true;
break;
}/*end ifx/
}/*end ifx/

/*Update the Search Criterionx*/

success=(*SC) .UpdateSearchCriterion(*Eval_c,*f_values,C,N, (xg) .GetDelta());
#if DEBUG>=2

cout<<"MPRM :Eval_c="<<x*Eval_c;

cout<<"MPRM :f_values="<<*f_values;

cout<<"MPRM :Search Criterion Updated\n";
#endif

#if DEBUG>=1
if (!'success) cerr<<"MPRM :Search Criterion Update FAILED!\n";
#endif

/*Iteration-by-Iteration Graphics codex/

if (fpref!=NULL) {
i=C+1;9=1;
while(i>=10) {i/=10;j++;} /*count # of digits in Cx*/
realloc(gfx_fp,strlen(fpref) + j + 1);
sprintf (gfx_£fp,"%s%1ld",fpref,C+1);
GenerateMAPSGraphics(gfx_£fp);

}/*end ifx/

/*We might want to pick a better starting point than *Eval_c.row(x_c). If
so, that would be done here.*/

/*0PTIMIZE THE SEARCH CRITERION*/
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/*Reset the pattern searchx*/

temp_pspoint=(double*)malloc (P*sizeof (double));
temp_retpoint=(double*)malloc (P*sizeof (double));

for(i=0;i<P;i++) temp_pspoint[i]l=(*Eval_c) [x_c][i];

/*This reference here passes out the row’s pointer, and ref’s like an array*/

(*PS) .CleanSlate (P,temp_pspoint, (*g).FindBestPSMultiple(b)* (*g).GetDelta(),
(*g) .GetDelta(), SC,b, OptimizeSearchCriterion);

#if DEBUG>=3

cout<<"MPRM :PS::Clean Slate Complete\n";
#endif

/*Run the PS*x/

(*PS) .ExploratoryMoves () ;

(*PS) .GetMinPointFLOP (temp_retpoint) ;

for(i=0;i<P;i++) prosp_pt[i]l=temp_retpoint[i];
delete(temp_retpoint);
delete (temp_pspoint) ;
#if DEBUG>=2
cout<<"MPRM :Search Criterion Optimized, point="<<prosp_pt;
#endif

/*HERE WE NEED TO MAKE SURE THE POINT IS ON THE GRID (WHICH IT SHOULD BE, BUT
IT NEVER HURTS TO CHECK) AND THAT THE POINT HAS NOT ALREADY BEEN EVALUATED
AT. TIF EITHER CONDITION DOESN’T HOLD, WE HAVE TO DO SOMETHING HERE.*/

(*g) .SnapToGrid(b,prosp_pt ,&prosp_pt2) ;

if (prosp_pt!=prosp_pt2) {
#if DEBUG>=2
cout<<"MPRM :ERROR(non-fatal) Pattern Search Point not on Grid:"<<prosp_pt
<<"MPRM :Replaced with:'"<<prosp_pt2;
#endif
prosp_pt=prosp_pt2;
}/*end ifx/

/*Check for previously evaluated sitex/
if (IsElement (prosp_pt, *Eval_c)) {
/*this site has already been evaluated*/
double best_core_val=ERROR; /*Best S_c value in the corex/
long best_core_num=ERROR; /*Best S_C point in the corex*/
#if DEBUG>=2
cout<<"MPRM :Site Already Eval’d, site="<<prosp_pt;
#endif
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/*Get the Core Pattern of this new point*/
(*g) .GetCore(b,prosp_pt, temp_core, temp_core_pts);

/*NEED TO CHECK TRUTH VALUES HERE!!!!x/
for(i=0;i<temp_core_pts;i++) {
if (!IsElement (temp_core.row(i) ,*Eval_c)) {
(*xSC) .EvaluateSearchCriterion(P,temp_core[i] ,temp_f, s);
if (best_core_num==ERROR || temp_f<best_core_val){
best_core_val=temp_f;
best_core_num=i;
}/*end ifx/
}/*end ifx/
}/*end forx/

if (best_core_num==ERROR) {
#if DEBUG>=1
cerr<<"MPRM :No valid point found in core.\n";
cerr<<"MPRM :Reval’d point="<<prosp_pt;
#endif
/*Not only have we evaluated the point our search criterion
returns, but we’ve also evaluated its core pattern!
Instead, we get the Core Pattern of x_c again, and eval
one of those!*/
(*g) .GetCore(b, (¥*Eval_c) .row(x_c), temp_core, temp_core_pts);
success=false;
for(i=0; !success&&i<temp_core_pts;i++) {
if (IsElement (temp_core.row(i), (*Eval_c)))
success=true;prosp_pt=temp_core.row(i);
}/*end ifx/
#if DEBUG>=2
if (success)
cerr<<"MPRM :Using alternate point='"<<prosp_pt;
else{
cerr<<"MPRM :No available re-eval pt. Dumping core.\n";
abort();
}/*end elsex/
#endif
}/*end ifx/
else
prosp_pt=temp_core.row(best_core_num) ;
}/*end ifx*/

#if DEBUG>=2
cout<<"MPRM :Prospective Point chosen, point="<<prosp_pt;

#endif

/*Evaluate the Function*/
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temp_f=EvalF (prosp_pt,success);

if (success) {
/*copy to temp_eval and temp_fvalx/
temp_fval[C] = temp_f;
for(i=0;i<P;i++) temp_evall[C][i] = prosp_pt[il;

