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another fized “shape,” or “pattern,” to determine the shape of the underlying grid.
For example, the factorial design algorithm of Box [2], in its simplest form, constructs
a hypercube centered at the current iterate and then computes the function values
at the vertices in an effort to find a new iterate with a function value that is strictly
less than the function value at the current iterate. If a new best point is found, the
hypercube is then centered on the new best iterate and the search is restarted. If
not, the size of the hypercube is reduced by halving the lengths of the edges. Again
we have a pattern for the grid underlying the search. We also have all the necessary
ingredients to argue for convergence of the method: fixed search directions, a fixed
rescaling factor, and strict decrease in the function value at the sequence of best
points.

We should be able to use the arguments presented here to analyze any algorithm
that maintains this sort of underlying grid structure. This is the subject of our
current research. There is, however, one additional caveat that should be added to
the above discussion. The number of points required by the simplex “pattern” of
the multidirectional search algorithm is O(n). For the algorithms that do not use
a simplex pattern, the number of points required to guarantee convergence, though
not necessarily to execute the algorithm on a sequential machine, is exponential in
n. (For example, the hypercube constructed in the factorial design algorithm of Box
requires O(2™) new points at each iteration.) All of these algorithms share the same
convergence analysis and yet the number of points required by the multidirectional
search algorithm is linear, rather than exponential, in the size of the problem—which
is why we believe the multidirectional search algorithm to be the most practical of
these algorithms to implement on a parallel machine.
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We can state the result as follows.

THEOREM 7.1. Assume that L(vQ) is compact and that f is continuous on L(v3).
Then some subsequence of {vE} converges to a point x. € X.. Furthermore, {vk}
converges to C. = C(X.) in the sense that

lim [ inf vk - XH] —0.

k—oo | XelC,

Proof. The proof follows directly from the proof of Theorem 5.1. O

This is not a general result for the nonsmooth case; rather, it is an extension
of the result for the smooth case. The proof of Proposition 5.4 requires that the
derivative be continuous wherever it exists to give us the uniform continuity of V f
on the set 2. The constant we derive from the uniform continuity of V f on 2 plays a
key part in deriving a lower bound on the lengths of the edges in the simplex. Thus
X, must include the set of all points in L(v3) where the derivative of f exists but is
not continuous.

While this restriction is unfortunate, it does not prevent us from considering
most nonsmooth cases of practical interest. For instance, it means that our theory
can handle the following example constructed by Dennis and Woods [6]. Consider the
strictly convex function f(x) = § max {[|x — c1||%, [|x — c2||*}, whose level sets are
shown in Fig. 6, where ¢; = (0,32)7 and ¢, = (0,-32)7.

F1G. 6. Level sets for the Dennis—Woods function.

Our numerical experience has shown that, given any initial simplex, the multi-
directional search algorithm converges unfailingly to a point of the form (a,0)? but
not necessarily to the minimizer (0,0)?. Theorem 7.1 confirms that convergence to a
critical point (i.e., either a point where the function is nondifferentiable or where the
gradient is equal to zero) is the best that can be expected for this example.

8. Conclusions. The convergence analysis for the multidirectional search algo-
rithm actually explains how—and why—the algorithm works. As we have seen, the
fixed search directions and fixed rescaling factors used to determine the step sizes
allow us to construct a grid underlying the progress of the algorithm. We should
note, however, that once we remove the null hypothesis, which required the sequence
of best vertices to be uniformly bounded away from the set X,, we no longer have a
lower bound on the lengths of the edges in the simplex. Thus, the algorithm allows
for further and further grid refinement until a satisfactory solution is obtained.

Furthermore, once we add function information, we eliminate many of the points
the algorithm might otherwise visit. This means that while there is an implicit grid
structure underlying the search, the algorithm by no means visits every point on the
grid. Rather, it uses function information to prune the number of grid points that
are considered—and to dictate when the grid must be refined further.

