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The goals of the talk:

• To illustrate a simple GSS method.

• To use this illustration to derive a general form for GSS methods.

• To illustrate the features of GSS methods that ensure convergence.

• To show that at an identifiable subsequence of {xk}, there is an implicit
bound on the norm of the gradient in terms of the step-length control
parameter ∆k.

It is from this result that both the global and local convergence results
follow.



What are Generating Set Search (GSS) methods?

Look at one of the simplest possible examples compass search applied to
the problem:

minimize
x∈R2

f(x1, x2)

where

f(x) =
∣∣(3− 2x1)x1 − 2x2 + 1

∣∣7
3 +

∣∣(3− 2x2)x2 − x1 + 1
∣∣7
3 ,

(the modified Broyden tridiagonal function).



Initial pattern:



Move North:



Move West:



Move North:



Contract:



Move West:



Compass search: initialization

Let f : Rn → R be given.

Let x0 ∈ Rn be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step length control parameter.



Compass search: algorithm

For each iteration k = 1, 2, . . .

Step 1. Let D⊕ be the set of coordinate directions {±ei | i = 1, . . . , n},
where ei is the ith unit coordinate vector in Rn.

Step 2. If there exists dk ∈ D⊕ such that f(xk + ∆kdk) < f(xk) then the
iteration is successful.

Do the following:

– Set xk+1 = xk + ∆kdk (change the iterate).

– Set ∆k+1 = ∆k (no change to the step length control parameter).



Step 3. Otherwise, f(xk + ∆kd) ≥ f(xk) for all d ∈ D⊕, so the iteration
is unsuccessful.

Do the following:

– Set xk+1 = xk (no change to the iterate).

– Set ∆k+1 = 1
2∆k (contract the step length control parameter).

– If ∆k+1 < ∆tol, then terminate.



What is needed to ensure global convergence?

There are two basic conditions:

• A reasonable direction of descent.

• A reasonable choice of step length along that direction of descent to
ensure that the step is neither

? “too long” relative to the amount of decrease seen from one iterate
to the next nor

? “too short” relative to the linear rate of decrease in the function.



What makes GSS methods interesting analytically?

The typical safeguards for nonlinear optimization make explicit use of
∇f(xk) to ensure a reasonable choice of search direction and step length.

If we assume ∇f exists and is continuous, it is possible to construct GSS
methods that satisfy these conditions without explicitly using ∇f(x).



Compass search guarantees a direction of descent:



Specifically, compass search guarantees:

The cosine of the largest angle between an arbitrary vector v ∈ Rn and the
closest coordinate direction in the set D⊕ is bounded below by 1√

n
.

Thus, no matter the value of ∇f(x), there is at least one d ∈ D⊕ for which

κ(D⊕) =
1√
n
≤ −∇f(xk)Td

‖ ∇f(xk) ‖ ‖ d ‖
.



Extending the observation to GSS:

We can replace the set of coordinate direction D⊕ with a set of search
directions Dk. The conditions on Dk are

• that Dk contain a generating set for Rn and

• that Dk satisfies an angle condition of the form κ(Dk) ≥ κmin > 0.



Generating sets for Rn

Let G denote a set of p directions in Rn, with the ith direction denoted by
di. Then we say that G generates (or positively spans) Rn if for any vector
v ∈ Rn, there exist λ1, . . . , λp ≥ 0 such that

v =
p∑

i=1

λi di.

Clearly the set of coordinate directions:

D⊕ = {±ei | i = 1, . . . , n}

satisfies this condition.

But there is an infinite number of other algorithmic possibilities.



The generating set guarantees a direction of descent

Lemma. The set G generates Rn if and only if for any vector v ∈ Rn such
that v 6= 0, there exists d ∈ G such that vTd > 0.

Geometrically, this says the G generates Rn if and only if the interior of
every half-space contains a member of G.

The significance to GSS is that if at every iteration k, Dk contains a
generating set for Rn, then there must be at least one d ∈ Dk such that

−∇f(xk)Td > 0.

Thus, Dk contains at least one direction of descent whenever ∇f(xk) 6= 0.





A measure of the quality of the direction of descent

Formally, the cosine measure of G is:

κ(G) ≡ min
v∈Rn

max
d∈G

vTd

‖v‖ ‖d‖
.

This measure captures how far the steepest descent direction can be, in
the worst case, from the vector d in G making the smallest angle with
v = −∇f(x).

−∇f(x) −∇f(x)



κ(G) is required to be uniformly bounded below

κ(Gk) ≥ κmin > 0 for all k = 1, 2, . . . .

This lower bound is meant to prevent pathologies such as

−∇f(x)

thus ensuring a reasonable direction of descent.



How to ensure a reasonable choice of step length?

Use a step-length control parameter ∆k and for a given dk ∈ Dk, only
accept the step ∆kdk if

f(xk + ∆kdk) < f(xk)− ρ(∆k),

where ρ : R → R is a nonnegative function such that ρ(t)/t → 0 as t → 0.

