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Abstract

G.E.P. Box’s seminal suggestions for Evolutionary Op-
eration led other statisticians to propose algorithms for
numerical optimization that rely exclusively on the di-
rect comparison of function values. These contributions
culminated in the development of the widely used sim-
plex algorithm of Nelder and Mead.

Recent examination of these popular methods by the
numerical optimization community has produced new in-
sights. Numerical experiments and carefully constructed
examples have revealed that the Nelder-Mead algorithm
may be unreliable even in fairly simple situations. In
contrast, many of the original methods, which we col-
lectively describe as pattern searches, are guaranteed to
converge to a stationary point of the objective function
under conventional nonlinear programming assumptions.
In addition, the structure of these algorithms is such that
they are easily parallelized.

We will briefly survey the history of pattern search
methods and explicate their common structure, point-
ing out the key features that the Nelder-Mead simplex
algorithm lacks. We will close with some practical sug-
gestions for using pattern searches in serial and in dis-
tributed computing environments.

1 Introduction

We consider the problem of minimizing f : S ⊆ IRp →
IR. For simplicity we restrict our discussion to the un-
constrained case of S ≡ IRp, though analysis exists for
the linearly constrained case [8, 10]. We assume that f

is a continuously differentiable function and that evalu-
ation of f(x) is deterministic, i.e., if we repeatedly eval-
uate f at x, then we always obtain the same value of
f(x). However, some of the algorithms to which we refer
were originally intended for use when evaluation of f(x)

is stochastic, i.e., when f(x) is a random variable.

Pattern search methods evolved directly from the
statistical literature on response surface methodology
(RSM). The foundations of RSM were established by
Box and Wilson [2], who were concerned with minimiz-
ing an unknown quadratic objective function in the case
that observed function values represent the unknown
quadratic plus normal homoscedastic error. In this case,
gradient-based methods for optimization are problem-
atic because analytic derivatives are not available and
random errors render finite-difference approximations to
the gradient unreliable. Hence, Box and Wilson pro-
posed constructing local models of the objective function
by performing linear or quadratic regression experiments
in a neighborhood of the current iterate. The designs em-
ployed in these experiments would become the patterns
in pattern search methods.

Classical RSM is a sequential, but finite, proce-
dure. Because the objective function is assumed to be
quadratic, a typical application might involve two lin-
ear regression experiments followed by a final quadratic
regression experiment. In 1955, however, Box [1] pro-
posed an ongoing procedure for improving industrial effi-
ciency. Evolutionary Operation (EVOP) was conceived,
not as a substitute for sophisticated statistical methods
like RSM, but as a simple procedure that could be used
by plant personnel. Accordingly, the estimation of re-
gression models was replaced by the direct inspection of
data and the experimental designs of RSM became the
“patterns of variants” of EVOP. Rules for determining a
“cycle of variants” were intentionally vague, left to the
discretion of the plant manager and an EVOP commit-
tee.

Subsequently, Spendley, Hext, and Himsworth [16]
proposed an automatic EVOP procedure. In so do-
ing, they made two crucial innovations. First, Box [1]
had recommended 2-level factorial designs plus center



point(s). Spendley et al. substituted simplex designs,
arguing that it was desirable to complete a new design
as rapidly as possible and noting that simplex designs
are the first-order designs with the minimal number of
points. (They also noted that simplex designs are effi-
cient, rotatable, and optimal for estimating slope in the
presence of error.) Second, Spendley et al. observed that
an automatic procedure for EVOP also might be used for
numerical optimization.

The well-known simplex method of Nelder and Mead
[12] was conceived as a modification of the simplex
method of Spendley, Hext, and Himsworth. Although
Nelder and Mead acknowledged the legacy of RSM and
EVOP, they considered their method to be an algorithm
for numerical optimization and published it in The Com-
puter Journal. Perhaps not surprisingly, theirs is the
only method of this lineage that is well known in the
numerical optimization community.

Direct search methods have remained popular with
users for many reasons. They are simple to program,
easy to use, and widely applicable. Furthermore, many
of these methods work well in practice on a wide variety
of problems. In this paper, we distinguish a particu-
lar subset of direct search methods, the pattern search
methods, that have strong ties to experimental design,
employ heuristics that identify a direction of “steep” de-
scent, and can be demonstrated to be as robust in theory
as they are in practice.

2 Convergence Analysis

Direct search methods are easy to describe; however,
their very simplicity complicates analysis of their con-
vergence properties. Pattern search methods possess
enough structure that these complications can be over-
come to produce surprisingly strong convergence results.
In this section we explain why this is the case. The
reader interested in further details and formal proofs is
referred to other sources [8, 9, 10, 21].

