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Abstract

There have been interesting recent developments in
methods for solving optimization problems without
making use of derivative (sensitivity) information.
While calculus based methods that employ derivative
information can be extremely efficient and very effec-
tive, they are not applicable to all MDO problems,
for instance, when the function to be optimized is
nondifferentiable, when sensitivity information is not
available or is not reliable, or when the function val-
ues are inaccurate. In these settings, we have found
that the multidirectional search method, a derivate-
free method we have developed for solving nonlinear
optimization problems, can be used effectively. Our
analysis of the multidirectional search algorithm has
led us to discover that its algebraic structure and re-
sulting convergence theory can be related to an en-
tire class of derivative-free methods, which we now
call pattern search methods, that have been in use
for decades.

The goal of this paper is to give an introduction to
pattern search methods, to describe the features they
share by using coordinate search, one of the earliest
and best-known (if not as effective) pattern search
methods, as an example, and to review some recent

developments that suggest that these methods can be

*Department of Computational and Applied Mathematics.
Published in Proceedings of the AIAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Optimization,
September 7-9, 1994, Panama City Beach, Florida. Copyright
(c) 1994 by the American Institute of Aeronautics and Astro-
nautics, Inc., AIAA-94-4349-CP

extended to handle problems with a mix of contin-
uous and discrete variables—another situation that
can arise in MDO problems. Finally, we will discuss
when these methods are an appropriate choice for

solving MDO problems.

1. Introduction

Pattern search methods form a class of optimization
methods designed to solve the problem

min f(z),

r€S

where f : IR" — IR, without computing derivatives
(sensitivities). To simplify the discussion, we will
assume that S = IR™ (i.e., the problem is uncon-
strained), though computational efforts have been di-
rected at extending these methods in a reliable fash-
ion to handle problems with constraints [15].
Pattern search methods date back to at least the
1950s [6] and have been used for parameter estima-
tion in a wide variety of scientific and engineering
applications. They have remained popular because
they are simple, easy to understand, easy to program,
widely applicable, and have proven to be robust in
practice [23], where by “robust” we mean that the
sequence of iterates produced typically converges to
a stationary point of the function to be optimized.
Our investigation of pattern search methods was
prompted by our interest in developing useful general-
purpose parallel optimization methods [8, 21]. How-
ever, during the course of our investigations we dis-
covered that pattern search methods have many im-

portant features that are independent of the comput-



ing environment in which they are used. These are
the features we will discuss in this paper.

We reintroduce pattern search methods in the con-
text of MDO for two reasons. First, pattern search
methods have long proven to be useful for problems
that exhibit many of the difficulties found in solving
MDO problems:

e they can be used when the function is either non-
differentiable or the derivative (sensitivity) infor-

mation proves to be unreliable,

e they can be used when the function is computed

to low accuracy,

e they can be effective when the function is highly

nonlinear, and

e they can be used even when only rank (order)

information is available.

Good arguments can also be made for their effective-
ness when a problem has many local minimizers [16].
This is because pattern search methods search in mul-
tiple directions, some of which may be “up-hill” direc-
tions, rather than limiting the search to a single de-
scent (down-hill) direction, as is more typical of clas-
sical higher-order methods based on Taylor’s series
approximations to the function to be minimized. Sec-
ond, recent theoretical developments [22] show that
given a precise definition of pattern search methods
these methods can be related analytically to classical
higher-order methods based on a Taylor’s series ap-
proximation to the function to be minimized. This
analysis is significant for several reasons. It provides
a theoretical underpinning to years of experience that
suggests pattern search methods are robust in prac-
tice. But of even more importance for MDO prob-
lems, an understanding of the structure that makes
this analysis possible suggests constructive ways to
develop robust methods for dealing with problems
that have discrete variables (such as variables based
on table look-ups) and function values that are sub-
ject to random error (as in settings where not all the
environmental factors can be controlled).

Of course, all these advantages do not come with-
out a price. Because the pattern search methods

are direct search methods (i.e., methods that neither

require nor estimate derivatives to drive the search
procedure but rely solely on function values), they
are not as efficient as higher-order methods can be
when using reliable sensitivity information [10]. Fur-
thermore, because pattern search methods can be
viewed as sampling methods, they suffer from the
so-called “curse of dimensionality,” though they have
been used successfully on problems with up to twenty
parameters [11].

The purpose of this paper is to define pattern
search methods and their many features while giving
some guidelines as to when their use is most appro-

priate.