/*realloc Eval_c and f_values*/
(*Eval_c) .newsize(C+1,P);
(*f_values) .newsize(C+1);

for(i=0;i<C+1;i++) {

(*xf_values) [i]=temp_fval[il;

for(j=0;j<P;j++) (¥Eval_c)[il1[j] = temp_evallil[j];
}/*end forx*/

}/*end ifx/
else {
#if DEBUG>=1
cerr<<"MPRM :Evaluation failed at point="<<prosp_pt;
#endif
/*Evaluation failure has to be dealt with here*/
abort();
}/*end elsex/

/*Update x_c if neededx*/
if(temp_f < (*f_values)[x_c]) x_c=C;

}/*end the main for loop*/

#if DEBUG>=1

if (converged) cout<<"MPRM :MAPS Terminating due to convergence'"<<endl;
#endif

if (fpref!=NULL) free(gfx_£fp);
status=MAPS_DONE;
return true;

}/*end RunMAPS*/

void maps::SetDefault(long V1, long P1, Bounds &B1l, char* fn) {

VALL L

INPUT: The evaluation budget, dimension of space, bounds and function name.
EFFECT: This will automagically take care of generating an InitialDesign,
PSGrid, Search Criterion and a PatternSearch. Life couldn’t be easier. Sets

status=READY. This gives you SearchCriterion’s default, Latin hypercube
initial design and a CompassSearch.
*kkk /
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V=V1;P=P1;b=B1;
Fname=NULL;
if (ResetFunction(fn)) status=READY;
else {
#if DEBUG>=1
cerr<<'"MPSD :Executable File is not valid\n";
#endif
status=NOTINIT;
}/*end elsex/

C=0;x_c=0;
N=V1/3; /*This is an arbitrary choice of Nx*/
Eval_c=NULL;

f_values=NULL;

g=new PSGrid(P,b);

ID=new LatinHCDesign(P);

SC=new SearchCriterion(P,B1);

PS=new CompassSearch;

(*ID) .GenerateDesign(b,N,*g,0) ;
}/*end SetDefault*/

bool maps: :PCSubset(const pt_collect &A, const pt_collect &B) {
VAL
INPUT: Two collections of points, with each point forming a row vector
OUTPUT: Returns true if A is a subset of B.
*kkok /
long AD=A.num_rows() ;
long BD=B.num_rows() ;
bool s=true;

if (BD<AD) return false;

for(long i=0;s&&i<AD;i++) {
s=false;
s=IsElement (A.row(i),B);
}/*end forx/
return s;
}/*end PCSubset*/

bool maps::IsElement (const mp_vector &A, const pt_collect &B) {
VALL L
INPUT: A point, and a collection of points.
OUTPUT: Returns true if A is in B.
*kkok /
long BD=B.num_rows() ;
bool s=false;
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for(long j=0;!s&&j<BD;j++) {
if (isnear (A,B.row(j) ,2*TOLERANCE)) s=true;
}/*end forx/
return s;
}/*end IsElementx*/

double maps::EvalF(const mp_vector &point, bool &success) {

VALL L

INPUT: The point at which to evaluate the function, a boolean flag.
OUTPUT: The function value.

EFFECT: This function will do the fork/exec dance, sending the
program the parameters on its stdin, then after waiting, it will
get a double from the program’s stdout. If the program exited with
an error, it will return ERROR and set success to false. Otherwise
success will be true.

*kkok /
int childpid, pipell[2], pipe2[2];
long i;

double ret_val;
FILE *readpipe;
FILE *writepipe;

int state;

if ((pipe(pipel) < 0) || (pipe(pipe2) < 0) ) {
perror("pipe");
exit(-1);

}/*end ifx/

if ((childpid = fork()) < 0) {
perror ("fork") ;
exit(-1);
} else if (childpid > 0) { /*Parent*/
close(pipel[0]); close(pipe2[1]);
/* Write to child on pipel[1], read from child on pipe2[0]. */
readpipe=fdopen(pipe2[0],"r");
writepipe=fdopen(pipel[1],"w");
if (writepipe==NULL || readpipe==NULL)
{perror("fdopen") ;cerr<<"MPEF : Cannot open pipes... exiting\n";abort();}
setlinebuf (writepipe) ;/*important! This way it won’t just hang*/

/*0utput the vector x*/
for(i=0;i<P;i++) fprintf(writepipe,"%1.8f ", point[i]);
fprintf(writepipe,"\n");

/*Read in the returned value, and WAIT*/
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fscanf (readpipe,"%1f", &ret_val);
wait (&state);

/*Close outstanding pipes*/
fclose(writepipe) ;fclose(readpipe) ;

if (WIFEXITED(state)&& (WEXITSTATUS (state)==0)) {
/*normal exit - no abort, return code 0%/
success=true;
return ret_val;

}/*end ifx/

else {
success=false;
return ERROR;

}/*end elsex/

} else { /*Childx*/
close(pipel[1]); close(pipe2[0]);

/* Read from parent on pipel[0], write to parent on pipe2[1].

dup2(pipel1[0],0); dup2(pipe2[1],1);
close(pipel[0]); close(pipe2[1]);

if (execlp(Fname, Fname, NULL) < 0) {
perror ("execlp");
abort();
}
return ERROR;
/* Never returns */
}/*end elsex/

return ERROR; /*never returns*/
}/*end EvalFx*/

E.2.2 SearchCriterion

VALLI L

SearchCriterion implementation - 7/13/99 cmsief
*kkok /

#include <iostream.h>
#include "SearchCriterion.h"

/*weighting schemes*/
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//#define SC_WEIGHT_MULTIPLE 0
//#define SC_WEIGHT_TARGET_VALUE 1
//#define SC_WEIGHT_DELTA_MULTIPLE 2
//#define SC_WEIGHT_DYNAMIC_GUESS 3
//#define SC_WEIGHT_DYNAMIC_BEST 4