Until recently, direct search methods were often de-
rided by members of the numerical optimization commu-
nity. Extensive convergence analyses of derivative-based
optimization methods have been produced by this com-
munity (for a good introduction, see [5]), but no cor-
responding analysis of direct search methods was widely
known to exist (though some results had been derived as
early as 1971; see, for example, [4] and [14]). The specific
concern was that there was no guarantee of global con-
vergence, by which is meant convergence to a stationary
point or local minimizer of f from an arbitrary starting
point x0. There are ways to ensure global convergence,
which is relatively easy to achieve in practice, if one

has an explicit representation (or approximation) to the
directional derivative. Direct search methods, however,
are characterized by the absence of such representation.

The “classic” approach to global convergence analysis
(see, for instance, [13]) requires that the method under
consideration possess three properties: it must be a de-
scent method, it must be a gradient-related method, and
there must be sufficient step length control to prevent
premature convergence to a nonstationary point of the
function. If one has an explicit representation (or ap-
proximation) to the directional derivative at the current
iterate ∇f(xk), then it is straightforward to construct
methods for which the classic analysis holds: first one
chooses a direction that is “related” to −∇f(xk), then
one forces the step from xk to some trial iterate x+ to
satisfy a “sufficient” amount of decrease predicted by
both ‖∇f(xk)‖ and ‖sk‖, where sk = x+ − xk.

Convergence analyses of direct search methods are
considerably complicated by the fact that these meth-
ods do not have an explicit representation of ∇f : by
design, they only use values of f . Furthermore, direct
search methods accept the step sk and set xk+1 = xk+sk

if f(xk+1) < f(xk). This criterion only requires the user
to compare function values, which is a profound advan-
tage if one only has access to ordinal information or if
one does not trust the evaluation enough (due to noise,
truncation error, measurement error, etc.) to give full
credence to numeric values. The important implication
for the analysis is that direct search methods use a simple
decrease criterion as opposed to the sufficient decrease
criterion used by gradient-based methods.

Pattern search methods are a subset of direct search
methods. Their formal characterization is described in
[9, 21], but critical to the success of the early algorithms
(coordinate search with fixed step length [14], evolution-
ary operation with two-level factorial designs [1, 3, 17],
and the original pattern search method of Hooke and
Jeeves [7]) is their reliance on classical experimental de-
signs. Furthermore, each of these methods employs de-
signs that include at least p + 1 points and “safeguards”
the designs from degeneracy, thereby ensuring adequate
information about the entire p-dimensional domain in
the neighborhood of the current iterate xk. Under very
mild assumptions on f , these simple heuristics provide
enough structure to guarantee global convergence, i.e.,
one can prove that

lim inf
k→+∞

‖∇f(xk)‖ = 0

or, if additional assumptions can be made about the
method, that

lim
k→+∞

‖∇f(xk)‖ = 0.



As an important aside we note that the popular
Nelder-Mead simplex method is not a pattern search
method. There has long been anecdotal evidence that
this algorithm can fail in practice because “the simplex
collapses.” Numerical experiments [18] demonstrated
that the single search direction constructed by Nelder-
Mead can become arbitrarily bad in practice, resulting
in convergence to a nonstationary point of the function.
Recent analysis [11] shows that convergence to a nonsta-
tionary point can occur for a family of two-dimensional,
smooth, convex functions. In all cases, the difficulty is
that a sequence of simplices produced by the Nelder-
Mead simplex method can come arbitrarily close to de-
generacy.

3 Pattern Search Methods

Generalized pattern search is outlined below. The
method starts with an initial guess at a solution (x0,
provided by the user), an initial pattern (the matrix P0,
usually determined by the particular method of pattern
search), and a scalar parameter (∆0, which plays the
role of a step length control parameter). Note that ∆k

provides a natural stopping criterion for the search: one
stops when the steps are deemed “small enough.” This
is accomplished by setting the tolerance at a level that
reflects the known accuracy of the computation or the
required accuracy of the result. (It should be appreci-
ated, however, that inaccuracies in the computation of
either the steps si

k or the objective f cannot be magi-
cally overcome by choosing an arbitrarily small value for
the stopping tolerance.)

Generalized Pattern Search:

Given x0 ∈ IRn, f(x0), P0 ∈ IRn×p, and ∆0 >

0, for k = 0, 1, . . . until convergence do

1. Find a step sk using Exploratory

Moves(∆k,Pk).

2. If f(xk+sk) < f(xk), then xk+1 = xk+sk.
Otherwise, xk+1 = xk.

3. Update(∆k,Pk)

Individual pattern search methods are further charac-
terized by the Exploratory Moves, the choice of which
is critical, and the way in which updates are performed.
Fortunately, only a few simple rules must be enforced:

(1) The trial steps si
k must be defined by the pattern.

