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Abstract

It is standard engineering practice to use approximation models in place of expen-
sive simulations to drive an optimal design process based on nonlinear programming
algorithms. This paper uses well-established notions from the literature on trust-region
methods and a powerful global convergence theory for pattern search methods to man-
age the interplay between optimization and the fidelity of the approximation models
to insure that the process converges to a reasonable solution of the original design
problem. We present a specific example from the class of algorithms outlined here, but
many other interesting options exist that we will explore in later work.

The algorithm we present as an example of the management strategies we propose
is based on a family of pattern search algorithms developed by the authors. Pattern
search methods can be successfully applied when only ranking (ordinal) information
is available and when derivatives are either unavailable or unreliable. Since we are
interested here in using approximations to provide arguments for the objective function,
our choice seems relevant.

This work is in support of the Rice effort in a collaboration with Boeing and IBM
to look at the problem of designing helicopter rotor blades.

1 Introduction

A consistent theme in the engineering optimization literature [18] is that the time and cost
required for the detailed analysis of a single design is often so great that it becomes pro-
hibitive to implement a “black-box” optimization approach to the design problem. Because
of the cost of running these detailed analyses (full simulations), the point of using approx-
imation techniques is to reduce the number of full, or detailed, analyses required during
optimization while maintaining the salient features of the design problem. A recent survey
with 85 references to the vast literature on approximation concepts for optimum structural
design can be found in the review by Barthelemy and Haftka [1]. Additional references are
given in the paper by Yesilyurt and Patera [20], which offers a point of view similar to our
OW1L.
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We do not propose to develop new modeling techniques. Rather, the open question
we study is how to manage the interplay between the optimization and the fidelity of the
approximation models to insure that the process converges to a solution of the original
design problem. In short, we give a procedure that is straightforward to implement and
yet converges to a solution to the original design problem. Of course, the efficiency of the
optimization depends rather directly on how faithful the model can be made to the original
design problem.

For simplicity in the following discussion, we assume that we are interested in solving a
problem of the form

where f : IR" — IR, y(x) represents system variables and [,u € IR" represent upper and
lower bounds on the decision variables. The idea, then, is to use simplified analysis models
of the original complicated analyses represented by y(x). We assume that f is inexpensive
to evaluate once a value for y(z) is known, so f(x,y(xz)) is computed directly, though it is
certainly possible within the framework we propose to model f(z,y(x)) instead.

We assume a family of models M = {M*: a € A}, where « is an index into a set A of
possible approximation models. Thus M®(z) represents an approximation model for y(z).
We use M*(x) to denote the result we get if we do everything reasonable to obtain the most
accurate value of y(z).

We note that a detailed analysis will itself usually be a discretization of a continuous
model of the underlying physical process. Thus y(z) may represent the underlying physical
process while M*(z) is a discretization of the continuous problem. Ultimately, the optimiza-
tion problem we will solve is the one defined by f(z, M*(x)), since that is the problem for
which it is assumed that reasonably accurate values can be computed, and we use M to
model M*(z).

For the purposes of this discussion, we require M%(xz) = M*(z) for all & € A at any point
x for which M*(x) has been computed. This has not proven to be an onerous restriction in
the design of experiment interpolation modeling (see [2] and [19]) we have been investigating
as part of our joint research with Boeing and IBM to look at the problem of designing
helicopter rotor blades; any new data point (i.e., any new point x for which f(z, M*(z)) is
known) is simply added to the correlation matrix used to define the surrogate model, thus
insuring an exact match regardless of any other modifications that might be made to the
model.

Later, we will investigate ways to integrate into our framework for model management
some heuristics for approximating M*(z) when it is not defined as above by running a
single detailed analysis; for example, when one wishes to approximately solve the continuous
problem without declaring some “final accuracy” in the simulation [21]. These strategies are
straightforward modifications of heuristics used in adaptive gridding for differential equation
solutions. Although we do not wish to make strong claims for these heuristics when z, is a
solution to the continuous problem defined by y(x), nonetheless, they do seem reasonable in
that case.

The general framework for model management that we outline in §2 is based on trust-
region strategies for globalizing Newton’s method. Although trust-region methods are an



active research area, and they are incorporated into various widely used software packages,
it is our impression that they are likely to be unfamiliar to some readers in the engineering
design community. It is impossible to survey adequately in such a short space a research area
undergoing such rapid developments. Furthermore, its relevance to the general framework
for model management given in §2 is more subtle than first appears. Therefore, we give an
incomplete introduction to this area in §3 directed toward providing a context for our general
framework for the management of approximation models. In §4 we then give an incomplete
introduction to pattern search methods and the key elements of the global convergence
analysis that we intend to exploit to develop specific algorithms. In §5, we give a specific
algorithm to which we are confident this analysis applies. We devote §6 to some conclusions
and a summary of future work.