2. Pattern Search Methods

We have yet to define pattern search methods. We
begin by presenting some informal examples and then
give the formal abstraction that both serves as a
framework for rigorous analysis and gives guidelines
for designing new, possibly application-specific, pat-

tern search methods.

2.1 Some Informal Examples

In the most general sense, a pattern search method
samples the function at a predetermined pattern of
points centered about the current “best” point, using
exploratory moves that satisfy certain minimal con-
ditions to ensure the robust behavior of the method.
If this sampling is successful (i.e., produces a new
“best” point), then the process is repeated with the
pattern centered about the new best point. If not, the
size of the pattern is reduced (typically, by halving)
and the function is again sampled about the current
“best” point.

To make this more concrete, we will consider the
method of coordinate search with fixed step length,
perhaps the simplest and most obvious of the pattern
search methods (used, for example, forty years ago
by Enrico Fermi and Nicholas Metropolis to deter-
mine which values of certain theoretical parameters
(phase shifts) best fit experimental data (scattering
cross sections) [6]). This simple idea conforms with
classical notions of good experimental design: vary
one factor at a time and observe the effect of that

variation on the result of the associated experiment.



When no increase or decrease in any one parame-
ter further improves the fit to the experimental data,
halve the step size and repeat the process until the
steps are deemed sufficiently small. If we consider the
pattern of points from which the function can be sam-
pled (shown in Figure 1 for problems with only two
variables), we see something that looks much like a
two-factor composite design as described by G. E. P.
Box and K. B. Wilson [4] on the use of experimental

designs to attain optimum conditions.

FIGURE 1: Pattern for coordinate
search in IR?.

In fact, the patterns associated with pattern search
methods share many features with some of the early
orthogonal designs suggested for experimental design.
Our own work for the multidirectional search algo-
rithm is based on the use of simplex designs first pro-
posed by Spendley, Hext, and Himsworth [18] and
subsequently developed by Nelder and Mead [17].
(See Figure 2 for a possible pattern for problems with

only two variables.) Curiously, neither the simplex

FIGURE 2: Pattern for multidirec-
tional search in IRZ.

algorithm of Spendley, Hext and Himsworth nor the
simplex method of Nelder and Mead satisfy the strict
definition of a pattern search method. With suit-
able modifications, the analysis for pattern search

methods can be extended to the simplex algorithm

of Spendley, Hext, and Himsworth. However, sim-
ilar extensions cannot be made for the simplex al-
gorithm of Nelder and Mead and numerical experi-
ments show that the Nelder-Mead algorithm can fail
on trivial problems [19]. Note that one advantage
of working with simplex designs is that the number
of function evaluations required at each iteration is
O(2n), the same as would be required for centered
finite-difference approximations to the gradient, as
opposed to the O(2") function values that would be
required for a full two-level factorial design.

This loose definition of pattern search methods
captures a variety of other long-standing direct search
methods. These include optimization methods based
on the response surface methodology work first intro-
duced by G. E. P. Box and K. B. Wilson [4] and sub-
sequently developed by Box and other researchers [2,
3, 5], the original pattern search algorithm of Robert
Hooke and T. A. Jeeves [14], and more recently the
multidirectional search algorithm and its variants de-
veloped by the authors [8, 19, 20].

2.2 A Formal Abstraction

The analysis of the pattern search methods is based

on a general unifying abstraction. A simplified ver-
sion of this abstraction is given here. A complete ver-
sion, with the accompanying analysis, can be found
in [22].

The two key components of a pattern search
method are the generating matriz and the exploratory
moves algorithm. The generating matrix designates
the set of points that can be sampled at any given
iteration; i.e., the generating matrix is used to de-
fine the pattern from which the function is sampled.
The exploratory moves algorithm specifies how this
sampling is to be conducted.