Two choices:

• ρ ≡ 0 (simple decrease)

• ρ(t) = αt2 for some α > 0 (sufficient decrease)



Why ρ(t)/t → 0 as t → 0?
For success require:

f(xk + ∆kdk)− f(xk) < −ρ(∆k).

0

0
h(∆) = −α∆2

g(∆) = f(x+∆d) − f(x)

∆
_



GSS: initialization

Let f : Rn → R be given.

Let x0 ∈ Rn be the initial guess.

Let ∆tol > 0 be the step length convergence tolerance.

Let ∆0 > ∆tol be the initial value of the step length control parameter.

Let θmax < 1 be an upper bound on the contraction parameter.

Let ρ : R → R be a nonnegative function such that ρ(t)/t → 0 as t → 0.
The choice ρ ≡ 0 is acceptable.

Let βmin and βmax be lower and upper bounds, respectively, on the lengths
of the vectors in any generating set.

Let κmin be a lower bound on the cosine measure of any generating set.



GSS: algorithm

For each iteration k = 1, 2, . . .

Step 1. Let Dk = Gk ∪Hk. Here Gk is a generating set for Rn satisfying
βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk and κ(Dk) ≥ κmin, and Hk is a finite
(possibly empty) set of additional search directions such that
βmin ≤ ‖d‖ for all d ∈ Hk.

Step 2. If there exists dk ∈ Dk such that f(xk + ∆kdk) < f(xk)− ρ(∆k),
then the iteration is successful.

Do the following:

– Set xk+1 = xk + ∆kdk (change the iterate).

– Set ∆k+1 = φk∆k, where φk ≥ 1 (optionally expand the step length
control parameter).



Step 3. Otherwise, f(xk + ∆kd) ≥ f(xk)− ρ(∆k) for all d ∈ Dk, so the
iteration is unsuccessful.

Do the following:

– Set xk+1 = xk (no change to the iterate).

– Set ∆k+1 = θk∆k where 0 < θk < θmax < 1 (contract the step length
control parameter).

– If ∆k+1 < ∆tol, then terminate.



Relating ∆k to the measure of stationarity

Theorem. Let f : Rn → R be continuously differentiable, and suppose
∇f is Lipschitz continuous with constant M . Then GSS produces iterates
such that for any k ∈ U , we have

‖ ∇f(xk) ‖ ≤
1

κ(Gk)

[
M∆kβmax +

ρ(∆k)
∆kβmin

]
.

For simplicity we assume ∇f is Lipschitz but this can be relaxed to the
assumption that ∇f is only continuously differentiable.



Globalization

We can ensure that, at the very least, GSS methods produce iterations
satisfying

lim inf
k→+∞

∆k = 0.

At least three mechanisms:

• Globalization via a rational lattice (ρ = 0) [Torczon]

• Globalization via moving grids (ρ = 0) [Coope/Price]

• Globalization via a sufficient decrease condition (ρ 6= 0)
[Lucidi/Sciandrone]



One consequence:

If we require
ρ(t)/t → 0 as t → 0

and we can show
lim inf
k→+∞

∆k = 0,

then

‖ ∇f(xk) ‖ ≤
1

κ(Gk)

[
M∆kβmax +

ρ(∆k)
∆kβmin

]
.

ensures that, at the very least,

lim inf
k→+∞

‖ ∇f(xk) ‖ = 0.

Bottom line: GSS methods are globally convergent.



Other consequences:

In addition, the stationarity measure, together with the choice of an
appropriate globalization strategy and some stronger assumptions, leads to
local convergence results:

• limk→+∞ xk = x∗.

• For an identifiable subsequence of {xk}, ‖ xk − x∗ ‖ ≤ c∆k for some c
independent of k.

• This identifiable subsequence of {xk} is r-linearly convergent.



Furthermore:

The relationship between ∆k and ‖ ∇f(xk) ‖:

‖ ∇f(xk) ‖ ≤
1

κ(Gk)

[
M∆kβmax +

ρ(∆k)
∆kβmin

]
means that ∆k is an appropriate stopping criterion to test after an
unsuccessful iteration.

In other words, ∆k provides a certificate of stationarity:

• Either ‖ ∇f(xk) ‖ is on the order of ∆k,

• or the function is so ill-behaved that accurate identification of a
stationary point is difficult without the use of curvature (second-order)
information.



Finally:

All these ideas can be extended to handle constraints.

We replace ‖ ∇f(xk) ‖ with an appropriate measure of constrained
stationarity.

We now require Dk to contain generators for cones defined by the nearby
constraints (or linearizations of the nearby constraints).

Once again, we show that there exists a relationship between ∆k and the
measure of stationarity at unsuccessful iterations.

From this, we then derive global convergence results, as well as obtaining a
certificate of constrained stationarity.



For more details:

Optimization by Direct Search: New Perspectives on Some Classical and
Modern Methods, Kolda/Lewis/Torczon, SIAM Review (45) 2003,
pp. 385–482.

Stationarity results for generating set search for linearly constrained
optimization, Kolda/Lewis/Torczon, revised July 2004.

www.cs.wm.edu/~va/research


