A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN PATTERN SEARCH
ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE
BOUNDS *
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Abstract. We give a pattern search method for nonlinearly constrained optimization that is an adaption
of a bound-constrained augmented Lagrangian method first proposed by Conn, Gould, and Toint. In the
pattern search adaptation we solve the bound-constrained subproblem approximately using a pattern search
method. The stopping criterion proposed by Conn, Gould, and Toint for the solution of the subproblem
requires explicit knowledge of derivatives. Such information is presumed absent in pattern search methods;
however, we show how we can replace this with a stopping criterion based on the pattern size in a way
that preserves the convergence properties of the original algorithm. In this way we proceed by successive,
inexact, bound constrained minimization without knowing exactly how inexact the minimization is. So far

as we know, this is the first provably convergent direct search method for general nonlinear programming.
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1. Introduction. In this paper we consider the extension of pattern search methods to nonlinearly
constrained optimization problems of the form

minimize  f(z)
(1.1) subject to ¢(z) =0
(<z<u,

where f: IR" — IR and ¢(z) = (c1(x), -+, cm(z)). We allow the possibility that some of the variables are
unbounded either above or below by permitting £;,u; = +oo, j € {1,---,n}. This formulation assumes
that any general inequality constraints have been converted into equality constraints by the introduction of
nonnegative slack variables, leaving bounds as the only explicit inequality constraints.

The pattern search method presented here is an adaptation of an augmented Lagrangian method due
to Conn, Gould, and Toint [4], which is the basis for the subroutine AUGLG in the LANCELOT optimization
package [5]. The method of Conn, Gould, and Toint involves successive bound constrained minimization of
an augmented Lagrangian. Since the analysis of pattern search methods has recently been extended to bound
constrained minimization [17, 18], an adaptation of the augmented Lagrangian method of Conn, Gould, and
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Toint to pattern search naturally suggests itself. Furthermore, the multiplier update of Algorithm 1 in [4]
does not involve information about derivatives of the objective or constraints, so the augmented Lagrangian
approach is consistent with the derivative-free nature of pattern search algorithms.

Since there exist broad classes of pattern search methods for unconstrained [16, 28] and bound con-
strained minimization [17, 18], it seems to us natural to first extend pattern search methods to nonlinearly
constrained minimization via algorithms that proceed by successive unconstrained or bound constrained
minimization, such as the augmented Lagrangian method we discuss here. In the absence of information
about derivatives of the objective and constraints, it is difficult to design pattern search algorithms for gen-
eral nonlinearly constrained minimization that produce only feasible directions or feasible iterates. This is
due to the fact that a pattern in a pattern search algorithm would need to include a sufficiently rich set
of search directions to capture any feasible improvement in the objective. When nonlinear constraints are
present, it is not clear how to design such a pattern without first-order information.

We show that despite the absence of an explicit estimation of any derivatives (a characteristic of pattern
search methods), our pattern search augmented Lagrangian approach exhibits all of the first-order conver-
gence properties of the original algorithm of Conn, Gould, and Toint. This at first is surprising, since the
original algorithm allows its subproblems to be solved approximately, and the stopping criterion for the
solution of the subproblems is based on the magnitude of a measure of first-order stationarity for bound
constrained minimization. This information is not explicitly available in a direct search method. However, as
we discuss in Section 5.1, there is a correlation between the size of the pattern in bound constrained pattern
search and the amount of local feasible descent. Using this correlation we are able to establish convergence
to Karush-Kuhn—Tucker points of (1.1) even without explicit knowledge of derivatives. That is, we are able
to proceed by successive, inexact minimization of the augmented Lagrangian via pattern search methods,
even without knowing exactly how inexact the minimization is.

This is the main contribution of the work presented here. Otherwise, the extension of pattern search
to constrained minimization by means of the augmented Lagrangian approach of Conn, Gould, and Toint is
straightforward, due to the strength and generality of the convergence analysis presented in [4].