The simplex that is used to start the multidirectional search algorithm determines
the shape of the grid underlying the search. However, we could just as easily have used
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as required. 0O

COROLLARY 5.7. Assume that L(v3) is compact and that f is continuously dif-
ferentiable on L(v3). Then for the sequence of best vertices v& generated by the
multidirectional search algorithm there is some f such that

Jim f(v§) = f.

Furthermore, assume that % is any limit point of {vk}. Then f(X) = f and {vk}
converges to C(X) in the sense that

lim inf “vg—xH =0.
k—oo |xXcC(X)

Proof. Lemma 4.1 established that {f(vk)} is a monotone decreasing sequence.
We appeal to Proposition 5.6 to complete the proof. 0O

6. Proof of convergence. We have established that the multidirectional search
algorithm is a descent method. In addition, we can guarantee first, that the search di-
rections will not deteriorate, and second, that the steps taken by the algorithm cannot
become too long or too short. Finally, we have shown that the sequence of function
values at the best vertices converges and the sequence of best vertices converges to
the corresponding level set. Thus, we are now ready to prove Theorem 5.1.

Proof. The proof is by contradiction.

Suppose that for all but finitely many & there exists a fixed constant € > 0, which
does not depend on k, such that

||v§—x*||26 Vx,. € X,.

Then, taken together, the upper and lower bounds on the lengths of the edges in
the simplex (Propositions 5.3 and 5.4) imply that the algorithm can visit only a finite
number of points (Proposition 5.5). But this contradicts Lemma 4.1, which guarantees
strict decrease in the function values at the best vertex in a finite number of iterations.
Thus, the hypothesis cannot hold, which means that

likrgioréf “v(’Jc — x*” =0.

Then there exists some subsequence of the best vertices {vf} that converges to a
point x, € X,.
We invoke Corollary 5.7 to complete the proof. O

7. The nonsmooth case. To extend Theorem 5.1 to handle most cases when
the function f is nondifferentiable, we need only modify the set X,.

Let X. include the set of stationary points of the function f in L(v]), the set
of all points in L(v]) where f is nondifferentiable, and the set of all points in L(vJ)
where the derivative of f exists but is not continuous. Our construction of the set {2
in the proof of Proposition 5.4 then guarantees that f is continuously differentiable
on ). We can now replace the assumption that f is continuously differentiable on
L(v)) with the assumption that f is continuous on L(v)). Since the proofs given in
the previous sections were constructed to require only that V f be continuous on ,
the results can be extended, without modification, to cover this new characterization
of X,.
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This will give a grid with fixed mesh size inside a compact set. Thus the number of
points in the grid will be finite. Furthermore, every possible simplex, given the initial
simplex Sy, will be mapped onto the grid since all possible step sizes are integer
multiples of the mesh size.

Therefore, the multidirectional search algorithm can visit only a finite number of
points. 0O

5.2. Technical results. We now introduce one last technical result before giving
the proof of Theorem 5.1.

Lemma 4.1 shows that the multidirectional search algorithm is a descent method
with a strictly monotonically decreasing sequence of function values at the best ver-
tices. The following proposition and its corollary demonstrate that this sequence
of function values converges and that the sequence of best vertices converges to the
corresponding level set.

PROPOSITION 5.6. Assume that {x*} is a sequence contained in a compact set S,
that f is continuous, and that {f(x*)} is a monotone nonincreasing sequence. Then
there is some f such that

lim f(x*)=f.

k—o0
Purthermore, assume that X is any limit point of {x¥}. Then f(X) = f and {x*}
converges to C(X) in the sense that

lim l inf i|xk—yi|] =0.
k— o0 yeC(fC)

Proof. The proof of the first statement is immediate: f exists because {f(x*)} is
a monotone nonincreasing sequence that is bounded below.