2 The model management framework

Our goal is to solve the optimization problem defined by f(x, M*(z)). But we would rather
not run the full simulation M*(z) to compute f(x, M*(z)) for every intermediate point z
considered during the course of a single step of an optimization procedure. The idea then,
regardless of how the approximation is done, is to use the model M“(z) and compute the
value of the objective function as f(x, M“(x)) to drive each step of an optimization procedure.
The reasoning is that if it takes a significant amount of computational time to simulate the
full physics of a particular process—for instance, a large case analysis for the helicopter rotor
design problem can require a few hours on a Cray-YMP [11]-—then the optimization may be
able to progress more quickly if conducted using surrogate functions with less fidelity but
much quicker computational turn-around.

Our interest is in using the agreement between the values returned by the approximation
models (as measured by the function value f) and the values returned by the detailed analyses
for a putative new best design (again, as measured by the function value f) to determine
how far to go in each optimization cycle on the approximate problem before computing
another set of detailed analyses to check progress. We use this same measure of agreement to
determine when and where a refined model is needed for further progress on the optimization
of f(x, M*(z)).

With this setting in mind, we start by proposing the following general framework for an
optimization method that uses approximation models. Later we will discuss how pattern
search and gradient-based methods can be inserted in Steps 2 and 4 in the framework for
model management given below.

We assume that the user has selected a variable fidelity family of models M = {M* :
a € A} for y(z) and an initial fidelity index «,' as well as an initial (feasible) design for
which a full simulation has been executed.?

1For example, o might indicate mesh size in a PDE code.

20f course, this initial design may have been selected by some auxiliary initialization procedure, such as
solving the box-constrained problem with the approximate objective function f(z, M ®(x)) from some initial
point that may not have been feasible. But however it was selected, we start our discussion at a point x for
which M*(z) is available.



In the discussion that follows, x; denotes the current iterate (the best design confirmed to
date), x4 denotes a trial iterate (a putative new best design) produced by the optimization
algorithm using the current approximation model, z;,; denotes the iterate accepted to finish
the current iteration and start the next one, y denotes the value of M*(z}), and y; denotes
the value of M*(z;). We again stress that we assume that M*(xz) = M*(x) at any point for
which M*(z) has been computed; in particular, M*(x;) = M*(xy) for all k.

We also use the constants 0 < 1 < 72 to judge how well an approximation model M*
matches the full simulation M* at a given iterate, as measured by f. What is important is
that if our current approximation model M** is doing a good job of producing trial iterates
such that f(zpq, M*(2ry)) < flag, M*(xg)), then we might consider using an even cheaper
model, subject to the requirement that the value of the model matches the value at M*(x)
at any point  for which M*(x) has been computed. However, if the current model is doing
a poor job of predicting decrease from f(xy, M*(z)), then it may be advisable to consider
choosing a better model from the family of models M. The actual conditions are somewhat
arbitrary; reasonable choices of 7; and 5, might be 107* and 0.75. (See [6].)

The General Framework for the Management of Approximation
Models

Given M*, M“, xg, y5, and 0 < ny < 19, for k =0,1,---, do
1. Check for convergence. Otherwise, continue.
2. Apply an optimization algorithm to the approximate problem to find an x;; for which

f(xrt,yiy) satisfies an appropriate decrease condition for f(z, M*(z)) from .

Compute pred, = f(zry,yiy) — f(zr, yz) (the predicted reduction).

3. Compute y;, = M*(x1y) (by a detailed analysis or adaptive heuristics).
Compute aredy = f(xr4,y5y) — f(2r,y;) (the actual reduction).

aredy
predy *

Compute r, =
4. If r, <0 (improvement was predicted but not achieved), then

Set xp11 =z and yj,, = y;. (Reject the step.)
Allow less optimization on the approximate problem at the next iteration.

Consider getting a more faithful model M® anchored at ;. (Refine the model.)
Else, if 0 < r;, < m1 (much more improvement was predicted than achieved), then

Set xp11 = x4 and yi, 4 = yi,. (Accept the step.)
Allow less optimization on the approximate problem at the next iteration.