The question of treating general nonlinear constraints with direct search minimization algorithms has
a long history, beginning with the original work on direct search methods. Rosenbrock, in [24], proposed
treating constraints using his rotating directions method by redefining the objective near the boundary of
the feasible region in a way that would tend to keep the iterates feasible, a form of penalization. Similar ideas
for modifying the objective in the case of bound constraints are discussed by Spendley, Hext, and Himsworth
[26] and Nelder and Mead [21] in connection with their simplex-based methods. In these approaches the
objective is given a suitably large value (in the case of minimization) at all infeasible points.

More systematic approaches to penalization have also appeared. The treatment of inequality constraints
via exact, nonsmooth penalization (though not by that name) appears as early as the work of Hooke and
Jeeves [12]. More recently, Kearsley and Glowinski [10, 13] have applied pattern search methods with exact,
nonsmooth penalization to equality constrained problems arising in control. Weisman’s MINIMAL algorithm
[11] applies the pattern search algorithm of Hooke and Jeeves to a nonsmooth quadratic penalty function and
incorporates an element of random search. Davies and Swann [6], in connection with applying the pattern
search method of Hooke and Jeeves to constrained optimization, recommend the use of the reciprocal barrier
method of Carroll [3, §].

A direct search method for constrained minimization that has proven popular in application is the Com-
plex method of Box [2], which was originally developed to address difficulties encountered with Rosenbrock’s



method. In this algorithm, the objective is sampled at a broader set of points than in the simplex-based
methods to try to avoid premature termination. There is also an element of random search involved. The
ACSIM algorithm of Dixon [7] combines ideas from the simplex method of Nelder and Mead and the Complex

method with elements of hem-stitching and quadratic modeling to accelerate convergence.

In the special case of bound constraints, Spendley also suggested the expedient of simply setting to
the corresponding bound any variable that would otherwise become infeasible when applying the simplex
algorithm of Nelder and Mead [25]. In [14], Keefer proposed a hybrid, feasible iterates algorithm for bound
constrained minimization that uses the algorithm of Nelder and Mead for variables suitably far from their
bounds and the method of Hooke and Jeeves for variables that are on or near one of their bounds, since the
pattern in the algorithm of Hooke and Jeeves conforms in a natural way to the boundary of the feasible region.
In the case of linear constraints there is the algorithm of May [19], which is an extension of Mifflin’s derivative-
free unconstrained minimization method in [20]. May’s algorithm also takes into account the particular
geometry of the feasible region. May’s algorithm is notable because it is accompanied by convergence

analysis results; however, it is not a direct search method insofar as it does rely on a model of the objective.

Others have proposed modifications of the method of Hooke and Jeeves along the lines of feasible
directions algorithms. These methods involve a limited calculation of sensitivity information to compute
feasible directions at the boundary of the feasible region if the algorithm appears to have stalled. Klingman
and Himmelblau [15] give an algorithm with a simple construction of a suitable feasible direction. The
method of Glass and Cooper [9] is more sophisticated, and computes a new search direction by solving a
linear programming problem involving a linear approximation of the objective and constraints, just as one

would in a derivative-based feasible directions algorithm.

Finally, we note the flexible tolerance method of Paviani and Himmelblau [11, 22]. This algorithm, based
on the method of Nelder and Mead, alternatively attempts to reduce the objective and constraint violation,

depending on the extent to which the iterates are infeasible.

These proposals for direct search algorithms for constrained minimization have often proven effective
in practice, but have not been accompanied by any convergence analysis. In historical context, this is not
surprising. The early development of direct search methods (particularly the work cited here) predates even
the first global convergence analysis of practical unconstrained minimization algorithms using the Armijo—
Goldstein—Wolfe conditions. Instead, in the 1960s the emphasis in optimization was the development of
new computational methods, not on proving theoretical properties. And, in fact, some of the heuristics
in the approaches discussed above do not always work in practice. For instance, see Box’s comments on
Rosenbrock’s method in [2], and Keefer’s comments on Box’s method in [14].

