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In 1961, Hooke and Jeeves [8] coined the term direct

search
...to describe sequential examination of
trial solutions involving comparison of each
trial solution with the “best” obtained up to
that time together with a strategy for deter-
mining (as a function of earlier results) what
the next trial solution will be.

In the intervening years, the term direct search has
come to refer to any method that does not use deriva-
tives or approximations of derivatives to solve the
problem

mxin f(z),

where € R™ and f : R® — R. Instead the search
is directed using only function values. Thus direct
search properly includes such disparate methods as
the pattern search method proposed by Hooke and
Jeeves [8], the wildly popular genetic algorithms [7],
the Nelder-Mead simplex method [11] (a Science Ci-
tation Classic), and random search methods [2].

Few of the direct search methods were conceived
with any sort of convergence analysis in mind. No-
table exceptions include the conjugate directions
method proposed by Powell [15, 22] and the class of
deformed configuration methods proposed by Rykov
and his colleagues [16, 17, 18, 9].

However, recent work [20] shows that a significant
subset of the direct search algorithms—a class we call
pattern search methods in deference to Hooke and
Jeeves—share a structure that makes a unified con-
vergence analysis possible for the algorithms as orig-
inally conceived. The surprising conclusion of this
analysis is that global convergence results compara-
ble to those for line search [12] and trust region [10]
globalization strategies are possible, even though gra-
dient information is neither explicitly calculated nor
approximated.

The key to the convergence analysis is that we are
able to relax the conditions on accepting a step by
placing stronger conditions on the step itself.

1. Generalized Pattern Search

Pattern search methods follow the general form of
most optimization methods: given an initial guess at
a solution zy and an initial choice of a step length
parameter Ag > 0,

ALGORITHM 1. General Pattern Search
Fork=0,1,...,
a) Check for convergence.
b) Compute f(zy).
¢) Determine a
Moves(Ag, Py).
d) If f(zr) > flxr + sg), then zp41 = xp + sp.
Otherwise 41 = z.
e) Update(Ay, Py).

step sp using Exploratory

Pattern search methods only require simple, as op-
posed to sufficient, decrease on the objective func-
tion. This weaker condition is possible because we
require that the step be defined by Ay and the pattern
P, and we place certain mild conditions on both the
Exploratory Moves and the way in which we update
Ay to guarantee global convergence. We do not need
any derivative information because we do not need
to enforce the classical sufficient decrease conditions,
such as the Armijo—Goldstein—Wolfe conditions used
for line search methods or the fraction of Cauchy de-
crease or fraction of optimal decrease conditions used
for trust region methods.

A pattern Py is defined by two components, a real
nonsingular basis matriz B € R™ ™ and an integer
generating matriz Cy € Z™*P, where p > 2n. In ad-
dition, the columns of C} must contain a core pattern
represented by M, € M C Z"*" and its negative
— My, where M is a finite set of nonsingular matrices
(thus ensuring that Cy has full row rank).

A pattern Py is then defined by the columns of the
matrix P, = BC). Since both B and C} have rank
n, the columns of P, span R”. The steps are of the
form sy = AyBey, where ¢ € Cy. (We adopt this
convenlient abuse of notation to indicate that c¢; 1s a
column of Cy.)

We require that the Exploratory Moves satisfy two
hypotheses:

HYPOTHESES ON EXPLORATORY MOVES.
1. s € Ay Py = A BCy.
2. ¥min{f(zr+y), y € A B[My,— M)} < f(zp),
then f(xr + si) < f(zg).

The second hypothesis is more interesting. It sug-
gests that if descent can be found for any one of the
2n steps defined by the core pattern, then the Ex-
ploratory Moves must return a step that gives simple
decrease. There is no requirement that such a step
must be defined by the core pattern, nor that all 2n



steps defined by the core pattern must be evaluated,
or even that the step returned give the greatest de-
crease possible.

Thus, a legitimate Exploratory Moves algorithm
would be one that somehow “guesses” which of the
steps defined by A P; will produce simple decrease
and then evaluates only that single step. At the other
extreme, a legitimate Exploratory Moves algorithm
would be one that evaluates all p steps defined by
Ay Pp and returns the step that produced the least
function value.

The core pattern guarantees that at least one of the
2n directions defined by the columns of [My, —M;] is
a descent direction when V f(zy) # 0. Thus the Ex-
ploratory Moves algorithm must contain a safeguard
to ensure that these 2n directions are polled if the
other strategies employed do not produce a step that
gives simple decrease on f(xp).

To finish our specification we give a simplification
of the technique for updating the step length control
parameter Ay. (For a full specification of the update
procedures for both Ay and Py, = BC}, see [20].)

ArGorITHM 2. (Simplified) Update for Ay.
Given 7 =2, 0 = =1 and A, € {7%, 71}
a) If f(zr + si) < f(xr), then Appq = ApAy.
b) Otherwise, Apy1 = 0Ag.

Here Aj; may be reduced if and only if simple de-
crease has not been realized.