To prove the second statement, consider the following: since S is compact, {x*}
contains a convergent subsequence. We will denote this convergent subsequence by
{x*} and say that x* — %. By continuity, f(%) = lim;_,o, f(x*) = f.

Define

0p = inf ||xk - y|| .
yecx)

But lim;_, 0, = 0, which implies that

liminf é; = 0.
k—o0
Next, suppose that {dg,} is any convergent subsequence of {d}. There is a

corresponding sequence of {x*i}. This sequence has a convergent subsequence which
we denote also by {x*} and say that x* — %. Again, f(X) = limieo f(x*) = f, s0
% € C(X). Thus, 6, — 0. Hence, the only possible accumulation points of {d;} are 0
and oco. Note that since S is compact, {d;} is bounded, i.e., there exists a b > 0 such
that 0 < § < b. Thus,

limsupd; = 0.
k— oo

Since liminfy_,o0 0 = limsup,_, . 0k = 0,

lim 5k =0
k—o0
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F1G. 5. Enumerating the vertices after removing all the edges.
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F1G. 3. Enumerating the vertices after one additional iteration.
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we pass once more through the inner repeat loop. Again, we assume no knowledge
of the function value at any of the vertices. We can still consider, a priori, all the
possibilities by allowing each vertex, including the original best vertex, in each of the
trial simplices generated at the previous iteration to be “best” and generate all possible
new simplices. For our example, seen in Fig. 3, we begin to enforce a lower bound on
the lengths of the edges in any of the simplices. Furthermore, we require our simplices
to be contained in a compact set. Both of these restrictions are important because
they eliminate several of the simplices that might otherwise have been considered.

Consider yet another iteration of either the outer while loop or the inner repeat
loop. Again, we allow each vertex in each of the trial simplices generated at the
previous iteration to be “best,” but again we apply our restrictions to eliminate even
more simplices. The result can be seen in Fig. 4.

Finally, if we remove all the edges, we see in Fig. 5 that the multidirectional
search algorithm is, in fact, generating a grid. Since the grid must be contained in a
compact set, and since its mesh size is fixed, this means that there are only a finite
number of points that the algorithm can visit. We require the lower bound on the
lengths of the edges in the simplex to fix the mesh size of the grid. We require the
upper bound on the lengths of the edges in the simplex to give us a compact set over
which to search. However, once we accept these two restrictions, this means that
we can compute—without any knowledge of function information—all the points the
algorithm can possibly visit from any given initial simplex.

Now we will prove that, given any initial simplex, if we assume that the best
vertices are uniformly bounded away from the set X, then the multidirectional search
algorithm can visit only a finite number of points.

PROPOSITION 5.5. Assume that L(v3) is compact and that f is continuously
differentiable on L(v3). Further, suppose that the best vertices stay uniformly bounded
away from X, i.e., for a fixred € > 0, independent of k,

||v§—x*H2€ vV x, € X,, Vk>0.

Then the multidirectional search algorithm can visit only a finite number of points.
Proof. The proof is by construction.
Rescale the initial simplex Sy, using the contraction factor 6, until every edge in
the simplex satisfies the condition

o < 0 —f] <a.

for all 0 < 4,1 < n, j #1, where n and a are as defined in Proposition 5.4.

Find the least common denominator for the scale factors # and p. This makes
sense since 6 and pu are restricted to the set of rational numbers.

Divide the least common denominator by the reduction factor #. Reduce the
simplex one last time by this factor.

Designate any one of the vertices in the rescaled simplex as “best.” (There is no
need to consider function information.) Take the set of edges adjacent to the best
vertex

{(v?—vg) : i:l,---,n}

as a basis for the grid. Now take all integer multiples of the basis that generate points
inside the compact set M. (Recall that Proposition 5.3 implies the existence of a com-
pact set M which contains all the simplices generated from Sy by the multidirectional
search algorithm.)
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Fi1G. 2. Enumerating the vertices when the best vertex is not known.
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whenever max;_; ... [V — v§|| < a. We can then conclude that the vertex r¥ can
replace the best vertex v§. Therefore, the simplex will not contract.