Nevertheless, some of the heuristics proposed in this early research on direct search methods can be
placed on firm theoretical grounds. For instance, Keefer’s observation that the pattern search method of
Hooke and Jeeves works particularly well for bound constrained problems can be explained analytically [17].
In this paper we apply analytical and algorithmic advances since the original development of direct search
methods to construct a direct search method for general nonlinear programming with provable first-order
global convergence properties.

2. The augmented Lagrangian method of Conn, Gould, and Toint. We base our augmented
Lagrangian pattern search method on Algorithm 1 of [4]. To facilitate comparison of the pattern search
approach with the original algorithm, we adhere to the notation of [4] throughout.



The augmented Lagrangian in [4] is

m m
1
(2.1) ®(z;A,8, 1) = f(z) + ?:1 Aici(z) + % ;:1 siici(x)?.
The vector A = (A1, -, A\)? is the Lagrange multiplier estimate for the equality constraints, u is the penalty

parameter, and the entries s;; of the diagonal matrix S are positive weights. The equality constraints of (1.1)
are incorporated in the augmented Lagrangian & while the simple bounds are left explicit. For a particular

choice of multiplier estimate A*), penalty parameter p(®), and scaling S*), we define
34 (2) = B(a; A, 50, (4.
Following [4], unless otherwise indicated by an explicit argument, V. ®®*) denotes
Vo 8* = v, 8" (")) = v, &(z0); \#) gk (k)

for the iterate z(*).
Conn, Gould, and Toint define the first-order Lagrange multiplier update to be

(2.2) Az, A, S, 1) = X+ Se(z)/ .

This is the Hestenes—Powell multiplier update for the augmented Lagrangian (2.1). For the purposes of a
pattern search augmented Lagrangian approach, which assumes no explicit knowledge of derivative informa-
tion, one appears to have no choice other than some variant of the Hestenes—Powell multiplier update, since
other multiplier update formulae (such as those discussed in [1, 27]) require information about derivatives.
We denote by P the projection onto the set B={z | £ <z <wu }; P is defined component-wise by

x; otherwise.
Given = € B and a vector v, we define
P(z,v) =z — Plz — v].

The geometrical meaning of P(z,v) is illustrated in Figure 2.1. If z is interior to B, then P(z,v) = 0 if and
only if v = 0, while if z is on the boundary of B, then P(x,v) = 0 if and only if v is normal to B (in the

sense of convex analysis).

T —v

v iP[w—v]
z — Pz —v]

o = P (z,v)

F1g. 2.1. An ezample of P(-,-).



At iteration k of the original augmented Lagrangian algorithm described in [4], we approximately solve

the subproblem

minimize &) ()

(2.3) .
subject to £ <z <wu.

The degree to which this subproblem must be solved is given by
(2.4) | P@®), v, ") || <w®),

where w(*) is updated at each iteration k. (Unless otherwise noted, we use || - || to denote the Euclidean
vector norm or its induced matrix norm.)

We adapt Algorithm 1 in [4] to pattern search by solving the bound constrained subproblem (2.3) using
a bound constrained pattern search method. However, pattern search methods do not have recourse to
derivatives or explicit approximations thereof.

For that reason we replace (2.4) with a new stopping criterion that is based on the size of the pattern.
As we discuss in Section 5, we retain the convergence properties of the original Conn, Gould and Toint
algorithm because the size of the pattern and the stationarity condition (2.4) are correlated, even though we
do not have explicit control of || P(z(®), V,&®*)) ||.

3. Bound constrained pattern search algorithms. We next review relevant features of the general

pattern search method for the bound constrained problem

minimize F(z)

(3.1) .
subject to £ <z <w.

We concentrate only on features that we need for the results that follow. For a full discussion, see [17, 18].

3.1. The bound constrained pattern search method. Fig. 3.1 outlines the generalized pattern
search method for minimization with bound constraints. To define a particular pattern search method, we
must specify the pattern (a set of possible trial directions) II'/), the bound constrained exploratory moves
algorithm used to find a feasible step s(), and the algorithms for updating II¥) and A(). The options and

conditions accompanying these choices are discussed in [17, 18].

Let (9 € B and A(® > 0 be given.