2.2.1 The Generating Matrix

We will denote the generating matrix as Cy €

IR"™P where p > 2n. The generating matrix must
have full row rank. We use C} to generate a pat-
tern of points associated with a given pattern search
method. We must be able to partition the columns of
the generating matrix into two components: a fixed
component F', which is composed of a nonsingular

core matrix I' € IR"*" and its negative, and any ad-



ditional columns Aj. Thus:

Cy = [ T -T Ay ]
A S~ S~
N

= | F Ap ).
N~ —~—
2n p—2n

For most pattern search methods, the core matrix
is simply the identity matrix. The columns of Ay
may or may not vary across iterations; however, Ay
always contains at least one column—the column of
all zeros. There are certain restrictions, discussed
fully in [22], on the form of the additional columns
Ap, but there is a great deal of flexibility in the choice
of these columns. For example, the generating matrix

for the pattern given in Figure 1 is
Cy =
1 0 -1 0 1 1
0o 1 0 -1 1 -1
while the one associated with the pattern given in

Figure 2 is

C’“:ll 0 -1 0 0]'

0 1 0 -1 0

Again we suppress some of the many nuances found
in [22] to simplify the presentation. In its most basic
form, the pattern can be represented by the generat-
ing matrix C. We define a trial step sp to be any
vector of the form s; = Ajyer, where Ay € IR is used
to control the length of the step (which is equivalent
to controlling the size of the pattern) and, introduc-
ing a convenient abuse of notation, ¢ € Cj, i.e., the
vector ¢ must be a a column of the generating matrix
Cy.

Now, given a current “best” point zy, a trial point

can be any point of the form
mﬁc = Zp+ sg.

The question then becomes, how do we choose from
a potentially large number of trial points? That is the
role of the exploratory moves algorithm.

2.2.2 The Exploratory Moves

The goal of the exploratory moves algorithm is

to sample the function about the current iterate xj

in a well-defined deterministic fashion with the goal

of producing a new, better iterate. For the uncon-
strained minimization problem, a better iterate is
simply one with a lower function value. Thus, given
a current iterate x;, and its function value f(xy), we
would like to find a step s; such that

flze +s5) < flzp).

For example, the exploratory moves for coordinate
search can be specified as in Algorithm 1 (where e;
denotes a column of the identity matrix, i.e., a unit

coordinate vector).

AvrGoriTHM 1. Exploratory Moves Algorithm for
Coordinate Search.
Given zp, A, and f(zg), set sg = 0 and min =

f(zp).

Fori=1,---,n do

a) s,i = sk + Ape; and .z‘,i = x; + s,i. Compute
fag).
b) If f(z}) < min then min = f(z}), and s = s{.
Otherwise,
i) sé = s, — Ape; and aj,ﬁ =z +s,§.
Compute f(z}).
i) If f(:b,i) < min then min = f(z}), and

s = sp.

Return.

Note that we are polling each of the coordinate di-
rections in turn and building a final step s; based on
the cumulative result after we have considered each of
the n coordinate directions. For n = 2, all of the 3"
possible outcomes are contained in the pattern shown
in Figure 1 and defined by the columns of the gener-
ating matrix given in (2). However, the exploratory
moves algorithm samples—at most—2n of these 3"
columns at any single iteration. The choice of which
columns of Cj, to use is made during the course of the
iteration and cannot be predicted in advance, even if
C'; captures all possible outcomes. Furthermore, this
is only one of many ways in which the coordinate
search could proceed. One possible modification we
could make to this process would be to build in a
memory function. For instance, we could keep track
of which orientation of each of the coordinate direc-

tions was successful at the previous iteration and try



this orientation first at the next step (rather than al-
ways trying the positive coordinate direction first) in
an effort to save function evaluations—a most reason-
able consideration. The pattern we have defined for
our example with n = 2 would still capture all pos-
sible outcomes, but the exploratory moves algorithm
would be modified as a consequence, as would the
likely sequence of iterates. This should begin to give
some indication of the flexibility one has in creating
specialized pattern search methods since other modi-
fications that take advantage of knowledge about the
problem to be solved can also be incorporated into

the exploratory moves algorithm.

To ensure that we can say something substantive
about the quality of the solution produced by the
choice of columns from the generating matrix, we
must place the following two conditions on the con-
duct of the exploratory moves. First, the direction
of any step s used to construct a new iterate zpy1
must be defined by the pattern and its length must
be determined by Aypg; it is critical that the struc-
ture of the pattern be preserved. Second, if simple
decrease on the function value at the current iterate
can be found among any of the 2n trial steps defined
by ApF (the fixed portion of the generating matrix),
then the exploratory moves must produce a step sg
that also gives simple decrease on the function value
at the current iterate. In particular, f(zx + si) need
not be the minimum of f(zy 4+ o) for all 0 € ALF; s
only need satisfy f(zp + s5) < f(zr).