Case 2. Vf(vE)T(vF —vk) <o.

The proof for Case 2 follows that given for Case 1. The conclusion, however, is
quite different. Since V f(vE)T (vF —vE) < 0, we get, as in (4),

Vi) (vi = vo) < =7 [V [[vi = sl

without substituting —(r¥ — v¥) for vk —vf. We continue the argument as in (5) but

with v¥ rather than with r¥. Finishing the reductions, we are left with

F(vi) < f(v5)
whenever max;—y,...., [[v¥ — v§|| < a. But this leads to a contradiction! We have
chosen v¥ so that i # 0 and the multidirectional search algorithm requires that

f(vg)gf(vf) Vi=1,---,n.

Therefore, Case 2 cannot happen.

Conclusion. We have now established that once every edge of the simplex has
length less than a, then the rotation step will always be acceptable. Since the algo-
rithm reduces the lengths of the edges of the simplex by at most 8 at any iteration of
the inner repeat loop, it follows that the length of every edge of the simplex will be
between n6a and a. Thus we choose m = nfa. 0O

We emphasize that the existence of a lower bound for the lengths of the edges in
the simplex is guaranteed only under the null hypothesis that the best vertices are
uniformly bounded away from X,. However, now that we have established both lower
and upper bounds for the lengths of the edges in the simplex, we are ready to show
that, given these lower and upper bounds, the multidirectional search algorithm can
only visit a finite number of points. Again, let us stress that this is not what occurs,
but is rather a consequence of the hypothesis that the best vertices are uniformly
bounded away from X,.

To see how the argument works, we begin by considering how the algorithm
decides which points to visit. In Fig. 1 we are given an initial simplex with a designated
“best” vertex. The algorithm automatically generates the rotated simplex. The result
of the acceptance test then dictates whether the expanded or the contracted simplex
will be constructed. In either event, given an initial simplex and the best vertex in
that simplex, we can determine, in advance, all the simplices that can be generated
during the first iteration of the inner repeat loop. This means we can enumerate,
a priori, all the points that can possibly be visited during the first iteration through
the repeat loop.

Now assume that we are given an initial simplex, but do not know any information
about the function values at any of the vertices in the simplex. This means that
we have no way of identifying the “best” vertex in the simplex. Even without this
information, we can still determine all the simplices that might be generated during
the first iteration of the inner repeat loop and we can still enumerate all the points
that might be visited during this iteration. To do this, we simply allow each of the
vertices in the original simplex to be “best” and consider all the possibilities, as shown
in Fig. 2.

We now extend this speculation further. After one pass through the inner repeat
loop there are two possibilities: either the best vertex has been replaced, and we go to
the next iteration of the outer while loop, or the best vertex has not been replaced and
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By definition,

ry = vg — (vi = vg)

i so —(F-vh=v

Our choice of a guarantees that the edge (r¥ — v§) is contained in Q. We can

then invoke the Mean Value Theorem to obtain
Fx) = F(vg) = V)T (xf —vg)
for some £ € (rf — vk), whence
) fh) — F(vE) = VIWHT @l —vE) + (V16 - V)" (f —vh).

Consider the first term on the right-hand side of (3), Vf(vE)T (e} — vE). Our
choice of v¥ gives us

|vf(V§) (vi—vp | 2> ”Vf vo H HV _VOH
Since Vf(v§)T (vF —vE) > 0 we have

VIV (v =vo) 2 v [V [|vi = vel|-
By construction, ||r — v0|| = Hv -V || Thus,

V) (v = vo) 2 ||V [|=F - vo -

Since vF — vk = —(r¥ — v§), we obtain
(4) VIve) (e = vg) < =7 [V | [Irf —vs]l-

Now consider the second term on the right-hand side of (3). The Cauchy—Schwarz
inequality gives us

) [(VI© - Vi) (= vE)| < IVF©) - VI [k - v -
Combine (4) and (5) to rewrite (3) as

£5) — £(ob) < [0 1 b [k —81] + 956 — T ek —A]1.