For j =0,1,---,
a) Compute F(z(9).
b) Determine a step s() using a bound constrained exploratory moves algorithm.
c) If F(z() 4+ sU)) < F(2\9)), then U+ = 20) 4 50). Otherwise 20+ = 20,
d) Update I and AWY).

F1G. 3.1. The Generalized Pattern Search Method for Bound Constrained Problems.

We make use of the following observations.
1. At iteration j, the step s¢) must be in the set AT and 2) + s(9) must be feasible. We allow
the possibility s(¥) = 0.
2. The pattern II) contains a distinguished subset of trial directions known as the core pattern, which
we denote by I'¥). The core pattern is constructed to ensure that if z(¥) is not a constrained

stationary point of (3.1), then at least one element p in ' is a feasible direction of descent. The



elements of I'¥) are required to be uniformly bounded in norm: there exists d*, independent of j,
such that || p || < d* for all p € TU),

3. We may accept any step s/) that yields simple decrease in F.

4. If

(3.2) min{ F(z") +5) | se€ AT, 20) 4 5e B} < F(2),

then the step s¢) returned by the bound constrained exploratory moves algorithm must also produce
simple decrease on F(z(9)). (Note, though, that s) need not be an element of AUT() )
5. The update of Al9) depends on whether or not the step s\ satisfied the simple decrease criterion.

3.2. The update of A, The conditions under which we allow A to be reduced are at the heart of
the results that follow. The aim of the update of Al is to force a strict reduction in F. An iteration with
F(z\9) 4 s0)) < F(2()) is successful; otherwise, the iteration is unsuccessful. We cannot update AY) in an
arbitrary manner, as discussed in [17, 18]. However, for the purposes of analyzing the augmented Lagrangian
pattern search algorithm the update of AU can be summarized as

(3.3) If F(z\9) +s0)) < F(z(), then AU+ > AW),
(3.4) If F(z\9) +s0)) > F(z(), then AUH) < AW,

If an iteration is successful it may be possible to increase the scale factor A, but AW is not allowed to

decrease. If an iteration is unsuccessful, the scale factor A must be decreased.

4. The pattern search augmented Lagrangian method. We now state the augmented Lagrangian
pattern search algorithm. At iteration k in the outermost loop of the algorithm, we denote by {z(¥))} the
sequence of iterates produced in the solution of (2.3) via a bound constrained pattern search algorithm.
Thus, for a given value of k, we look for an approximate solution of the subproblem (2.3) starting from
(k9 = 2(k) and proceed until we find j* such that z(%77) solves (2.3) to an acceptable degree. We modify
the original algorithm by replacing the stopping criterion (2.4) for the solution of the subproblems with one
that is suitable for pattern search while still allowing us to use the analysis from [4].

In order to relate the stopping criterion in the pattern search solution of the subproblems to the multiplier

estimates and the penalty parameter, we introduce the function
O pm) = L+ A[+1/pw)~"

We note that any function §(\, u) such that §(\, ) = O((|| A || +1/p)~1) as (|| A || + 1/u) — oo suffices for
the purposes of proving convergence.

Our algorithm closely resembles Algorithm 1 in [4]. We use boxes to highlight the elements that differ.

Step 0 [Initialization]. An initial vector of Lagrange multiplier estimates A(*) is given. The positive
constants 19, tg, wo, 7 < 1,71 < 1, , e <€ 1, a,, B, 0y, and By are specified. The diagonal matrices
S1 and Sy, for which 0 < S 1< 8, < o0, are given (the inequalities are to be understood element-wise
for the diagonal elements). Set u(®) = ug, a(® = min(u(®,y1), W@ = we(a®)2= |50 = A u(0)w©) |
7® = 5o(af9)n and k = 0.

Step 1 [Inner iteration]. Define a scaling matrix S() for which Sfl < S < 8,



Set (k0 = 2%} Apply a bound constrained pattern search method to

minimize k) ()

(4.1) .
subject to £ <z <w

to find the first iteration j* for which the scale factor is sufficiently small; that is,

(4.2) AT < 50,

Set m(k) = g;(kaj*)_

It

I e(@®) | <,

execute Step 2. Otherwise, execute Step 3.