SearchCriterion: :SearchCriterion() {
w_scheme=ERROR;
w_params=NULL;
np=0;
APX=NULL;
Eval_c=NULL;f_values=NULL;
w_c=ERROR;
P=0;
original_delta=ERROR;

}/*end default constructor*/

SearchCriterion: :SearchCriterion(long dim,Bounds &b) {
bds=&b;
SetDefault (dim) ;

}/*end default constructor*/

SearchCriterion: :SearchCriterion(const SearchCriterion &S) {
w_scheme=S.w_scheme;
w_params=new mp_vector (*S.w_params) ;
np=S.np;
APX=NULL;
ResetApproximation (*S.APX);
w_c=S.w_c;
P=S.P;
bds=S.bds;
original_delta=S.original_delta;
/*Pointers to these are copied to save memory*/
Eval_c=S.Eval_c;
f_values=S.f_values;
}/*end copy constructorx/

SearchCriterion: :SearchCriterion(Approximate &A,Bounds &b) {
P=A.GetDim();
w_scheme=SC_WEIGHT _MULTIPLE;
w_params=new mp_vector(2);
(*xw_params) [0]=2;/*default valuex*/
(xw_params) [1]1=0.8;/*default valuex/
bds=&b;
np=0;w_c=ERROR;
Eval_c=NULL;f_values=NULL;
APX=NULL;
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original_delta=ERROR;
ResetApproximation(A);
}/*end special constructor*/

SearchCriterion::~“SearchCriterion(){
if (w_params!=NULL) delete w_params;
/*Don’t delete Eval_c. It’s deletion is controlled by maps*/
if (APX!=NULL) delete APX;

}/*end destructor*/

SearchCriterion& SearchCriterion: :operator=(SearchCriterion &S){
if (this !=&S) {
bds=S.bds;
w_scheme=S.w_scheme;
(*w_params)=(*S.w_params) ;
np=S.np;
ResetApproximation (*S.APX);
(¥Eval_c)=(*S.Eval_c);
(xf_values)=(*S.f_values);
w_c=S.w_c;
P=S.P;
original_delta=S.original_delta;
}/*end ifx/
return (*xthis);
}/*end overloaded =x/

bool SearchCriterion::ResetSearchCriterionState (Approximate &A,
int scheme_number, mp_vector &params){
VAL
INPUT: An Approximation, a weight scheme number and its parameters.
OUTPUT: returns true iff ResetWeightScheme returns true.

EFFECT: Calls ResetApproximateion, and ResetWeightScheme.
*kkk /

ResetApproximation(A);

return ResetWeightScheme (scheme_number, params);
}/*end ResetWeightSchemex*/

void SearchCriterion::ResetApproximation(Approximate &A) {
VALL L
INPUT: An Approximation.
EFFECTS: (*APX) = A
*kokok /
if (APX!=&A) {
if (APX!=NULL) delete APX;
switch(A.GetType()) {
case A_NULL_APPROX:
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APX=new NullApprox();
(*APX)=(NullApprox&)A;
break;
case A_KRIG_APPROX:
APX=new KrigApprox();
(*APX)=(KrigApprox&)A;
break;
default:
#if DEBUG>=1
cerr<<"SCRA  :Approximation Type Incorrect\n";
#endif
break;
};/*esacx*/
}/*end ifx/
}/*end ResetApproximation*/

bool SearchCriterion::ResetWeightScheme(int scheme_number, mp_vector &params) {
VALL L

INPUT: The scheme number and its parameters.

OUTPUT: Returns true if everything is valid.

EFFECTS: This sets the w_scheme integer, and then sets w_params.

This will also set w_c to the correct initial value

*kkok /

bool success;

switch(scheme_number){

case SC_WEIGHT_MULTIPLE:
if (params.dim() !=2) return false;/*sanity checkx*/
w_scheme=SC_WEIGHT _MULTIPLE;
if (w_params==NULL) w_params=new mp_vector (params) ;
else {(*w_params) .newsize(2); (*w_params)=params;}
success=true;
break;

case SC_WEIGHT_TARGET_VALUE:
if (params.dim() !=3) return false;/*sanity checkx*/
w_scheme=SC_WEIGHT _TARGET_VALUE;
if (w_params==NULL) w_params=new mp_vector (4);
else (*w_params) .newsize(4);
CreateWeightTargetValue (params) ;
success=true;
break;

case SC_WEIGHT_DELTA_MULTIPLE:
if (params.dim() !=2) return false;/*sanity check*/
w_scheme=SC_WEIGHT _DELTA_MULTIPLE;
if (w_params==NULL) w_params=new mp_vector(2);
else (*w_params).newsize(2);
(*w_params)=params;
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w_c=(*w_params) [0] ;
success=true;
break;

case SC_WEIGHT_DYNAMIC_GUESS:
if (params.dim() !=4) return false;/*sanity checkx*/
w_scheme=SC_WEIGHT _DYNAMIC_GUESS;
if (w_params==NULL) w_params=new mp_vector (params) ;
else {(*w_params) .newsize(4); (*w_params)=params;}
w_c=(*w_params) [0] ;
success=true;
break;

case SC_WEIGHT_DYNAMIC_BEST:
if (params.dim() !=3) return false;/*sanity checkx*/
w_scheme=SC_WEIGHT _DYNAMIC_BEST,;
if (w_params==NULL) w_params=new mp_vector (params) ;
else {(*w_params) .newsize(3); (*w_params)=params;}
w_c=(*w_params) [0];
success=true;
break;

default:
success=false;