The general specification for pattern search meth-
ods is rich enough to capture a variety of direct search
algorithms. These include coordinate search with
fixed step lengths (Davidon [4] describes its use by
Fermi and Metropolis to set phase shift parameters),
the evolutionary operations algorithm of G.E.P. Box
[1], the pattern search method of Hooke and Jeeves
(8], and the multidirectional search algorithm of Den-
nis and Torczon [6, 19].

The general specification also leads to global con-
vergence results. The goal of the next section is to
show that pattern search methods are as robust as
their proponents have long claimed and to demon-
strate that the convergence analysis is comparable to
that for line search and global trust region strategies.

2. The Analysis

Critical to proving global convergence of pattern
search methods is recognizing the algebraic structure
of the iterates, a structure that is independent of the
function to be optimized. This leads to the following
theorem.

THEOREM 2.1. Any iterate xy produced by a gen-
eral pattern search (Algorithm 1) can be ezpressed in
the following form:

N-1
Ny = g+ (ﬁrLBOé_rUB) AgB Z 2k,
k=0
where
o B/a = 7, with o, € N and relatively prime,

and 7 is as defined in the algorithm for updating
Ay (Algorithm 2),

e rrp and ryp depend on N,

o s €Z”, k=0,...,N—1.

The import of this theorem is that all the iterates
lie on a scaled, translated integer lattice. The ba-
sis depends on the initial choice of Ay and the ba-
sis matrix B, the translation depends on the initial
choice of zy, and the scaling is based solely on the
sequence of updates that have been applied to Ay,
for k=0,...,N — 1. (See [20] for a proof.)

With this theorem in hand, it is then possible to
prove the following theorem regarding the global con-
vergence behavior of pattern search methods.

THEOREM 2.2. Assume that L(zg) = {z : f(z) <
f(zo)} is compact and that f: R® — R is continu-
ously differentiable on L(xg). Then for the sequence
of iterates {ay} produced by the general patiern search
(Algorithm 1),

lim inf ||V f(2)]| = 0.

There are three key points to the proof [20]. First,
it 1s straightforward to show that pattern search
methods are descent methods. Second, it is possible
to prove that pattern search methods are gradient-
related methods (as defined in [13]). The third and
final part of the argument involves a proof by contra-
diction to show that the algorithm cannot terminate
prematurely due to inadequate step length control
mechanisms.

The proof that pattern search methods are descent
methods uses differentiability, the core pattern, the
Hypotheses on the Exploratory Moves and the up-
date rules for Ag. The n columns of BM;, form a set
that spans R” so that if Vf(z) # 0, then at least
one of the 2n directions defined by the columns of
B[M},, —Mjp] (the core pattern) must be a descent di-
rection from the current iterate. The Hypotheses on
the Exploratory Moves require that in the worst case,
if we have not already found a step that produces sim-
ple decrease, then we must look at all 2n steps defined
by A B[My, —My]. The update for Ay specifies that
Ay must be reduced if the Exploratory Moves failed
to produce a step giving simple decrease. Thus we



have a backtracking line search along 2n search direc-
tions, at least one of which is a direction of descent.
It is then a simple matter to show that this process
must terminate in a finite number of iterations.

To show that pattern search methods are gradient-
related methods, we prove that the following holds
for any = # 0:

o i)
{u i:l,...,p} >E>0,
lelsi

with

¢ = min

MeM {W}’

where k(BM) denotes the condition number of the
matrix BM. (All norms are the Euclidean vector
norms.) Again we make use of the core pattern de-
fined by B[M},, —My], of the fact that M € M where
M is a finite set, and of the fact that the Hypotheses
on Exploratory Moves require that all steps satisfy
zp € APy

The most delicate part of the analysis involves as-
suring that the common pathologies that require step
length control mechanisms cannot occur because of
the structure placed on the choice of iterates for pat-
tern search methods. The problem of steps that are
either too long, relative to the amount of decrease
realized by the next iterate, or too short, relative to
the amount of decrease predicted by the gradient at
the current iterate [5], cannot occur. Because the it-
erates lie on a lattice, which depends on Apg, steps
of arbitrary lengths along arbitrary search directions
are not possible. Thus such pathologies cannot occur.
Details of the proof can be found in [20].

Proofs of global convergence for individual pattern
search methods have appeared in the literature over
the years. The text by Céa [3] contains a proof of
convergence for the pattern search method of Hooke
and Jeeves while the text by Polak [14] contains
a proof of convergence for coordinate search with
fixed step length. These two proofs require that the
step sizes be monotonically decreasing. Yu Wen-
ci [21] gives a unified analysis for a class of direct
search techniques, but it requires both that the step
sizes be monotonically decreasing and that an “error-
controlling” sequence, which plays the role of a suffi-
cient decrease condition, be introduced into the algo-
rithms considered—with no suggestions on how such
a sequence could be constructed in practice. As we
have demonstrated, neither restriction is necessary to
obtain global convergence results for pattern search
methods.
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