Step 2 [Test for convergence and update Lagrange multiplier estimates]. If 8k < §* | and
| c(z®) || < 14, stop. Otherwise, set
AE+D) — X(m(k),/\(k),s(k),p(k))
plkt) = (k)

al#1) = min(u D), 5,)

RSO CINCEIN

Sk+1) — H(A(k+1),u(k+1)) w(k+1)

kD) = (8 (k1) )8

increment k by one and go to Step 1.
Step 3 [Reduce the penalty parameter]. Set
AE+D — \(B)
pk D) = 7y (F)

oD = min(u+1) 5,

w(k+1) = wp (a(k+1) )aw

SCk+1) — 0(/\(k+l)aﬂ(k+l)) w(k+1)

Y = o (alFHD)en,

increment k by one and go to Step 1.

We have replaced the stopping criterion (2.4) for the inner iteration of Algorithm 1 in [4] with (4.2),
which is based on the scale factor A, because we do not assume explicit information about the derivatives.
The remaining modifications to Algorithm 1 in [4] concern the management of the sequence {§(*)}, which

controls the stopping criterion we have introduced.



5. Convergence analysis. We now discuss the convergence properties of the augmented Lagrangian
pattern search algorithm. As we shall see, altering the original algorithm by solving the bound constrained
subproblem via pattern search leaves the convergence properties of the original algorithm almost entirely
unchanged.

In [4], Conn, Gould, and Toint call a component of z(*) floating if
U < :cgk) - (Vwé(k))i < u;.
For a convergent subsequence {;c(k)}, k € K, with limit point £* they define the index set
L={i] wgk) are floating for all k € K sufficiently large and ¢; < 2} < u; },

and let A(z) denote the corresponding columns of the Jacobian of ¢(z), where A(z) is the entire Jacobian
of ¢(x).

The following assumptions are made in [4].

AS1. The functions f(z) and c(x) are twice continuously differentiable for all x € B.

AS2. The iterates {x®} considered lie within a closed, bounded domain Q.

AS3. The matriz /i(x*) has column rank no smaller than m at any limit point x* of the sequences

{z®)} considered in this paper.

In addition, in order to be assured that a bound constrained pattern search algorithm applied to the
subproblem (4.1) will find an iterate satisfying (4.2), we assume the following.

PS1. For a given k, the set BN{z | ®® (z) < ®®)(2(*0) } is compact.
That is, we assume compactness of the set of z € B for which the augmented Lagrangian is no larger than
the value of the augmented Lagrangian at the point at which we begin the solution of the subproblem. Under
hypothesis (PS1), we are assured that in the inner iteration (the pattern search minimization of the bound
constrained augmented Lagrangian),

lim inf A =
J—r+too

(see [17, 18]). Thus the termination criterion (4.2) will eventually be satisfied, the pattern search solution of
the augmented Lagrangian subproblem will halt, and the overall iteration of the pattern search augmented
Lagrangian algorithm is well-defined.

We also assume the following uniform bound.

PS2. There exists d* such that for all k and j, we have || p || < d* for all p € T(*:3),
This uniformity in the pattern search algorithms used in the successive minimization of the augmented
Lagrangian is not at all restrictive. For instance, one could simply choose for all (k, j) a single set T.

5.1. The relationship between the pattern size and stationarity. The following result is the key
to analyzing the augmented Lagrangian pattern search method. The important observation in connection
with the stopping criterion (4.2) is that at unsuccessful iterations of the pattern search solution of (4.1) there
is a correlation between A(F3) and the stationarity of the augmented Lagrangian. The rules for updating
A*:9)  summarized in (3.3) and (3.4), mean that A*9) can drop below %) only at an unsuccessful iteration
of the pattern search. Thus (4.2) can only occur at an unsuccessful iteration of the solution of the subproblem.