};/*end casex/

return success;

}/*end SetWeightSchemex/

void SearchCriterion::EvaluateSearchCriterion(long P, double *x,
double &f, int &success) {
VAL L
INPUT: The dimension of the space, a list of values, a reference passed value
of the function, and a reference-passed flag. The input syntax is this
convoluted to ensure that it works with Liz Dolan’s PatternSearch.
EFFECT: This evaluates the search criterion at a given point, calling
Approximate: :Evaluate to do so, and takes the weighting schedule into
account. If the evaluation was a success, then success is 1, else it is
set to O.
*kkok /
for(long i=0;i<P;i++)
if(x[i]<(*bds) .lower[i] || x[i]l> (*bds) .upper[i]) {
success=0;
#if DEBUG>=3
cout<<"SCESC :POINT OUT OF BOUNDS\n";
#endif
return;

double f_true=ERROR,fhat_c, d_c;
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bool realpoint=false;
mp_vector temp(P,x);

/*This check should prevent degradation at previously eval’d sites*/
for(long j=0;!realpoint&&j<(*Eval_c).num_rows();j++) {
if (isnear ((*Eval_c).row(j) ,temp,TOLERANCE)) {
f_true=(xf_values) [j];/*set approx to true valuex*/
realpoint=true;
}/*end ifx/
}/*end forx*/

success=(*APX) .EvaluateApprox(temp, (*Eval_c), &fhat_c, &d_c);
if (realpoint) fhat_c=f_true; /*for degradation checkx*/

#if DEBUG>=3

cout<<"SCESC :hat{f_c}="<<fhat_c<<" w_c="<<w_c<<" d_c="<<d_c<<endl;
#endif

if(success) f=(fhat_c - w_c * d_c);

else f=ERROR;
}/*end EvaluateSearchCriterion*/

void SearchCriterion::GetApproximationGraphics(long P, double *x,
double &f, int &success){
VALL L
INPUT: Modified PatternSearch Interface.
OUTPUT: Value of the Approximation only at that point. Meant for use by
GenerateMAPSGraphics.
*kkk /
for(long i=0;i<P;i++)
if (x[i]1<(*bds) .lower[i] || x[i]> (*bds) .upper[il) {
success=0;
return;
}/*end ifx*/

double fhat_c, d_c;
mp_vector temp(P,x);
success=(*APX) .EvaluateApprox(temp, (*¥Eval_c), &fhat_c, &d_c);

/*This check should prevent degradation at previously eval’d sites*/
for(long j=0;j<(*Eval_c).num_rows();j++) {
if (isnear ((*Eval_c).row(j) ,temp,TOLERANCE)) {
f=(xf_values) [j];/*set approx to true valuex*/
success=1; return;
}/*end ifx/
}/*end forx*/
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if(success) f=fhat_c;
else f=ERROR;
}/*end GetApproximationGraphics*/

bool SearchCriterion::UpdateSearchCriterion(pt_collect &points,
mp_vector& values, long numpoints,
long n, double delta){
VAL L
INPUT: The list of evaluated sites, the values, and the number of
points listed, the number of points in the initial design, and the
curent delta.
OUTPUT: Returns true if the operation was sucessful.
EFFECT: This will call (*APX).Update to update the approximation,
then will update the weighting scheme by calling the appropriate
UpdateWeight function.
*kkk /
if ((points.num_rows() != numpoints) || (values.dim() !=numpoints)) {
cerr<<"SCUSC :ERROR! Number of Points doesn’t match parameters'<<endl;
}/*end ifx/

/*Copy pointers to conserve memory*/
Eval_c=&points;

f_values=&values;

np=numpoints;

if (original_delta==ERROR) original_delta=delta;

#if DEBUG>=3
cout<<"SCUSC :01d weight="<<w_c;
#endif

switch(w_scheme) {

case SC_WEIGHT_MULTIPLE:
UpdateWeightMultiple (numpoints-n) ;
break;

case SC_WEIGHT_TARGET_VALUE:
UpdateWeightTargetValue (numpoints-n) ;
break;

case SC_WEIGHT_DELTA_MULTIPLE:
UpdateWeightDeltaMultiple (delta);
break;

case SC_WEIGHT_DYNAMIC_GUESS:
UpdateWeightDynamicGuess (numpoints,values) ;
break;

case SC_WEIGHT_DYNAMIC_BEST:
UpdateWeightDynamicBest (numpoints,values) ;
break;

default:
break;
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};/*esac*/
#if DEBUG>=3

cout<<", New weight="<<w_c<<endl;
#endif

bool success=(*APX) .UpdateApprox(points, values, numpoints,delta, *bds);

return success;
}/*end UpdateSearchCriterionx/

void SearchCriterion::debug(char *code) const {
VALL L
EFFECT: does a complete state dump to stdout.
*kokk /
cout<<code<<":***SearchCriterion: :debug()***\n";
cout<<code<<" :P="<<P<<" np="<<np<<endl;
cout<<code<<" :w_scheme="<<w_scheme<<" w_c="<<w_c<<" w_params="<<(*w_params) ;
// cout<<code<<"Eval_c="<<Eval_c;
(*APX) .debug(code) ;
cout<<code<<":**x*end SC:debug()***\n";
}/*end debug*/

void SearchCriterion::SetDefault(long dim){
VALL L
INPUT: Dimension of space
EFFECT: Automagically generates one of these objects, uses (2,0.8)
WeightMultiple scheme and Kriging Approximation.
*kkok /
P=dim;
w_scheme=SC_WEIGHT _MULTIPLE;
w_params=new mp_vector(2);
(xw_params) [0]=2;/*default valuex*/
(*xw_params) [1]1=0.8;/*default value*/
np=0;w_c=0;
Eval_c=NULL;
APX=new KrigApprox(dim);/*defaults to Krigingx/
}/*end SetDefault*/