The point of this second restriction is more subtle.
We do not wish to force the exploratory moves algo-
rithm to examine all 2n steps defined by A F at ev-
ery iteration. For instance, it is possible to construct
examples for which an iteration of coordinate search
would be successful with at most n function values,
as shown in Figure 3. However, it is also possible
that for the same example f(27) < f(2p41) (Where
z? is as shown in Figure 4), but zZ, while part of
the core pattern for coordinate search, was not con-
sidered during the course of the exploratory moves.

On the other hand, we do not want to give up the
search prematurely just because improvement is not
found immediately. Thus in the “worst case” for co-

ordinate search, we must consider all 2n directions

Tr41

FIGURE 3: A parsimonious iteration

of coordinate search in IR?.
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FiGURE 4: An alternate possibility
for coordinate search in IRZ.

defined by the core matrix and its negative, as shown

in Figure 5.
2
Zy
x
1 k+1 1
z; 7 x;
2/
Ty

FIGURE 5: A “worst case” iteration
of coordinate search in IR?.

The question remains, what to do if the iteration
is unsuccessful? What if the exploratory moves al-
gorithm considers, at a minimum, the 2n steps de-
fined by Ay F without finding a step sp such that
flzr + sp) < f(zr)? In this case, we require that
the size of the step be reduced and we continue the
search at a new iteration, with a smaller step size.

There is some flexibility in the way that the step
length is updated from iteration to iteration, but
again certain restrictions must be satisfied (see [22]).
In fact, the multidirectional search algorithm of Den-
nis and Torczon also allows the step size to be in-
But, in
general, a very simple update algorithm (Algorithm

creased if an iteration has been successful.

2) is used. Here the critical point is that the size

of the step is reduced only if the exploratory moves



ALGORITHM 2. Updating Ay.

a) If f(zr41) = f(zg) then Apyq = %Ak.
b) If f(l‘k+1) < f(xk) then Ak+1 = A;.

algorithm could not produce a better iterate. If the
exploratory moves algorithm was successful, then the
size of the step remains the same (or may actually be

increased).

3. The Convergence Theory

We have tried to demonstrate, albeit with a very
simple example, that there is a great deal of flexibil-
ity for deriving pattern search methods within the re-
strictions imposed by the definition for pattern search
methods found in [22]. However, it is important to
stress that these restrictions are not arbitrary. The
goal is to try to define methods that are robust.

Within the numerical optimization community,
“robustness” is usually considered analogous to first-
order stationary point convergence. In other words,
the goal is not simply to find methods that produce
a sequence of iterates that can be shown to have an
accumulation point, but to say something stronger
about the accumulation points of the sequence. In
particular, the goal is to demonstrate that, at the
very least, the algorithm produces a sequence of iter-
ates satisfying both that f(xz41) < f(2r) and that

Jim [Vl = 0,

given some reasonable hypotheses on the function (for
instance, that f is bounded below). Such an algo-
rithm is considered to be a “globally convergent al-
gorithm,” by which is meant that the method is de-
signed to converge to a local minimizer of the function
from almost any starting point. The terminology is
somewhat unfortunate in that convergence to a global
minimizer of the function is not implied. However,
“locally convergent” is reserved by tradition for an-
other use [7].

The so-called global convergence theory for clas-
sical unconstrained minimization methods based on

Taylor’s series approximations, such as the method of

steepest-descent or Newton’s method, have been well-
studied and are well-understood. The challenge when
analyzing pattern search methods using a similar ap-
proach is that we have no explicit approximation of
the gradient with which to work.

As it turns out, one of the surprising results [10]
is that pattern search methods can be viewed as
gradient-related methods. Thus, some of the analysis
techniques made possible by the use of Taylor’s series
approximations can by applied. If we assume that
the function to be optimized is continuously differen-
tiable, even though no explicit approximation to the
directional derivative is constructed, it can be shown
[22] that the sequence of iterates satisfies both that
f(xr4+1) < f(zp) and that

limjnf V(20| = 0.

In other words, we can show weak first-order station-
ary point convergence for these methods. This weaker
result is not surprising given that we are working with
no explicit higher-order information about the func-
tion. Practically, this result means that the norm of
the gradient goes to zero. While this result is per-
haps interesting—and surprising—within the frame-
work of optimization theory, it is also important—
if less surprising—to practitioners. In particular, it
helps solidify the claim that pattern search methods
are consistently robust in practice.

Much about the structure imposed upon the pat-
tern search methods contributes to this analysis. The
goal here is not to review the details of the analysis

but to point out a few salient features.