Since Vf is uniformly continuous on Q and ||£ — v&|| < ||t — v&|| = ||vF — vE|| < q,
the following holds:

F8) = F(v8) < (=7 [ VIO + [ VFE©) = VD)) |k~ vi]-
>0 < >0
<—%2<0
) 2 i

Thus,

Frf) = f(vg) <0 = f(rf) < f(v5),
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Note that 7 is independent of k since, as we demonstrated in Lemma, 4.2, the relative
lengths of the edges in the simplex remain fixed across all iterations of the algorithm.
Finally, observe that 0 < n < 1.

We also define d to be the distance between the contour defined by v and the
level set defined by v:

d = dist (L(vg),C(vy)) -

Note that Lemma 4.1, together with the assumption that the best vertices are uni-
formly bounded away from X,, assures us that d > 0. Finally, we use Sy to denote

the simplex defined by the vertices (vE,v¥,--- vE). We now make the following two
claims.

Cram 1. Suppose k > 1. If, for some i = 1,---,n, ||vF — vE|| < nd, then
S, C L(VY).

Proof. The triangle inequality gives us

dist (v, L(vg)) < dist (v¥, L(v$)) + dist (L(v§), L(v))
= dist (v;.“7 L(vg))

kE_ ok
< ||Vj —vsll
Lok k
< E”Vi = voll
<d,
for any choice of j =1,---,n. Therefore, Sy € L(vo) as required. O
CLAM 2. If, for somei=1,---,n, ||[vf - v 5l < ns, then none of the vertices in
the rotated simplex are contazned in X*, i.e., r §E Xi for any j=1,--- n.
Proof. Recall that [[r% —v§|| = [lvF — v0|| forany j=1,---,n.

Let x, € X,. We appeal to the “reverse” form of the triangle inequality to obtain

k k k k €
[l = %[l > [ lIrj = voll = lvo = x| > 5. O
——— N —

>e

<

wlm

We define a as follows:
a = 71 min {d,%,é} .
We are now assured that if

(2) jmax [[vi—vgll <a,

then Sy and its rotation are contained in € and that ||V f(v¥) — V f(v§)|| < ovy/2 for
all j =1,---,n. We are ready to argue that if, at any iteration k, (2) is satisfied, then
the rotation step will always be acceptable. Again, we have two cases to consider.
Case 1. Vf(vE)T ( k_vk)y>o.
Choose a vertex v¥, i # 0, which satisfies

|Vf(V§ i )|
Vi) ||v vi |

I V

Lemma 4.2 guarantees the existence of at least one such vertex.
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Xy; t.e., for a fivred € > 0, independent of k,
||v§—x*H2€ vV x, € X, Vk>0.
Then there exists a constant m > 0 such that for all k > 1

m<|vE=vi|  VO<ji<n, j#L

Proof. Define the set X, as follows:
X, = {x € L(v)) : [Ix — x| < % for some x, € X*}.

Consider its complement Q in L(v]):
Q= L(v))\ X..

Note that  is compact. Furthermore, f is continuously differentiable on 2, so

1. ||V f]| achieves a minimum ¢ > 0 on 2, and
2. Vf is uniformly continuous on (2.

This leads to two observations. First, for all &,
V8| >0 >0,

and o does not depend on k. Second, the uniform linear independence of the set of
search directions at each iteration gives us the constant v > 0 seen in (1). From the
uniform continuity of Vf on 2 there exists a § > 0, depending only on o, v, and (,
such that

|Vf(x) = Vf(v§)|| <ov/2 whenever |x—vf|<d (andx€Q).