/*Weighting Scheme functions*/
void SearchCriterion::CreateWeightTargetValue (mp_vector &params){
/*This does the computation of w_params[3]

m = (p[1] / pl0])~(1/(p[2] * (V-N)))
*/

for(long i=0;i<3;i++) (*w_params) [i]=params[i];
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(xw_params) [3]= pow( params[1] / params[0], 1.0 / params[2]);
}/*end CreateWeightTargetValuex*/

void SearchCriterion::UpdateWeightTargetValue(long c){
VAL L
INPUT: The iteration number.
EFFECT: Multiply w_c by the correct multiplier in order to
reach the level of insignificance by the specified iteration.
PARAMS FORMAT: [0] - w_O
[1] - target value of insignificance
[2] - iteration number at which to reach insignificance
Though w_params[3] is not specified by the user, when you install the
Target Value weighting scheme, the multiple is computed and stored here.
*okokk /
w_c=(*w_params) [0];
for(long i=0;i<c;i++) w_c *= (*w_params) [3];
}/*end UpdateWeightTargetValuex*/

void SearchCriterion::UpdateWeightMultiple(long c) {
VAL L
EFFECTS: This will multiply w_c by w_params[1]
PARAMS FORMAT: [0] - w_0
[1] - ¢, s.t. w_c = ¢ * w_{c-1}

*kkk /

w_c=(*w_params) [0];

for(long i=0;i<c;i++) w_c *= (*w_params) [1];
}/*end UpdateWeightMultiplex*/

void SearchCriterion::UpdateWeightDeltaMultiple (double curr_delta) {
VAL L
INPUT: current delta
EFFECT: If delta has been refined, the weight is multiplied by w_1
PARAMS FORMAT: [0] - w_O, the weight before delta refinement
[1] - m, s.t. w_c = mkw_{c-1}, if delta was refined last iteration
= w_{c-1}, if delta wasn’t refined last iteration
*okokok /
if (original_delta-curr_delta>=TOLERANCE) {
original_delta=curr_delta;
w_c *= (*w_params) [1];
}/*end ifx/
}/*end UpdateDeltaBased*/

void SearchCriterion::UpdateWeightDynamicGuess(long lastsite, mp_vector& values){
VALL L
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INPUT: number of last site eval’d and vector of function values
EFFECT: If the approximation was ’close’ to correct at the last site, then we
reduce the weight, less we increase it.
PARAMS FORMAT: [0] - w_O
[1] - t, the threshhold percentage
[2] - m_b, multiplier if approximation is ’bad’
[3] - m_g, multiplier if approximation is ’good’

w_c=m_g * w_{c-1}, if [f(x_{c-1}) -\hat{f_{c-1}(x_c-1)}| <= t*frange
=m_b * w_{c-1}, otherwise

*kkk /

double v_min,v_max;

double f_hat, d_c;

bool s;
#if DEBUG>=2

cout<<"LASTSITE="<<lastsite;
#endif

mp_vector x(1);

x=(*Eval_c) .row(lastsite-1);

/*Compute the Function range*/

v_min=v_max=values[0];

for(long i=1;i<lastsite;i++) {
if(values[il<v_min) v_min=values[i];
if(values[i]>v_max) v_max=values[i];

}/*end forx/

/*Eval 01d Approximationx*/
s=(*APX) .EvaluateApprox(x, *Eval_c, &f_hat,&d_c);

if (fabs(values[lastsite-1] - f_hat) <= (*w_params)[1] *(v_max - v_min)){
w_c *= (*w_params) [3];/*the approx is good*/
#if DEBUG>=2
cout<<"... approx is good ";
#endif
}
else {
w_c *= (*w_params) [2];/*approx is not so goodx/
#if DEBUG>=2
cout<<"... approx is not good ";
#endif
}
#if DEBUG>=2
cout<<"w_c="<<w_c<<endl;
#endif

}/*end UpdateWeightDynamicGuess*/
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void SearchCriterion::UpdateWeightDynamicBest(long lastsite, mp_vector& values){
VAL L
INPUT: number of last site eval’d and vector of function values
EFFECT: If the approximation was ’close’ to correct at the last site, then we
reduce the weight, less we increase it. Similar to DynamicGuess, except it uses
|expval - bestpoint| / 2 as the threshold.
PARAMS FORMAT: [0] - w_0O

[1] - m_b, multiplier if approximation is ’bad’

[2] - m_g, multiplier if approximation is ’good’

w_c=m_g * w_{c-1}, if [f(x_{c-1}) -\hat{f_{c-1}(x_c-1)}| <= |expval-best|/2
=m_b * w_{c-1}, otherwise

*kokok /

double v_min;

double f_hat, d_c;

bool s;
#if DEBUG>=2

cout<<"LASTSITE="<<lastsite;
#endif

mp_vector x(1);

x=(*Eval_c) .row(lastsite-1);

/*Compute the Function range*/

v_min=values[0];

for(long i=1;i<lastsite-1;i++) {
/*Avoid the last site for this calulation - get old minimizer*/
if(values[il<v_min) v_min=values[i];

}/*end forx/

/*Eval 01d Approximationx/
s=(*APX) .EvaluateApprox(x, *Eval_c, &f_hat,&d_c);

if(fabs(values[lastsite-1] - f_hat) <= fabs((v_min - f_hat)/2.0)){
w_c *= (*w_params) [2];/*the approx is good*/
#if DEBUG>=2
cout<<"... approx is good ";
#endif
}
else {
w_c *= (*w_params) [1];/*approx is not so good*/
#if DEBUG>=2
cout<<"... approx is not good ";
#endif
}
#if DEBUG>=2
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cout<<"w_c="<<w_c<<endl;
#endif
}/*end WeightDynamicBestx*/

E.2.3 InitialDesign

VALL L

InitialDesign Class Implementation- 5/25/99 cmsief

This is the parent class for Initial Designs. Just inherit this, and you’re
almost all set.