Consider keeping the current approximation model M<.
Else, if g1 < r, < 1y (the prediction was satisfactory), then

Set Try1 = Try and y;, = yi,. (Accept the step.)



Allow the same optimization on the approximate problem at the next iteration.

Consider keeping the current approximation model M<.
Else, 1y < ry (prediction was excellent, or more decrease was obtained than predicted),

Set xp11 = x4 and yi 4 = yi,. (Accept the step.)
Allow more optimization on the approximate problem at the next iteration.

Consider using a less accurate approximation model. (Relax the model.)

5. Return to Step 1.
To finish the specification for the general algorithm, we must determine
e how to find a trial step x4,
e what constitutes an appropriate decrease condition for f(z, M*(x)) from zj, and

e how to update the decrease requirement on the optimization of the approximate prob-
lem in Step 2.

We discuss these issues below in context.

3 Trust-region motivations for the general framework

In this section, we present an introduction to trust-region philosophy, which motivated our
model management framework given in the previous section. However, we warn the reader
that the powerful trust-region convergence theory does not apply immediately to this new
context. In order to keep this distinction clear, we first state a generic trust-region algorithm
for unconstrained optimization in a form that emphasizes the connections between the trust-
region philosophy and our general framework for managing approximation models. We then
follow this with a discussion of some important differences.

3.1 Trust-region methods

There are strong convergence results for constrained and unconstrained trust-region meth-
ods for smooth and nonsmooth problems. See [12] for a survey of earlier work on smooth
unconstrained problems, [9] for a survey of earlier work on nonsmooth problems, [15] for the
highly regarded bundle trust-region method for nonsmooth problems, and [3], [5], [10], [4],
[8] for work on smooth constrained problems.
For our purposes, it seems best to illustrate the concepts using the following smooth
unconstrained optimization problem:
min ¢(z) (1)
where ¢ : IR" — IR and V¢ is uniformly continuous. A basic notion for trust-region
algorithms is that of a local quadratic model about x; for ¢(xp + s) given by gi(s) =



¢(xr) + Vo(ay)'s + 357 Hys. For the global convergence analysis, the sequence of approxi-
mate Hessians { Hy} is required only to be uniformly bounded. This condition on the Hessian
approximations gives great latitude in theory and practice; for example, even the zero ma-
trix can be used if one wishes to avoid some of the numerical linear algebra in the step

computations mentioned below.

A Generic Trust-Region Framework

Given qo, Tg, #(20), 60, 0 <y <1,and 0 <y <2 < 1
(possible choices for these constants are v = 0.5, n; = 107, and 5y = 0.75);
for k=0,1,---, do

1.

2.

Check for convergence. Otherwise, continue.

Find an appropriately accurate approximate solution s; to the trust-region subproblem
min ¢x(s) subject to ||s]| < 6.

Set xpy = xp + Sk

Compute predi = qi(si) — ¢(xx) (the predicted reduction).

Compute ¢(xpy).
Compute ared, = ¢(xry) — ¢(xx) (the actual reduction).

aredy

Compute r, = e

. If rp <0 (improvement was predicted but not achieved), then

Set xr41 = x. (Reject the step.)

Set 0k+1 = ¥||sk||. (Decrease the trust radius.)
Else, if 0 < r; < 1 (much more improvement was predicted than achieved), then

Set xr41 = xpy. (Accept the step.)

Set 0k+1 = ¥||sk||. (Decrease the trust radius.)
Else, if g1 < rp < 1y (prediction was satisfactory), then

Set zr41 = xpy. (Accept the step.)
Set 0x+1 = 0. (Keep the same trust radius.)

Else, 1, < ry (prediction was excellent, or more decrease was obtained than predicted),
Set xp41 = xp+. (Accept the step.)

Set Opy1 = %. (Increase the trust radius.)

. Update the quadratic model ¢, and return to Step 1.



To finish the specification for the trust-region algorithm, we must say what we mean by
finding an appropriately accurate solution in Step 2. The answer is that for global convergence
we only need satisfy a condition we call fraction of Cauchy decrease (fCd): s, must be
determined to satisfy pred, > p[q(sgp) — ¢(xy)] for any fixed p € (0,1]. This is a trivial
condition to satisty. We call sgp the Cauchy step because it solves the constrained steepest
descent trust-region subproblem

(L Tl
relogy ( tHV¢>($k)H) .