Now we will show that once the edges of the simplex become “small enough,” the
rotation step is always acceptable so that the simplex will not contract; hence the
simplex cannot become any smaller.

“Small enough” will mean that the simplex and its rotation are contained in 2
and ||v;c —vE|| < 6 for any choice of j = 1,---,n. These conditions will determine our
choice of m.

We need first some measure of the relative lengths of the edges in the simplex.
We define 7 as follows:

e
n= ﬁ )
where
= min  vi-vi], and Bf= max  [vi-vi].

Thus, for any 1 < 5,1 <mn,

1 1
Vs = vl < B = Lok < Tv - v
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decrease seen in the value of the objective function. In most other descent methods,
step length control is guaranteed by enforcing the Armijo—Goldstein—Wolfe conditions.
The multidirectional search algorithm cannot enforce the Armijo-Goldstein—Wolfe
conditions because it does not have explicit knowledge of the gradient. There is
enough structure in the algorithm, however, to enforce step length control without
enforcing the Armijo—Goldstein—Wolfe conditions.

We begin by proving the existence of an upper bound on the lengths of the edges
of the simplex.

PROPOSITION 5.3. Assume that L(vQ) is compact and that f is continuously
differentiable on L(vQ). Then there exists a constant M > 0 such that

||vf—vg||§M Vi k.

Proof. Assume that v ¢ X.. If so, in the proof of Lemma 4.1 we showed that the
multidirectional search algorithm will produce a new best vertex in a finite number
of iterations of the inner repeat loop. Since L(v)) is compact, for all k& > 1 there
exists at least one vertex v¥ such that the vertices v§,v¥ € L(v]). Since L(v))
is bounded, this implies a bound on the length of the edge (v¥ — v&). Since the
rescaling factors pu and € are constant across all edges of the simplex for all iterations
of the multidirectional search algorithm, the relative lengths of all edges in the simplex
remain the same across all iterations of the algorithm. This implies the existence of
M > 0 as required.

If v} € X., we can no longer argue that the inner repeat loop will produce a new
best vertex in a finite number of iterations. There are then two possibilities. The first
is that the multidirectional search algorithm produces a new best vertex. If so, the
argument given above still holds. The other possibility is that the multidirectional
search algorithm does not find a new best vertex, i.e., the inner repeat loop does not
terminate. If so, then the contraction step has been accepted, because the rotation
step and the expansion step are accepted only when they produce a new best vertex.
Since the contraction factor 6 is strictly less than one, this means that the length of
every edge in the simplex is strictly monotonically decreasing. Thus, the maximum
length across all edges in the initial simplex Sy provides an upper bound on the length
of all edges in all subsequent simplices, as required. O

The existence of an upper bound on the lengths of the edges of the simplex implies
the existence of a compact set, which we shall call M, that contains L(vJ) and all
the simplices generated by the multidirectional search algorithm from a given initial
simplex Sp.

We next posit the following null hypothesis: the sequence of best vertices v§ stays
uniformly bounded away from X,. We will show that under this hypothesis a lower
bound on the lengths of the edges in the simplex exists and that once the edges in the
simplex become small enough, the rotation step will always be acceptable. Note that
this does not necessarily mean that the rotation step will be accepted. If the rotation
step is acceptable, the multidirectional search algorithm automatically considers the
expansion step; however, we are guaranteed that the contraction step will not be
considered. Since the lengths of the edges in the simplex are reduced only when the
simplex is contracted, this argument ensures no further reduction in the size of the
simplex.

PROPOSITION 5.4. Assume that L(v)) is compact and f is continuously differ-
entiable on L(v3). Suppose that the best vertices stay uniformly bounded away from
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1. The rotation step rotates the given initial simplex about the best vertex. This
could be viewed as first translating the given initial simplex by —v§, applying
the transformation —I, and then translating the simplex by v&. Since —I is an
orthogonal transformation, the Euclidean inner product is preserved. Thus,
neither the translations nor the rotation affect the angles in the given initial
simplex.