At an unsuccessful iteration we do not find an acceptable step in A T*:5): that is,

O (kD) 4 5) > @K (kD)) for all s € ARNTEI) with (2*7) + 5) € B.



Now, the set of steps s for s € A®IDT(7) includes a set of generators for the tangent cone of the bound

constrained feasible region [17, 18]. The fact that none of the steps s yield a feasible trial point with a smaller

value of ®*) tells us something about the size of || P(z(®), V,®®)) ||. Proposition 5.1 makes this precise,

and shows that the weaker condition (4.2) we have introduced guarantees that (2.4) will be satisfied.
PROPOSITION 5.1. There ezists Cs.1, independent of k, such that

| P(z,V,8®) || < Cs.1 w™®

for all iterations k of the pattern search augmented Lagrangian method.
Proof. Given k, we know that at the end of Step 1, the inner iteration, z®) = £(*3") for some j*. For

convenience, let
¢*) = P(z® v,8®)) = p(z*77) v,&®) (z(*77)).

First suppose

| g®77) ||
PR

(5.1) AT >

Then (5.1), (4.2), and the rule for updating 6(*) in either Step 2 or Step 3 give us
%) || < d*A®I) < @ 6®) < g o)

and thus

(5-2) I g®) || <nZdrw®.

On the other hand, suppose

1¢*97 Jlo

Ak
< e

The proof of Proposition 5.2 in [17] shows that if A7) < || ¢(¥37) ||, /d*, there is a step s € AFI)I(k:I7)
such that (*7") + s € B and

(5.3) Vo @@ (@9 Ts < —n % || ¢®I ||| 5 ||
Because x(¥7) is an unsuccessful iterate, we know from (3.2) that
(5.4) 0 < W (zk3") 4 5) — k) (k7))
At the same time we have
(5.5) d*) (z*:37) 4 ) — ) (z(*37)) = v, d®) (£)Ts

for some ¢ in the line segment (z(%77) z(k") 4 5) connecting z(¥7") and 2(¥7") + 5. Thus from (5.4), (5.5),
and (5.3) we obtain

0 < ®® £k 4 ) — k) (k7))
=V, ®) (2N Ts 4 (v, (£) — V,&® (27T
<077 [ BV ||| s || + | Vo B () = Vo 8E) ) ||| 5 ],



which yields
(5.6) %97 || <n¥|| V2 2®(€) - v, @M @*37) ||
Applying the mean-value theorem again, for some ¢ € (") £) we have
V.0 (€) = v, oW (z7) = V3,0 (() (€ - 27),
o)
5.7 V2@ () = Vo8B (™) | < (| V58P Q) 11€ =™ || < | V5,29 1] s I

Now,
V2,80(0) = V2 (0) + AP VEl0) + 5 (Te(0SVAld) + Y- sues() T Q).
=1 i=1

By construction, w® — 0, so 6*) — 0, so by (AS2), ¢ lies in a compact subset that is independent of k.
Furthermore, the bound S®*) < S, is independent of k. Thus we can find M, independent of k, such that

1
I Vie@® (Ol < M+M| AP +MoGy = M/B(A™M), ™).
Returning to (5.7) we have
(5.8) | Ve (€) — Vad® (@37 || < (M/0O®, i) [ .

Thus from (5.6), (5.8), the fact that s € A%7)T#:37) and (4.2) we have

1g®3) || < nF[| Vo@® () = Vo@® (ak) |
<t (M/OO®, u8)) || s |

<ntd* (M/g()\(k),u(k))) INCER)

IA

nd* (M/H(A(’“), u<’“>)) 50
Finally, the rule for updating §(¥) in either Step 2 or Step 3 is 8 = (A*) 1(#))w(*¥)  whence
(5.9 Iq® || < n2d*Mw®.

Combining (5.2) and (5.9) yields the proposition. O

5.2. Convergence results. Proposition 5.1 means that the asymptotic behavior of | P(z*), V,®®)) ||
in the augmented Lagrangian pattern search algorithm is like that of the same quantity in the original algo-
rithm. This, in turn, allows us to piggy-back the convergence analysis for the augmented Lagrangian pattern
search algorithm on that for the original augmented Lagrangian algorithm in [4]. Because of Proposition 5.1
the original proofs of all these results still hold.