In other words, si
k ∈ ∆kPk. Arbitrary steps of arbitrary

length are not allowed.
(2) Any step si

k ∈ ∆kPk for which f(xk +si
k) < f(xk)

is acceptable. This allows for a wealth of strategies. At

one extreme, one could sample the function at every trial
step defined by the current pattern ∆kPk. At the other
extreme, one could rely on chance, divine intervention,
or prior knowledge about the behavior of f to choose a
single trial step si

k ∈ ∆kPk for which one believes that
the condition f(xk + si

k) < f(xk) will be satisfied.

(3) An exploratory moves algorithm must have a “fall
back” strategy. This strategy must contain a minimum
of p + 1 points so as to guarantees a direction of de-
scent in the limit. It is this guarantee of at least one
descent direction—and that a step of sufficient length
will be taken along this direction—that prevents prema-
ture convergence to a nonstationary point of f .

(4) One may keep xk—and reduce ∆k—only if no step
si

k defined by the fall back strategy satisfies the simple
decrease condition. Thus, if one fails to identify a step
that satisfies f(xk + si

k) < f(xk), then one may have to
evaluate f at as many as p+1 points in order to proceed.
This is the price that one pays for the guarantee of global
convergence.

4 Examples

We begin by illustrating a simple example of a pattern
search method, designed to examine one step at a time,
applied to a convex quadratic function (the concentric
ellipses in Figures 1–4 denote the level sets of the func-
tion), and started from three different points. Note that
for this problem the unique global minimizer lies at the
common center of the ellipses.

In Figure 1, the exploratory moves algorithm tries
the first step s1

k and evaluates f at x1
k = xk + s1

k. Since
f(x1

k) < f(xk), the step s1
k is accepted and xk+1 = x1

k.

c1 < c2 < c3

If(x) = c3

I
f(x) = c2

I

f(x) = c1

xk

x1
k

Figure 1: Scenario 1: Accept x1
k.

In Figure 2, the exploratory moves algorithm again
tries the step s1

k first, but f(x1
k) > f(xk), so the step s2

k



is tried next and f is evaluated at x2
k = xk + s2

k. Since
f(x2

k) < f(xk), the step s2
k is accepted and xk+1 = x2

k.

xk

x1
k

x2
k

Figure 2: Scenario 2: Accept x2
k.

In Figure 3, the exploratory moves algorithm evalu-
ates the function at the three trial iterates x1

k = xk + s1
k,

x2
k = xk + s2

k, and x3
k = xk + s3

k and none of the three
trial iterates produce a function value that is better than
the value at f(xk). At this point, we have satisfied the
conditions for a successful fall back strategy: we have
evaluated the function at a “sufficient” set of p + 1 trial
iterates. This means that we may choose to keep xk and
reduce ∆k to continue the search. It is clear from Fig-
ure 3 that this is a reasonable strategy: the direction
from xk to x1

k is a descent direction; the problem is that
s1

k is too long. Note also that the trial iterates x1
k, x2

k,
and x3

k form a simplex, an experimental design with the
minimal number of points that span IR2.

xk

x1
k

x2
k

x3
k

Figure 3: Scenario 3: Reject all 3 steps and reduce ∆k.

In Figure 4 we see the result of continuing the search
started in Figure 3, but with a smaller simplex. Now
when the exploratory moves algorithm tries x1

k+1
=

xk+1 + s1
k+1

, f(x1
k+1

) < f(xk+1) and the situation is

similar to that in Figure 1.

xk+1

x1
k+1

Figure 4: Scenario 3, continued: Repeat the search with
xk+1 = xk, Pk+1 = Pk, and ∆k+1 = 1

2
∆k. Accept x1

k+1
.

The pattern matrix Pk used for this simple pattern
search method is the same for all four examples (and
remains unchanged across iterations):

Pk =

[

1 1 −1 0
−1 1 0 0

]

.

Each column of the pattern corresponds to a trial step,
with ∆k serving as a scaling factor to determine the fi-
nal length of the step. Thus, for Figures 1–3, ∆kPk =
[

s1
k s2

k s3
k 0

]

, with the last column corresponding
to the zero step, i.e., setting xk+1 equal to xk. In Fig-
ure 4, we see the effect on the length of the trial steps
s1

k+1
, s2

k+1
, and s3

k+1
when ∆k+1 = 1

2
∆k.