3.1 Descent Methods
One of the first things to observe is the key role

played by the core matrix I' and its negative. If
[|Vf(zr)|| # 0, then we are guaranteed that at least
one of the directions defined by the fixed columns
F =[I' —T] of the generating matrix Cy, = [F' Aj] is
a descent direction. By this we mean that for at least
one s, € AyF, Vf(zx)Tspy > 0. This is why in the
“worst case” scenario demonstrated in Figure 5 we
may be required to poll all 2n directions; if we have
no luck finding decrease by looking at some subset of

directions, we force consideration of all the directions



defined by A F since we know that at least one of
these is necessarily a descent direction.

The interaction between the second restriction on
the exploratory moves algorithm and the algorithm
for updating the step length Ay also plays a criti-
cal role: by halving the length of the step Ay when
no decrease is found among any of the directions de-
fined by Ay F', we introduce a so-called backtracking
mechanism. This guarantees that in a finite number
of iterations we will necessarily find a Ay for which at
least one of the steps s € A F is guaranteed to sat-
isfy the simple decrease condition f(zg+sx) < f(zg).

3.2 Gradient-Related Methods

The second critical role played by the core matrix

I’ and its negative, and the reason that they remain
fized columns of the generating matrix across all iter-
ations of the pattern search algorithm, is that it al-
lows us to say something stronger about the quality
of the descent direction we are guaranteed exists. In
particular, it gives us a nonzero uniform lower bound
on the cosine of the angle between the direction of
descent contained in F' and the (negative) gradient
at z whenever Vf(z) # 0. We suppress many of
the details in this discussion (see [22]), but in effect
it can be shown that if # is the angle between the

gradient and a guaranteed direction of descent, then
1

k(T)/n’

where £(T') is the condition number of the core matrix

r.

For the simple examples we have shown, the core

|cos @] >

matrix ' is the identity matrix, so that &(T') = 1.
Thus, for the coordinate search algorithm we have

presented, it can be shown [22] that
1
Vi

When n = 2, even in the worst case (shown in Figure

|cos @] >

5), at least one of the search directions defined by
AP must be within 45° of the negative gradient, a
claim easily verified by inspection for this example.
Note that this points to two features that explain
much about the behavior of pattern search methods.
First, we should be careful in our choice of core ma-

trices; as the condition number of the core matrix

increases, our bound on the angle between the search
direction and the gradient deteriorates, which can
lead to very poor progress during the course of the
exploratory moves. Second, this bound also deteri-
orates as the dimension n of the problem increases.
This certainly would explain, at least in part, the
long-standing observation that the effectiveness of
pattern search methods tends to decrease as the di-
mension of the problem increases [1].

We close by noting that this lower bound on the co-
sine of the angle between our guaranteed direction of
descent contained in F' and the gradient at z; when-
ever Vf(zr) # 0 is what allows us to claim that
pattern search methods are gradient-related, even
though we have no explicit representation of the gra-
dient. This means that we can use at least some of
the analytic tools that have been developed for the
classical optimization methods based on Taylor’s se-
ries expansions to help develop a global convergence

theory for pattern search methods.

3.3 Adaptive Grid Search Methods

The third key observation concerning pattern

search methods, and the point at which the analy-
sis takes a very different turn from that developed
for classical optimization methods, is that pattern
search methods could be considered to be adaptive
grid search algorithms. The restrictions, to which we
have alluded without detailed comments, on the form
of the generating matrix C}, the restrictions on the
exploratory moves algorithm, and the algorithm for
updating the step length Ay are all designed to pre-
serve the critical algebraic structure underlying the
iterates.

In essence, the pattern used to drive the search
conforms to an underlying grid structure. The goal
is to sample the function at only a very small subset
of the points on this grid, and to know when it is
necessary to refine this grid for the search to make
further progress.

We return to our simple example, coordinate search
for n = 2. The pattern shown in Figure 1 could be
seen as being a small part of a much larger grid, as
shown in Figure 6.

Now let us consider what happens in a single par-

simonious iteration (shown in Figure 3) as it affects



FiGURE 6: The pattern for coor-
dinate search, in IR?, as part of a
larger grid.

the number of points in the grid at which we must

evaluate the function, as shown in Figure 7.

. . . . .
. . . TE+1 .
. . Zp xi L]
. . . . .
. . . . .

FIGURE 7: Iteration k.