The first convergence result corresponds to Theorem 4.4 and Lemma 4.3 in [4]. Let

gr(z; X)) = Vf(z) + Z AiVei(z).

10



THEOREM 5.2. Assume that (AS1) holds. Let z* be any limit point of the sequence {z(®)} generated by
the augmented Lagrangian pattern search algorithm for which (AS2) and (AS3) hold and let K be the set of
indices of an infinite subsequence of the ) whose limit is x*. Then

(i) c(z*) = 0.

(i) =* is a Karush-Kuhn-Tucker point (first-order stationary point) for the problem (1.1), A\* is the
corresponding vector of Lagrange multipliers, and the sequence {X(:U(’“),)\(k),S (k) u(k))} converges to A\* for
ke K.

(i1i) There are positive constants a1, a2, s1 and an integer ko such that
[ X® 2B, 50 1E) — 3" || < a1™ + as| ) — 2 |
and
I e ®) 1| < 51 (@e® ) +u®) AB X [+ asp®] 28 - 2* )

for all k > ko, (k € K).

(i) The gradients V,®%) converge to gr,(x*;\*) for k € K.

As in [4], under additional assumptions we obtain stronger results. Following [4], if J; and J; are any
index sets, and Hy(2*,A*) is the Hessian of the Lagrangian, then Hf (z*, A*)[s, 7, is the matrix formed by
taking the rows and columns of Hy,(z*,\*) indexed by J; and J, respectively, while A(2*)s,) is the matrix
formed by taking the columns of A(z*) indexed by J;. We then make the following assumptions.

AS4. The second derivatives of the functions f(z) and the ¢;(x) are Lipschitz continuous at all points
within €.
AS5. Suppose that (z*,\*) is a Karush-Kuhn-Tucker point for the problem (1.1) and that

Ji={i] (g@;X))i=0and {; <z} <w;}
Jo={i | (gr(z*;X*)); =0 and (z] =¥¢; or x} = u;) }.

Then we assume that the matriz

Hr(z*, X)), (At

is nonsingular for all sets J, where J is any set made up from the union of J1 and any subset of Ja.

The next result from [4], which also holds for the augmented Lagrangian pattern search algorithm, is
Lemma 5.1. This result relates the convergence of the iterates to the error in the multipliers, a relationship
characteristic of augmented Lagrangian methods [1, 27]. Again, the proof in [4] holds for the pattern search
variant because of Proposition 5.1.

LEMMA 5.3. Suppose that (AS1) holds. Let {x(k)} C B, k € K, be a subsequence which converges to
the Karush-Kuhn-Tucker point x* for which (AS2), (AS4), and (AS5) hold, and let \* be the corresponding
vector of Lagrange multipliers. Assume that {\®)}, k € K, is any sequence of vectors, that {S®)}, k € K,
is any sequence of diagonal matrices satisfying 0 < Sy < S*) < 8y < 0o, and that {u®}, k € K, form
a nonincreasing sequence of positive scalars, so that the product p® || X*) — X* || converges to zero as k
increases. Now, suppose further that

I p(m(k),qu)(k)) | < w(k),
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where the w'®) are positive scalar parameters which converge to zero as k € K increases. Then there are

positive constants i, as, a4, a5, ag, and s; and an integer value ko so that if u(kf’) < T then

(5.10) [ 2®) —2* || < agw™® +agu® || A® — x|

(| Xz® AR ) By % || < asw® + agu® || AB) — X* ||
and
(5.11) [l ez®) || < s1(asw™ u® + (® + ag (™)) A® — 1% )

for all k > ko, (k € K).
The following is Corollary 5.2 in [4].
COROLLARY 5.4. Suppose that the conditions of Lemma 5.3 hold and that NEFD) g any Lagrange

multiplier estimate for which
| AFD — 2 || < agel| 2% — 27 || + @170 ®

for some positive constants aig and air and all k € K sufficiently large. Then there are positive constants

T, a3, a4, as, ag, s1 and an integer value ko so that if p*o) < 7 then (5.10),
| AETD — X" || < asw® + agu® | A® — A" ||,

and (5.11) hold for all k > ko, (k € K).