The trust-region paradigm is so powerful that this fC'd condition is enough, even without any
convexity assumptions, to ensure global convergence in the sense that liminf||Vé(z)| = 0.
See [14] for the unconstrained problem and [5] for the equality constrained problem.

The fraction of Cauchy decrease condition allows us to prove that the local convergence
rate is linear. If we want to prove a faster convergence rate, say second order convergence, we
need to use Hy = V*¢(z) and to satisfy a condition known as fraction of optimal decrease
(fod). For this condition, s; must be determined to satisfy predy > p[q(s') — ¢(xx)] for any
fixed p € (0,1]. See [13] for the unconstrained problem and [10] for the equality constrained
problem. This fod condition is satisfied by a computational solution of the following full
trust-region subproblem whose exact solution is s;"":

qr(s).

min
[Is]|<6%

Of course, fod is not so trivial to satisfy in practice as fCd; for example, in nonlinear least
squares with Hy taken to be the Gauss-Newton approximation, szpt is the familiar Levenberg-
Marquardt step.

3.2 Similarities and differences between trust-region methods
and the framework for the management of approximation
models

We have borrowed for our model management framework from trust-region methods the
notions of:

1. using an underlying model,
2. requiring a trial step to provide decrease for that model, and

3. using a comparison of the predicted and actual decrease caused in the model objective
and the actual objective by the trial step to manage the interaction of the model and
actual problem.

We reinforce this motivation for the model management framework of §2 and for the specific
algorithm of §5 by using standard trust-region notation in their definition.

The crucial difference is that our framework for managing approximation models must
allow for trial steps chosen for a model problem f(z, M*(x)) which is likely to be much less



accurate around z; than a Taylor series as an approximation to f(z, M*(x)). When the trial
step is rejected, in either the model management framework or the trust-region framework,
the problem clearly is that the model objective function on which the algorithm is based is
not sufficiently accurate at the trial point x5, . This requires a more complex remedy in the
model management framework than it does in the trust-region framework. This leads to the
most subtle point in the paper.

In the general framework for managing approximation models there can be two causes
for poor agreement between the predicted reduction and the actual reduction. It could be
that the optimization algorithm applied to the model problem in Step 2 has over-optimized
the model problem and taken the decision variable x outside a region where the optimization
model problem is accurate. The fix is to do less optimization on the model problem and
perhaps improve the accuracy of the model. It could also be that the model problem must
be made more accurate if even a small optimization step for the model problem is to cause
decrease for f(z, M*(x)). The fix is to get a more accurate model, or to terminate the
computation. In §2 we attempted to apply these fixes to either situation in what seemed to
us to be reasonable ways, given our measure of predicted versus actual decrease.

The situation is simpler in the trust-region framework; as the trust radius ¢ is decreased,
it decreases both the amount of quadratic model optimization required of the trial step and
the error in the approximate objective function. The latter is just calculus, and from the

p

. C . . .
definitions of s.” and s”*, it can be seen that the respective decrease conditions are less

stringent for smaller 6.

3.3 Implications for the management of approximation models

A trial iterate zxy in the model management framework might be chosen by applying a
trust-region method to the approximate problem f(z, M*(x)). If we were to use a trust-
region method as the optimization method within the general framework outlined in §2, then
we would be adding an extra modeling layer in which the model of f(x, M*(x)) given by
f(z, M*(x)) is in turn modeled locally by a quadratic Taylor series type model. We postpone
the investigation of this particular approach to future work.

It would be premature to discuss in much detail the myriad possibilities for deciding how
much optimization to do on the model problem of minimizing f(x, M*(z)) before checking
progress by going on to Step 3 of the general framework given in §2. In all cases, we will
follow the standard trust-region notion of doing more optimization on the model problem
at the next step if the agreement between the actual and predicted reduction at the current
step is good and less if the agreement is bad.

With this general framework, any reasonable suite of models should work in practice and
yield to a trust-region approach to analysis. Some examples are to go to Step 3 when:

(a) xk4 — xy is as large as we think prudent currently. In Step 4, based on the value of ry,
increase or decrease this allowable change for the next iteration.

(b) xk4 is the minimizer of f(x, M*(z)) in some current subregion of design space. In
Step 4, based on the value of ri, update this subregion for the next iteration.

(¢) k4 is a single successful optimization iteration from j, on minimizing f(x, M*(z)).



(d) xgy — @) satisfies some strong Armijo condition, say,
Flere,yiy) = Flanyp) < 05V f(aryf) (e — 2i).