*kkk /

#include "maps_general.h"
#include "PSGrid.h"
#include "InitialDesign.h"

InitialDesign::InitialDesign() {
init_done=false;
P=0;
N=0;
points=NULL;
}/*end default constructor*/

InitialDesign::InitialDesign(long dim){
init_done=false;
P=dim;
N=0;
points=NULL;
}/*end special constructor*/

InitialDesign::InitialDesign(const InitialDesign &I) {
init_done=I.init_done;
P=I.P;
N=I.N;
if(I.points!=NULL) points=new pt_collect(*I.points);
else points=NULL;

}/*end copy constructor*/

InitialDesign::“InitialDesign() {
if (points!=NULL) delete points;
}/*end destructor*/

InitialDesign& InitialDesign::operator=(const InitialDesign &I) {
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if(this!=&I) {
init_done=I.init_done;
P=I.P;
N=I.N;
if (points!=NULL) delete points;
if(I.points!=NULL) points=new pt_collect (*I.points);
else points=NULL;

}/*end ifx/

return (*this);

}/*end overloaded =*/

void InitialDesign::SetDimension(long dim) {
P=dim;
}/*end SetDimension*/

bool InitialDesign::GenerateDesign(const Bounds &b, long num_points,
const PSGrid &grid, long stream)q{
VALL L
INPUT: The problem’s bounds, the number of points to put in the design,
the grid and a random stream number. This assumes, of course that you’ve set
up rngs right.
OUTPUT: Returns true.
EFFECTS: Sets init_done=true, and calls MoveToGrid(b,grid)
Derived classes must call this function.
*kokok /
#ifndef DACE_ONLY_MODE
MoveToGrid(b,grid) ;
#endif
init_done=true;
return true;
}/*end GenerateDesign*/

void InitialDesign::GetDesign(pt_collect* outptr)q{
VAL
INPUT: Pointer of type pt_collect*.
EFFECTS: Copies points to outptr if init_done==true.
*kkok /

(*xoutptr)=(*points);
}/*end GetDesignx/

void InitialDesign::debug(char *code) {
cout<<code<<" InitialDesign::debug()\n";
cout<<code<<" P="<<P<<" N="<<N<<endl;
cout<<code<<(*points) ;
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}/*end debug*/

void InitialDesign::MoveToGrid(const Bounds &b, const PSGrid &grid) {
VAL L
INPUT: The problem’s bounds and grid.
EFFECTS: Moves all the points in ’points’ to grid position. Calls
grid.SnapToGrid, and uses that to do the snapping. Then it just fixes the
point list.
*kkok /

mp_vector temp(P);

for(long i=0; i<N;i++){
grid.SnapToGrid(b, (*points) .row(i) ,&temp) ;
for(long j=0;j<P;j++)
((*points) [i]1) [j1=temp[j];
}/*end forx/
}/*end MovetoGrid*/

E.2.4 LatinHCDesign

VALL L

LatinHCDesign Class Implementation - 6/7/99 cmsief
Derived from InitialDesign

*kkk /

#include "LatinHCDesign.h"

LatinHCDesign: :LatinHCDesign() :InitialDesign(){;}

LatinHCDesign: :LatinHCDesign(long dim) :InitialDesign(dim){;}
LatinHCDesign: :LatinHCDesign(const LatinHCDesign &I):InitialDesign(I){;}
LatinHCDesign: :“LatinHCDesign(){;}

bool LatinHCDesign: :GenerateDesign(const Bounds &b, long num_points,
const PSGrid &grid, long stream) {
VALL L
INPUT: The problem’s bounds, the number of points to put in the
design, the grid, and the random stream.
EFFECTS: Generates the initial design via latin hypercubes.
Then calls InitialDesign’s GenerateDesign.
*okokok /
N=num_points;
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ml_vector a(num_points);/*Partition of a given dimension*/
long s,temp;

double int_width;/*width of intervalx/

long i,j; /*countersx*/

if (points!=NULL) delete points;
points=new pt_collect(N,P);

SelectStream(stream) ;

for(i=0;i<P;i++) { /*1loop on dimension*/
int_width = (b.upper[i]l-b.lower[i])/N;
for(j=0; j<N;j++) aljl=j;/*clear array*/

/*Shuffle the array, as per Park and Leemis*/
for(j=0;j<N;j++) {
s=Equilikely(j,N-1);
temp=als];
alsl=aljl;
aljl=temp;
}/*end forx*/
/*END SHUFFLE*/

for (j=0;j<N; j++)
((*points) [j1) [i]1=b.lower[i]+Uniform(a[jl*int_width, (a[j]+1)*int_width);
}/*end for dimension*/
InitialDesign: :GenerateDesign(b,num_points,grid,stream);
return true;
}/*end GenerateDesign*/

E.2.5 PSGrid

VALL L
PSGrid implementation - 6/17/99 cmsief

This is downright exciting.
*kokok /

#include <fstream.h>
#include <iostream.h>
#include "PSGrid.h"
/K ok skok sk ok ok sk ok sk ok ok sk ok sk ok ok ok ok k kCONSTRUCTORS + DESTRUGT QR sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk ok ok sk ke ok sk ok s ok /
PSGrid: :PSGrid(){
P=0;
origin=NULL;
gridvect=NULL;
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refine=0.0;
}/*end default construtor*/