We also inherit the following result indicating that we may generally expect the penalty parameter to
remain bounded away from zero. This is Theorem 5.3 in [4]. Taken together with the convergence of the
multiplier estimates, this means that the stopping tolerance for the inexact minimization of the augmented
Lagrangian is decreasing at the same rate as in the original algorithm. However, in Section 6 of [4] the
authors show that in the case of nonunique limit points one can have p(¥) — 0, in which case the stopping
tolerance 6% decreases more like (u(*))2.

THEOREM 5.5. Suppose that the iterates {x(’“)} of the augmented Lagrangian pattern search algorithm
converge to the single limit point x*, that (AS1), (AS2), (AS4), and (AS5) hold, and that o, and B, satisfy
an < min(1,a,) and B, < min(1,B,). Then there is a constant yu > 0 such that p*) > u for all k.

The proof of Theorem 5.5 makes use of the fact that || P(z®), V,®®) | = O(w®)), whereas the proofs
of the preceding convergence results require only that

| P@™®),v,8®) || = 0.

Finally, we have the following result on the rate of convergence of the outer iteration, corresponding to
Theorem 5.5 in [4].

THEOREM 5.6. Under the assumptions of Theorem 5.5, the iterates (¥) and the Lagrange multiplier
estimates \¥) of the augmented Lagrangian pattern search algorithm are at least R-linearly convergent with
R-factor at most [i™*(Pe:Bn) where fi = min[y1, u] and where p is the smallest value of the penalty parameter

generated by the algorithm in question.
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6. Application to inequality constrained minimization. Special consideration is due to the gen-

eral problem

minimize

f(z
(6.1) subject to )
z

I/\ I/\v

g(x
£<

converted into the form (1.1) via the introduction of nonnegative slack variables:

minimize f(z)
6.2) subject to g(z)+2=0
<z<u
220

The augmented Lagrangian associated with (6.2) is
(6.3) B(x, A, S, p) = f(2) + AT (g(2) +2) + o an 9i(z) + )%

Explicit equality constraints may also be present in (6.1); we ignore them here for brevity.

The introduction of slacks increases the dimension of the bound constrained subproblem that we must
solve at each outer iteration. Unfortunately, increases in dimension usually cause a degradation in per-
formance for pattern search methods. We can avoid this increase in dimension because of the simple way
in which the slacks z enter into (6.3). One approach [1, 23] is to note that given z, we can minimize
®(z,2; M\, S, 1) explicitly in z for z > 0. This leads to a subproblem in z alone:

minimize  ®(z,2(z); A\, S, u)
subject to {<z<u,

where
B(a,2(@) A S.p) = F@) + 5 Y o (max(0,h+ 2gi(a)* - XD,

The multiplier update formula (2.2) is also modified:
X'i(:l;.; )‘7 S) /"’) = max(O, )‘l + SiiCi(.fU)//J/), i= 17 s, M.

See [1] for further discussion. The reduced augmented Lagrangian ®(z,z(z);A, S, ) has Lipschitz first
derivatives. If one were using a quasi-Newton method for the minimization of the augmented Lagrangian
one might be loath to eliminate z since the resulting problem is not C? and one loses any assurance of local
superlinear convergence. However, pattern search methods do not have such favorable local convergence
properties, so ostensibly nothing is lost, and much is gained by the reduction of dimension of the subproblems.

7. Conclusion. We have demonstrated that it is possible to construct a globally convergent augmented
Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. Extensive
numerical tests of this algorithm remain to be done. We agree with the perspective of the authors in [4]:

We have deliberately not included the results of numerical testing as, in our view, the
construction of appropriate software is by no means trivial and we wish to make a thorough
job of it. We will report on our numerical experience in due course.

This caution is particularly apt in view of the sort of problems to which pattern search is typically applied.
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