But now having introduced these possible ways to choose trial steps for trust-region
methods, we see that they all carry over directly to line-search methods. An interesting
addition might be to go to Step 3 when:

(e) @p4 is a minimizer of f(x, M*(z)) along the direction of search from x; within some
current estimate of a prudent allowable change, which is updated based on ry in Step 4.

Our model management framework is flexible enough to handle the extreme case where
the user evaluates the model f(x, M*(z)) at points on a grid and x4 is the best grid point.
This flexibility will be usetul for the specific algorithm we propose in §5, which will employ a
pattern search method, rather than a gradient-based method, as the optimization algorithm
in Step 2. Our choice of a pattern search method is motivated by our intent to extend
the global convergence theory of pattern search methods to cover a specific algorithm that
follows the model management strategy we propose. But this choice of a pattern search
method highlights the distinction between the trust-region philosophy we have borrowed
and the trust-region convergence theory, which does not apply in this new context. In
particular, pattern search methods are not based on local models. Thus there is no well-
tested notion of a principle of sufficient predicted decrease to guide us in deciding when
to stop applying a pattern search algorithm to the approximate optimization problem of
minimizing f(z, M*(x)) and declare the best point found so far to be the trial step xjy.
Instead, we rely on simpler strategies, as we discuss further in the next section.

4 Pattern search motivations for specific algorithms

In this section, we present an introduction to pattern search methods for optimization. While
the trust-region motivation provides a general framework for the model management strat-
egy we advocate, the pattern search methods give us practical algorithms to use immediately
within this general framework. And the advantage of using pattern search methods is that
the powerful convergence theory for pattern search methods appears to apply, without mod-
ification, within this new context. We will present the generalized pattern search algorithm
for unconstrained optimization, explain the key conditions that make a global convergence
analysis possible, and then discuss why the resulting combination fits so neatly within our
general framework for managing approximation models.

4.1 Pattern search methods

We return to the smooth unconstrained problem defined in (1). A basic component of the
definition for pattern search methods is the pattern of points Pj about z; from which one
considers possible steps. The pattern is coupled with an Fzploratory Moves algorithm that
decides which steps defined by the pattern will be considered and in what order the evalua-
tions are to be done. The scalar 0 serves as a step length control parameter. The particular



choice of a pattern and an Exploratory Moves algorithm distinguishes the individual pat-
tern search methods. There is tremendous flexibility in the way a pattern search algorithm
can be specified, though there are technical restrictions, some of which we touch on below,
that must be satisfied to ensure global convergence in the sense that liminf ||[V¢(x)|| = 0.
(See [17] for a complete discussion.) It is this great latitude in the way in which steps are
chosen for evaluation that we seek to exploit within the general framework we propose for
the management of approximation models.

The Generalized Pattern Search
Given Py, zo, ¢(20), 6o, and 0 < v < 1 (the usual choice for this constant is v = 0.5);
for k=0,1,---, do

1. Check for convergence. Otherwise, continue.

2. Use an Ezploratory Moves algorithm to determine a step s; from among those steps

defined by 65 P, for which ¢(xy + sx) < ¢(ap).

Set xpy = xp + Sk
3. Compute ared, = ¢(xrs) — ¢(xx) (the actual reduction).
4. If aredp <0 (improvement was not achieved), then

Set xr+1 = x. (Reject the step.)
Set 0k+1 = v0r (Decrease the step length control factor.)

Else, ared; > 0 (improvement was achieved)

Set xr41 = xpy. (Accept the step.)
Set 0k+1 = 6k (Keep the same step length control factor.)

Or consider setting 0x41 = %k. (Or consider increasing it.)

5. Update the pattern Pj and return to Step 1.

To finish the specification for the pattern search algorithm, we must choose both a pattern
and an Exploratory Moves algorithm.

The pattern can be viewed as a matrix P, € IR"*™, where m > 2n. The columns of
Py define all possible steps allowed at the current iteration. We require m > 2n because
for the global convergence analysis, the columns of P, must contain a core pattern defined
by [I'x, —['k], where I'y € IR™™" and nonsingular. For convenience, we also allow for the
possibility that sz = 0 so that the condition ¢(xy + si) < ¢(xx) can be satisfied. Thus the
pattern matrix must have a minimum of 2n + 1 columns, but in fact there is no upper bound
on the number of columns that are allowed as long as the remaining columns satisfy certain
minimal restrictions. (These are covered in detail in [17].) The core pattern ensures that if
the current iterate x; is not a critical point of the function, then at least one of the steps
defined by the core pattern lies along a direction of descent from z;, though we have no way
of predicting a priori which direction this might be.