2. The expansion step rescales the rotated simplex by a factor of x, which again
leaves the angles of the given initial simplex unchanged.

3. The contraction simplex is formed by first translating the rotated simplex by
—vf, applying the orthogonal transformation —I, and then translating the
simplex by vg, which simply restores the initial simplex. The simplex is then
rescaled by a factor of §. Thus, the angles of the given initial simplex are
unchanged.

Since none of the three possible steps affect the angles in the initial simplex,
the angles of the simplex used to start the algorithm Sy remain constant across all
iterations of the multidirectional search algorithm. Therefore, there exists a v > 0,
which does not depend on k, such that

(1) max M,izl,---,n >
[l IvF = vl -

for all x € IR", x # 0, as required. 0O

5. The smooth case. We are now ready for a formal statement of the theorem.

THEOREM 5.1. Assume that L(v3) is compact and that f is continuously differ-
entiable on L(v3). Then some subsequence of {vk} converges to a point x. € X,.
Purthermore, {vE} converges to C. = C(x.) in the sense that

o [gat I =1 =o.

COROLLARY 5.2. Assume that f is continuously differentiable, L(vY) is compact,
and f is strictly convex on L(v3). Then

lim vg = X4,
k—o0
where x, is the unique minimizer of f in L(v9).

We will show that if the conclusion of Theorem 5.1 were not true, then there
would be a lower bound on the lengths of the edges of the simplices generated by the
algorithm. This, in turn, would imply that the algorithm can generate at most a finite
number of iterates, which would contradict the fact that away from X, the algorithm
produces a sequence of points with strictly monotonically decreasing function values,
as we showed in Lemma 4.1.

The proof of Theorem 5.1 will be given in §6. The rest of this section is devoted
to results needed for the proof.

5.1. Enforcing step length control. Together, Lemmas 4.1 and 4.2 guarantee
that if f is continuously differentiable on L(vJ), then the multidirectional search
algorithm generates at least one direction of descent that is uniformly bounded away
from orthogonality with the gradient. However, we still need to ensure that the steps
the algorithm takes are neither too long nor too short relative to the amount of
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We will assume that v§ ¢ X, and show that the inner repeat loop terminates in
a finite number of iterations.

The set of edges adjacent to any vertex in a simplex is linearly independent. Thus,
the set of n edges adjacent to the current best vertex v§,

{(vf—vg):izl,---,n},

spans IR".
If vk ¢ X., then Vf(vf) is nonzero. Consequently, there exists at least one 4, for
i=1,---,n, such that

Vive)T(vi —vg) #0.
There are then two cases to consider.
Case 1. Vf(vE)T(vk—vE)>o0.
Note that since (vF — v§) = —(z¥ — v§),
Vive)! (xf —vp) < 0.
Consider the right-hand directional derivative of f at v§ in the direction (rf — v§):
[ (v +h(rf = Vb)) — f(vh)
71Tk — vy = i L0 R 20D 2T
Thus, there exists an hy > 0 such that for 0 < ¢ < hy
F(v6 +#(xf = v5)) < f(v)-
Case 2. Vf(vE)T(vF —vk)<o.
Consider the right-hand directional derivative of f at v& in the direction (v —vk):
(V6 +h(vE —vb)) — f(vE)
P8 (v~ k) = Tim, -
Thus, there exists an hy, € (0, hy] such that for 0 < t < hy,
F(vo +t(vi = v5)) < F(v5)-

Conclusion. The vertices of the contracted simplex are defined to be

<0.