We have mentioned that pattern search methods ad-
mit a wide range of heuristics for the exploratory moves.
They also admit a wide choice of pattern matrices Pk and
update rules for Pk and ∆k. For the convergence analysis
to apply, it suffices that certain mild algebraic and geo-
metric considerations are respected. Four possible pat-
terns are displayed in Figure 5. Here we see the patterns
associated with several different pattern search methods.
In the upper left-hand corner is a composite design that
might be used for evolutionary operation [1, 3, 17]. In
the upper right-hand corner we see a simplex and its re-
flection, which define the pattern for the multidirectional
search algorithm [19]. In the lower right-hand corner, we
see the pattern that is associated with coordinate search
with fixed step size [14]. In the lower left-hand corner
are the two simplices (for both ∆k and ∆k+1) associated
with the simple algorithm illustrated in Figures 1–4.

The convergence analysis for pattern search meth-
ods is possible because the iterates of a pattern search
method lie on a scaled, translated rational lattice. This
allows us to relax the classical requirements on the accep-
tance of the step and still guarantee global convergence.



Figure 5: A selection of admissible patterns and their
mapping onto a rational lattice.

5 Computational Features

Pattern search methods admit a wide range of heuristics.
Coordinate search cautiously varies one coordinate at
a time, whereas evolutionary operation using two-level
factorial designs or composite designs may evaluate f

at as many as 3p points before choosing the next step.
More recent examples of pattern search methods exhibit
a similar diversity of strategies.

For example, parallel direct search (PDS) [6] was de-
signed to exploit the strengths of multiprocessor com-
puting environments. By simultaneously evaluating f at
multiple points on multiple processors, additional eval-
uations can be obtained “for free,” often accelerating
the search by reducing the total number of iterations
required. Opportunities for computational parallelism
abound and a parallel implementation of a particular
class of pattern search methods has been developed [20].

In contrast, model-assisted grid search [22] exploits
methods developed for the design and analysis of com-
puter experiments [15]. The idea is to construct approx-
imations to f that can be used to predict a single trial
step that is likely to realize simple decrease on the cur-
rent value of f(xk). Thus, pattern search methods can
also be quite frugal.

6 Recommendations

Experience suggests that pattern search methods are of-
ten useful in the following situations:

(1) Evaluation of f is inaccurate. Even when f is de-
terministic, computationally induced errors can occur,
e.g., when evaluating f involves iterating to an approxi-
mate answer. One common difficulty occurs when these
inaccuracies result in high-frequency oscillations in the

returned function values. In such situations, derivative-
based methods are likely to become trapped in the oscil-
lations and thus fail to identify larger basins of smaller
function values.

(2) The derivatives of f are either not available or
not reliable. In particular, inaccuracies in the evaluation
of f often render finite-difference approximations to the
gradient unreliable.

(3) The function f is not smooth. Although the ex-
isting convergence analysis for pattern search methods
assumes that f is continuously differentiable, we have
found that pattern search methods are often effective in
practice when the partial derivatives of f are not con-
tinuous and even when f is nondifferentiable. Our ex-
perience is consistent with the folklore that surrounds
these methods: they are often suggested as the methods
of choice for general, nonsmooth, nonlinear problems.

(4) Only ordinal information about function values is
available. Because pattern search methods rely on sim-
ple (rather than sufficient) decrease, they do not require
numerical function values.

We close with some general guidelines to keep in mind
when using pattern search methods to solve nonlinear
optimization problems.

(1) Pattern search provides a useful exploratory tool.
Pattern search methods are widely applicable and easy
to use. They provide a simple way to find a “quick and
dirty” solution to a problem. For many applications,
this may be sufficient. If not, they may provide a good
starting guess to a more sophisticated method.

(2) Pattern search methods have good global behavior.
Pattern search methods are good at locating the gen-
eral region of a stationary point from any given start-
ing point x0. This is not surprising: they are gradient-
related methods and thus share this property with the
method of steepest descent.

(3) Pattern search methods typically exhibit slow local
(asymptotic) convergence rates. Because pattern search
methods do not use second-order (curvature) informa-
tion, one cannot expect the fast (quadratic or superlin-
ear) local convergence rates of Newton or quasi-Newton
methods. However, in the low accuracy situations for
which pattern search methods are most often recom-
mended, the importance of fast local convergence to a
highly accurate solution is questionable.

(4) Pattern search methods may require relatively large
numbers of function evaluations; hence they tend to be
effective for problems of relatively small dimension. Be-
cause pattern search methods acquire information by
sampling the domain, they are plagued by the curse of
dimensionality. Success, however, depends on the fea-
tures of the particular problem. Even problems with



only p = 2, 3 variables may bedevil pattern search meth-
ods if there is a high degree of nonlinearity. On the
other hand, pattern search methods have been applied
successfully to problems with as many as 256 variables.
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