To ensure global convergence, we use the pattern matrix to place the following two
conditions on the Exploratory Moves:

10



1. The step s must be defined by 65 F.

2. If there exists a step oy, defined by ¢ and some one of the 2n steps in the core pattern
[['s, —Tk], for which ¢(xp + ok) < ¢(xy), then the Exploratory Moves must return a
step s for which ¢(zy + sx) < ¢(xk).

There is no requirement that s, must be defined by the core pattern, or that all 2n
steps defined by the core pattern must be evaluated at every iteration k, or even that
the step returned give the greatest decrease possible among all m steps defined by

5kPk-

Thus, a legitimate Exploratory Moves algorithm would be one that somehow “guesses” which
of the m steps defined by 6 P will produce decrease on ¢(z) and then evaluates ¢ at that
single step. At the other extreme, an equally legitimate choice for the Exploratory Moves
algorithm would be one that evaluates ¢ at all m steps defined by 63 P, and returns the step
that produced the least function value.

The questions then become: How can we extend the trust-region strategy for managing
a quadratic model of the true function to the more general setting of managing any family of
approximation models that define the true function? Can we combine this with the simple
decrease principle of pattern search methods? And do so in a way that will guarantee
convergence of the optimization process to a solution of the true problem?

4.2 Pattern search methods as part of a model management
strategy

We propose to introduce the trust-region philosophy of using a model—though not necessarily
a quadratic model—into the simple and flexible algorithmic framework of pattern search
methods in the following way. We use an optimization algorithm to satisfy an appropriate
decrease condition for f(xz, M*(x)) from z; and to predict which one of the steps defined
by the pattern matrix is most likely to produce decrease on the true objective function
flz, M*(x)). If the model—however it is derived—is reasonably accurate in the neighborhood
of the search, then the prediction should be adequate. Now, instead of “guessing” which
of the m steps defined by 6P, will produce simple decrease for f(z, M*(z)) from xj, we
should be able to predict such a step—and thus only have to compute a single function
value requiring a full set of expensive simulations to verify that this prediction is correct.
We assess the quality of our model exactly as we would assess the quality of the quadratic
model in a standard trust-region method: by comparing the amount of decrease predicted
by the model to the amount of decrease actually realized. We then use the same heuristics
employed by trust-region methods to suggest when either further refinement of the model
or less optimization on the model problem is indicated to make further progress on the
optimization.

To preserve the convergence properties of pattern search methods, we must also respect
the second condition on the Exploratory Moves. In the worst case, if our model problem has
not been able to predict a point that produces descent on the true function, then we may
need to poll the steps defined by the core pattern to ensure that we have not overlooked a
possible direction of descent. However, there is nothing in this condition that says we must

11



necessarily look at all 2n steps defined by the core pattern; as soon as we find a step that
improves the objective function, we are free to resume the basic strategy outlined above.
And it makes sense to use the model problem to predict the order in which the columns
of the core pattern should be polled. We will refer to the polling of the steps defined by
the core pattern as our fallback strategy—something to be avoided if possible until near a
solution, but necessary if we are to guarantee global convergence.

We close by noting that we still have been vague in our specification of what it means
to satisfy “an appropriate decrease condition for f(x, M*(x)) from z;.” We are applying a
pattern search method to the problem of minimizing f(x, M*(x)). The strategy behind the
Exploratory Moves we employ is to use the model problem f(z, M*(x)) to try and produce
a single step s at which we must run the full simulation M*(xzj + sx). An obvious way to
accomplish this is to use an optimization algorithm to find a step that produces decrease
on f(x, M*(x)) from xj, but we are free to do this in any way we desire as long as the
step returned by the Exploratory Moves for the true problem satisfies the two conditions
we have outlined above. To the extent that the step returned by the Exploratory Moves
must be defined by the columns of 63 P if we are to guarantee global convergence, it makes
sense to use another pattern search method—with the same pattern search matrix P, and
the same step length control parameter é,—on the problem defined by f(x, M*(z)). But
we would advocate using a far more aggressive Exploratory Moves algorithm for the model
problem, given that the model has been designed so that the function evaluations are much
less expensive to compute. It is this strategy we will pursue in the specific algorithm given
in the next section. However, another strategy that makes sense if the model has been
constructed to be smooth and have derivatives that are easy to obtain, would be to use
another optimization method—perhaps a gradient-based method—to find a step that gives
decrease on the model problem. As long as corrective measures are taken to compensate for
the fact that most methods do not place the same restrictions on the form of the step as do
pattern search methods (i.e., there is no guarantee that the step returned by a trust-region
method applied to the model problem will be defined by 6, Py), so that both conditions on
the Exploratory Moves are satisfied, then the global convergence theory for pattern search
methods will still hold. This second strategy will be the subject of future work.