PSGrid: :PSGrid(const PSGrid &g){

origin=NULL;

gridvect=NULL;

ResetPSGridState(g.P,*g.origin,*g.gridvect, g.refine, g.delta);
}/*end copy constructor*/

PSGrid: :PSGrid(long P1, const mp_vector& o, const pt_collect& g,
double ref, double d){
origin=NULL;
gridvect=NULL;
ResetPSGridState(P1,0,g,ref,d);
}/*end special constructor*/

PSGrid: :PSGrid(long P1, const Bounds &b)<{

/*this assumes a certain relative grid thickness,
and it just goes with it*/
double minres;

mp_vector resolution(P1);
resolution=PSG_DEFAULT_RESOLUTION * (b.upper-b.lower) ;

/*Makes sure resolution is constant across dimensions*/
minres=resolution[1];
for(long i=0;i<P1;i++)

if(resolution[i]<minres) minres=resolution[i];

resolution=minres;

origin=NULL;

gridvect=NULL;

SetDefault (P1,b,resolution);
}/*end special constructor*/

PSGrid: :PSGrid(long P1, const Bounds &b, const mp_vector &resolution) {
origin=NULL;
gridvect=NULL;
SetDefault(P1, b, resolution);

}/*end special constructor*/

PSGrid::"PSGrid(){

if(origin !=NULL) delete origin;

if (gridvect!=NULL) delete gridvect;
}/*end destructor*/
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PSGrid& PSGrid: :operator=(PSGrid &g) {
if (this!=g) {
P=g.P;refine=g.refine;delta=g.delta;
if(origin !=NULL) delete origin;
if(g.origin==NULL) origin=NULL;
else origin=new mp_vector (*g.origin) ;

if(gridvect !=NULL) delete gridvect;
if(g.gridvect==NULL) gridvect=NULL;
else gridvect=new pt_collect(*g.gridvect);
}
return (*this);
}/*end overloaded =%/

/oK sk sk sk ke ok s sk ok sk sk ke ok s skosk sk ok sk ko ok sk ok ko kRESET  FUNCT TN S ook sk ke ke sk s ok sk sk sk sk k s s sk ook sk sk ok sk ok sk sk ok skok /

void PSGrid::ResetPSGridState(long P1, const mp_vector& o, const
pt_collect& g, double ref, double d){

VALL L

INPUT: A complete set of state values for the grid

EFFECTS: It copies these into the object’s state
*kkk /

P=P1;

refine=ref;

delta=d;

/*Memory Allocation+Deallocationx*/
if (origin!=NULL) delete origin;

if (gridvect!=NULL) delete gridvect;

origin=new mp_vector(P);
gridvect=new pt_collect(P,P);
/*this makes sure there is enough memory*/

(*origin)=o;
(*gridvect)=g;
}/*end ResetStatex/

bool PSGrid: :ReadGridFromFile(char* fn){
VAL L
INPUT: File name string
EFFECTS: Reads the grid data from a file
FILE FORMAT: dimension<cr>

delta<cr>

refine<cr>

origin(P)<cr>

grid (PxP)
*kkk /
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ifstream ifs;
long dim,i,j;
double ref,d;
ifs.open(fn,ios::in);

ifs>>dim;

if(ifs.eof ()) return false;
ifs>>d;

if(ifs.eof ()) return false;
ifs>>ref;

if(ifs.eof ()) return false;

/*Memory allocation*/
mp_vector* or=new mp_vector(dim);
pt_collect* grid=new pt_collect(dim,dim) ;

/*origin*/
for(i=0;i<dim&&'ifs.eof () ;i++) ifs>>(*or) [i];
if(ifs.eof ())

{ifs.close(); delete or; delete grid; return false;}

/*gridvect*/
for (i=0;i<dim&&!ifs.eof () ;i++)
for(j=0;j<dim&&'ifs.eof () ;j++)
ifs>>((xgrid) [11) [j];

/*final checksx*/

if(ifs.eof ()) {
ifs.close();
delete or; delete grid;
return false;

}/*end ifx/

else {
ifs.close();
P=dim;
refine=ref;
delta=d;
delete origin;
delete gridvect;
origin=or;
gridvect=grid;
return true;

}/*end elsex/

}/*end ReadGridFromFile*/

/kkk ok ok kokokkokkokokkokkokokok ok ok ok ok ok QUERY . FUNCT TON S sk ok ke ok ke ke sk ke ke ke ke ke ke ke ke sk sk sk ok sk sk ks sk sk sk ok /
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void PSGrid::debug(char *code) const{

VALL L

EFFECTS: does a complete state dump to stdout.