Assume that at the next iteration, we encounter
the so-called “worst case” (shown in Figure 5). The
points that are sampled are shown in Figure 8. Notice
that although we are now on a subsequent iteration,
iteration k + 1, we are sampling points on the same
grid.

Now the algorithm for updating the step length
comes in to play, by reducing the size of the mesh
with the goal of making further progress in the search.

However, the rules governing the generating matrix,

2
Tr+1

) LTk+1
. . Ilo oml
k+1 LE4+2 k+1
. . o o 9 .
Tk Ik+1
L] L] L] L] L]
L] L] L] L] L]

FIGURE 8: Iteration k + 1.

as well as the reduction factor for the step size, ensure
that the refined grid is consistent with the grid used
in earlier iterations, as seen in Figure 9. And, again,
the goal is to sample only a small subset of the total

number of points on the new, refined, grid.

. . . . . . o, 2e .
Tht1
. . . . . . . . .
) LTk+1
. . . . Ilo . [} . O$1
k+1 Lk+42 k+1
. . . . . . . . .
O O O O o O o 2 O
Tk Ik+1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

FIGURE 9: The grid for iteration k& + 2.

Thus, we consider pattern search methods to be a
form of adaptive grid search methods, where we mean
“adaptive” in two senses. First, that the exploratory
moves algorithm associated with any particular pat-
tern search method decides, adaptively, which subset
of points on the current grid needs to be sampled at
any given iteration. Second, “adaptive” in the sense

that the pattern search methods have a mechanism



for deciding when the mesh size of the grid needs to
be reduced in order for the search to make further

progress.

4. Using Pattern Search Methods

We believe that the recent development in the anal-
ysis of pattern search methods makes it possible to
substantiate suggestions on when and how to use pat-
tern search methods. Of course, in our experience
most people will use them whenever possible. While
our examples centered around coordinate search, be-
cause it is the simplest and probably best-known of
the pattern search methods, our comments on the ef-
fectiveness of pattern search methods are based on
our extensive use of the more effective multidirec-
tional search algorithm and its parallel variants [8,
20, 21, 22].

We begin by noting that there is no question but
that higher-order methods, when they are applicable,
are generally more efficient in their use of function
values than pattern search methods. However, when
the derivative is unavailable, difficult or expensive
to obtain, or is likely to be unreliable, higher-order
methods, which typically construct a single search
direction based on the gradient, can get into diffi-
culties. The advantage of pattern search methods is
that while they are gradient-related, they do not rely
explicitly on the gradient and they consider multiple
directions. This may not be as efficient, but it can be
much more reliable in such settings [9].

Pattern search methods can also be used for non-
differentiable functions [13]. The global convergence
theory can be extended to handle problems of this
sort, but the resulting conclusion is further weakened.
(One can show that any accumulation point must be
either a point where the norm of the gradient is zero,
or a point where the function is nondifferentiable, or,
for technical reasons, a point where the gradient ex-
ists but is not continuous.)

Another feature of pattern search methods is that
because they search in multiple directions, some of
which may be up-hill directions, they can be useful
in situations where there are a great many local min-
imizers [16]. While we can give no theoretical justifi-

cation for this claim, this is a useful feature of pattern

search methods that distinguishes them from meth-
ods based on higher-order information.

Pattern search methods also make useful ex-
ploratory tools, even when it is possible to obtain
higher-order information. Because these methods re-
quire so little information about the function, they
are easy to program and thus can be applied to prob-
lems quickly to obtain preliminary results. If the an-
swer they produce is satisfactory, there may be no
need to use a higher-order method. If a better (per-
haps more accurate) solution is required, the solution
obtained by using a pattern search method can be
used to provide a good initial guess (a “hot start”)
to a higher-order method.

Our more recent efforts have focussed on develop-
ing effective extensions to the multidirectional search
algorithm and its parallel variants [15] and monitor-
ing the applications of these extensions to optimiza-
tion problems based on engineering simulations [11,
12]. We are also investigating the use of the theory to
guide the development of additional robust variants
to handle constraints.

Finally, we are intrigued by the possibility of us-
ing the grid structure which underlies the pattern
search methods to develop variants of the multidirec-
tional search/parallel direct search algorithms that
can handle nonlinear optimization problems with a
While we

have only begun a preliminary investigation, we be-

mix of continuous and discrete variables.

lieve that such extensions would further enhance the
usefulness of pattern search methods in the context

of solving MDO problems.
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