5 A specific algorithm

The theory for pattern search methods grew out of our work designing, implementing, and
testing the family of direct search algorithms first presented in [7]. We call this family of
algorithms parallel direct search (PDS) both because they were designed to be implemented
on either sequential or parallel machines and because no derivatives are required. We refer
the interested reader to [7] for details on the parallel direct search algorithms.

Because we have an implementation of PDS ([16]) that will allow us to define a pattern
matrix Py that we can also use for the problem defined by f(z, M*(z)) and that returns
a step s of a form consistent with our requirement that s, be defined by 65 P, our initial
testing will be done using some number of steps of PDS applied to the model problem to
satisfy the “appropriate decrease on f(xz, M“(x)) from z;” discussed above. We will use the
variable ¢; to give an upper bound on the number of iterations of PDS allowed to produce

12



a step s, and then modify ¢; to govern whether more or less optimization should be allowed
on the model problem. We will modify z; by assessing both how many successful steps were
completed for the model problem and how well the predicted improvement matched the
actual reduction seen for f(x, M*(z)) from xy.

At this juncture we include some specific termination conditions: we will stop the search
when either the step length falls below a user-prescribed tolerance tol or the total number of
full evaluations of the expensive simulations M™* reaches a user-defined limit mazfevals. For
simplicity, 65 is used to judge the length of the steps and fevals is used to count the number
of expensive simulations.

Exploratory Moves
Given M*, M, Py, xg, f(xg, M*(x1)), Ok, tk, 7, tol, fevals, and mazfevals:

1. Set s, =0. Set j =0, P' = Py, ¢’ = b, ' = a, and f' = f(ap, M*(2)).
2. Repeat

(a) Using P’ and ¢', take one iteration of PDS on f(z, M®*(z)) from 2’ to produce a
step s’ such that either f(z' 4+ ', M (2’ + s")) < f or s’ = 0.
(b) Set s = s + 8.
(¢) If (f(xk + sp, M (2 + sk)) < flag, M*(xk))), then
Set j =7+ 1.
Set f''= f(a' + s', M (2" + §)).
Set ' =2' + 5.
Update P’ and ¢'.
else
i. Order points defined by the core pattern v; = z + si, 1 = 1,2n based on
Flos, M2 (0), 50 that f(vy, M(01)) < - < f{vnes Mo(02,))
ii. Set ¢ = 0.
Repeat
Set 1 =1+ 1.
If f(v;, M*(v;)) has not yet been evaluated, then
Compute f(v;, M*(v;)).
Set fevals = fevals + 1.

Consider updating the model M“* and reordering v;41, ..., vy, so that
f(’Ui+1, Mak(’UH-l)) <. < f(’U:)m Mak(‘lbn))-
endif.

until ((f(v;, M*(v;)) < f(ak, M*(2r)) OR (i = 2n) OR (fevals = mazfevals)).
i If (f(v;, M*(v;)) < f(ak, M*(zg)) then
Set xp = v; and f(ag, M*(x)) = f(vi, M*(v;)).
Set @' = v; and [’ = f(v;, M*(v;)).
Update P’.
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else, if (¢ = 2n), then

Set (Sk = "}/(Sk
Set &' = 6.
endif.

endif.
until ((j = u) OR (6" < 6) OR (fevals = mazfevals) OR (6 < tol)).
3. Set LT+ = Tk + Sk Set 6k+1 = (Sk

The main goal of the Exploratory Moves algorithm is to use PDS on the model M%*
to produce a nonzero step sj at which the value of f(xy 4 sk, M*(xp + si)) is predicted by
flak + sk, M (2 + sg)) to be strictly less than the value of f(x, M*(z)) at the current
iterate z;. The only conditions under which the Exploratory Moves algorithm would fail to
do so are when one of the termination criteria set by the user has been met.