*kkok /
cout<<code<<" :***PSGrid: :debug() ***\n" ;
cout<<code<<":P="<<P<<", refine="<<refine<<", delta="

<<delta<<"\n"<<code<<"ORIGIN:\n"<<(*origin);

cout<<code<<":GRID:\n"<<(*gridvect) ;
cout<<code<<" :*¥*x*xx\n";

}/*end debug*/

double PSGrid::GetDelta() comnst {
VALL L
OUTPUT: returns delta
*kkk /
return delta;
}/*end GetDelta*/

bool PSGrid::IsFeasible(const Bounds &b, const mp_vector &x) const {
VALL L
INPUT: The bounds and an mp_vector.
OUTPUT: True if the point is within the founds, false if otherwise
*kkok /

bool ret=true;

for(long i=0;i<P&&ret;i++) {

if ((b.lower[i]>x[i]) || (b.upper[il<x[i])) ret=false;

}/*end forx/

return ret;
}/*end IsFeasible*/

long PSGrid::FindBestPSMultiple(const Bounds &b) {
VAL L
INPUT: The bounds of the space.
OUTPUT: Finds the best multiple for delta for use in the PatternSearch.
It does so with the following methodology:
1) Find i s.t. i maximizes delta*grid[i] / b.upper[i]-b.lower[i].
2) Returns half the biggest multiple s.t.
mult * delta*grid[i] < b.upper[i]l-b.lower[i].
*kkok /
long i=0;
double ratio=0;
long mult=1;
mp_vector d = b.upper - b.lower;

/*Find the optimal i*/

for(long j=0; j<P;j++)
if ((*gridvect) [j1[j] / d[j] > ratio)
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{i=j; ratio=(*gridvect) [j1[j1/d[j]1;}
ratio*x=delta;

/*¥Find the maximal multiplex/
while(ratio*mult < d[i]) mult*=2;

mult/=4; /*find the largest less than d[i]*/

return mult;
}/*end FindBestPSMultiplex/

/K kokok ok ok sk sk ko ok skokokok sk ok kok ok ok ok ACTTON  FUNCT TON S okesk sk ke ok s sk ok ok sk sk ke ke s sk ok ook sk sk ok ke sk sk ok okok /

void PSGrid: :SnapToGrid(const Bounds &b, const

mp_vector &old_pt, mp_vector* new_pt) const {

VALL L

INPUT: The bounds and two mp_vectors - one reference and one pointer.
OUTPUT: The nearest grid point to old_pt will be returned in new_pt
NOTES: Its amazing what a little bit of linear algebra can do! Note
that this will not necessarily work for grids that aren’t parallel
to the bounds.

*okokok /

ml_vector ipiv(P);

pt_collect T(P,P);

long i;

mp_vector x=old_pt-(*origin);
#if DEBUG>=1

if (gridvect==NULL) cerr<<"PSGSTG :Grid not initialized\n";
#endif

T=(*gridvect)*delta;

//This is a more general method, that will work for
//grids not parallel to the axes.
//LU_Factor(T,ipiv);

//LU_Solve(T,ipiv,x);

// for(long i=0;i<P;i++) x[il=round(x[i]);
for(i=0;i<P;i++) x[il=round(x[i]l/T[il[il);

(*new_pt)= (*origin)+T*x;

/*BOUNDS CHECKS*/

for(i=0;i<P;i++) {
if ((*xnew_pt) [i1<b.lower[i]) (*new_pt)[i] = b.lower[i];
if ((*new_pt) [i]1>b.upper[i]) (*new_pt) [i] = b.upper[i];
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}/*end forx*/
}/*end SnapToGrid*/

void PSGrid: :RefineGrid(){
VAL
EFFECT: Actually refines the grid. delta *= refine;
*kkok /
delta*=refine;
}/*end RefineGridx/

void PSGrid::GetCore(const Bounds &b, const mp_vector &x,
pt_collect&core, long &pts) {
VAL L
INPUT: The bounds, a point, a pointer to the point collection
to be returned, and a reference passed number of points.
EFFECT: Returns the list of points in the Core Pattern of x,
and the number of points in this pattern. This should also call
IsFeasible, and return only those points within the bounds. Note
that the returned values are stored on the rows (aka each row
represents a point in P-space), much as Eval_c is stored in maps.h.
*kkok /
pt_collect temp(P,P);
mp_vector test(P);
pts=0;
pt_collect t2(2*P,P);/*allocate more memory than we need*/
long i,j; /*counters*/

temp=(*gridvect) *delta;

for(i=0;i<P;i++) {
test=x+temp.col(i);/*create the potential core pattern vector*/
if (IsFeasible(b,test)) {
/*if feasible, copy it into a ROW of the outgoing matrix*/
for(j=0; j<P;j++) t2[pts][jl=test[j];
pts++;
}/*end ifx/

test=x-temp.col(i);/*create the potential core pattern vector*/
if (IsFeasible(b,test)) {
/*if feasible, copy it into a ROW of the outgoing matrix*/
for(j=0;j<P;j++) t2[pts]l[jl=test[j];
pts++;
}/*end ifx/
}/*end forx*/
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/*Now play the memory dance, and reclaim what was once
core.newsize(pts,P);
for(i=0;i<pts;i++)
for(j=0;j<P;j++)
core[i] [j1=t2[i]1[j];
}/*end GetCore*/

void PSGrid::SetDefault(long P1, const Bounds &b,
const mp_vector &resolutiomn)q{
VALL L
INPUT: Dimension, bounds and a grid resolution.
EFFECTS: This will automagically generate a simple grid
that is parallel to the axes.
*okokk /
long i;

#if DEBUG>=3

cerr<<"PSGSD :Called. resolution="<<resolution;
#endif

P=P1;

gridvect=new pt_collect(P,P);

origin=new mp_vector(b.lower) ;

refine=PSG_DEFAULT_REFINE;

delta=resolution[0];

ours!x*/

/*Finds smallest suggested resolution to make it delta*/

for(i=0;i<P;i++)
if(resolution[i]<delta)
delta=resolution[i];

for(i=0;i<P;i++)
for (long j=0;j<P;j++)
if(i!'=j) (*gridvect)[i][j]1=0;
else (*gridvect) [i][jl=round(resolution[i]/delta);

#if DEBUG>=3
cerr<<"PSGSD :Done\n";

#endif

}/*end SetDefaultx*/
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