An auxiliary goal of the Exploratory Moves algorithm is to avoid the expensive calculation
of M*(x) unless necessary to further progress on the optimization. If the model M®* can be
used to produce a nonzero step sy, then the Exploratory Moves algorithm will not require
a computation of M*(xz)—that is left to the algorithm given below to assess the progress of
the search. However, should the model fail to produce such a step for the given value of o,
then the purpose of Steps 2(c)i—2(c)iii is to enforce the fallback strategy required to satisfy
the second condition on the Exploratory Moves discussed in §4.1. The fallback strategy may
require additional expensive simulations, but we ask for these as sparingly as possible.

Approximation models with pattern search

Given M*, M“, xg, y5, 60, 20, 0 <y <1l,and 0 <y < mp < 1,
(possible choices for these constants are v = 0.5, n; = 107*, and 5y = 0.75);
for k=0,1,---, do

1. Check for convergence. Otherwise, continue.

2. Apply the Exploratory Moves to find an xj, for which f(zry, %) < for, y5)-
Compute predy, = f(xrt, yps) — f(xr, yf) (the predicted reduction).

3. If 214 # x then

(a) Compute yi, = M*(xpy). Set fevals = fevals + 1.
(b) Compute ared, = f(xpt,y5y) — f(xk,y;) (the actual reduction).

__ aredy

(c) Compute ry = e
else r, = 0.
4. If r, <0 (improvement was predicted but not achieved), then
Set xpy1 = 2 and y7,, = y;. (Reject the step.)

Set 441 = max{l,j — 1}. (Allow less optimization at the next iteration.)
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Consider refining the model.
Else, if 0 < r; < 1 (much more improvement was predicted than achieved), then

Set xp11 = x4 and Y, = yi,. (Accept the step.)

Set ix41 = j. (Allow no more optimization then was successful at this iteration
for the next iteration.)

Consider keeping the current approximation model.
Else, if g1 < rp < 1y (prediction was satisfactory), then

Set 2py1 = 2y and y5 4 = y;,. (Accept the step.)

Set ix41 = 1. (Allow the same upper bound on the number of optimization steps
allowed at the next iteration.)

Consider keeping the current approximation model.
Else, ny < ri (prediction was excellent, or more decrease was obtained than predicted)

Set 2p41 = 2py and y5 4 = y;,. (Accept the step.)
Set k41 = 2% + 1. (Allow more optimization at the next iteration.)

Consider using a less accurate approximation model.

5. Update the pattern Py (if r, < 0 then set Pyyq = Py, else set Pyyqy = P’) and return
to Step 1.

6 Conclusions and future work

We have presented an outline for a general framework to manage the use for optimization of
approximation models of expensive simulations. Our approach is based on the highly success-
ful trust-region framework for global convergence to local solutions of nonlinear optimization
problems and the structure and global convergence theory of pattern search methods. This
leads us to believe that we have found a path to effective practical algorithms that we will
be able to support by rigorous convergence theorems. Furthermore, we believe that our
work is compatible with the engineering insight that has gone into the vast literature on
approximation models.

We are not seeking new ways to construct approximation models. Rather we are inter-
ested in designing effective, robust optimization algorithms that make use of these models.
We expect our contribution to the modeling effort to be strategies indicating when model
refinement is needed. These conditions will be developed to ensure that the accompanying
optimization algorithms progress toward a minimizer for the objective based on the detailed
analyses.

In future work, we will implement, test, and refine our strategy using the pattern search
algorithms given here. We also intend to test variants that use trust-region algorithms to
do the model optimization. The convergence analysis for these algorithms with the double
layer of modeling will be more delicate, but should be possible.
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We also will consider ways to proceed when M*(z) is not some detailed analysis code,
but rather y*(zx4 ) is approximated in some more case-specific manner. This seems to us to
be extremely important for identification, design, and control. A fairly standard technique
in the numerical solutions of differential equations is to manage the discretization adaptively
by comparing values of discretized solutions at a point from successive refinements of the
mesh. We suggest that, since we are just trying to move the optimization along, we really
care about f(zry,y*(zr4)) and not y;, . Thus, we will test the notion of approximating yj
by comparing successive values of f(ziy,y® (zxy)) and f(zry,y® (zry)) computed using the
family of models we are given. We emphasize, however, that this procedure for approximating
Yr, is conceptually separate from decisions in Step 4 of the model management framework
concerning the selection of a model to generate trial steps for . One of our first goals in this
direction will be to recast the algorithm of [21] in the general framework for the management
of approximation models given above in §2.
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