<0.

cf :v§+0(vf—v§),

fori=1,---,n, where 6 € (0,1) is the fixed contraction factor. If the contracted step
is accepted at the current iteration of the inner repeat loop, and a new best vertex
has not been found, then at the next iteration of the inner loop, the rotated step can
be defined in terms of the contracted vertices as

r¥ = v - (cF - vi)

K3
k k k k k
=v5 = ((vo + 0 (vi —vq)) — Vo)
k k k
=v; —0(vi —vg).
Therefore, for any k, if vl ¢ X,, then there exists a positive integer py, such that
0P < hy and so the inner repeat loop terminates in a finite number of iterations as
required. O
LeEMMA 4.2. The search directions determined by the multidirectional search
algorithm are uniformly linearly independent.
Proof. Consider each of the three possible steps the multidirectional search algo-
rithm may take.
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best vertex, and the inner repeat loop, which determines the length of the steps to
be taken.

The expansion factor y and the contraction factor # determine the lengths, rel-
ative to the original edges in the simplex, of the steps to be considered. In our
implementation, p is set equal to 2 and 6 is set equal to %, as in the example shown
in Fig. 1. Further discussion of the choice of scaling factors, as well as additional
implementation details, can be found in [13].

4. Key lemmas. Two important results follow directly from the description of
the multidirectional search algorithm. First, the multidirectional search algorithm is
a descent method since

FET) < F(vE).-

For this to be true we need only show that if the best vertex v§ is at a point where the
function is differentiable, and V f(v£) is not equal to zero, then the inner repeat loop
terminates in a finite number of iterations. Second, the search directions determined
by the multidirectional search algorithm are wuniformly linearly independent. This
means that there exists a constant v > 0 such that for all k¥ > 0 and x # 0,

xT(vk = k)|
max —l:].n > .
{wwﬁ—%w A B

This follows from the observation that while the algorithm may translate and rotate
the simplex, or change its scale, the angles in the original simplex Sy are preserved
across all iterations of the algorithm. Both results are given in the next two lemmas.
We begin by introducing the following notation.

Let vk be the best vertex of the simplex Sy, used to start the kth iteration of the
algorithm. Define the level set of f at v§ to be

L(vg) = {x (1 f(x) < f(v(’)“)}
Given y € IR", let the contour C(y) be

Cly) ={x:f(x) =rf(¥)}-

Let X, be the set of stationary points of the function f in L(v).

We will assume, for now, that f is continuously differentiable on L(v3); however,
as we will discuss in §7, if we redefine X, this assumption can be weakened. We next
show that the multidirectional search algorithm is a descent method.

LEMMA 4.1. Suppose that f is continuously differentiable on L(v3). If the mul-
tidirectional search algorithm finds an iterate vg"'l, then

FET) < F(vE).-

If Vf(vk) #0, then the multidirectional search algorithm will find such a V§+1.

Proof. The multidirectional search algorithm will accept a new iterate v§+1 only
if f(vi™) < f(vk), so the first conclusion in the lemma is tautologically true. The
more interesting point is the second: if v& is not a critical point—in particular, if
Vf(vE) # 0—then the algorithm will find an acceptable vi*! in a finite number
of iterations of its inner repeat loop. This should not be too surprising since the
algorithm is performing line searches along the n directions determined by the n
edges adjacent to v¥.
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THE MULTIDIRECTIONAL SEARCH ALGORITHM

0

Given an initial simplex So with vertices (v9,v?{,---,v?

/* expansion factor */
u € (1,400), and
/* contraction factor */

6 €(0,1).

fori=0,---,n
calculate f(vF)

end

k<« 0

while (stopping criterion is not satisfied) do
/* find a new best vertex */
j + argmin; {f(vF):i=0,---,n}
swap v and v§
repeat
Check the stopping criterion.
/* rotation step */
fori=1,---,n
rh vk — (v
calculate f(r¥)
end
replaced = (min { f(x¥) :i =1,---,n} < f(vF))
if replaced then
/* expansion step */
fori=1,---,n
ef v —p(v
calculate f(eF)
end
if (min {f(ef):i=1,---,n} <min {f(r})
/* accept expansion */
vieebfori=1,---,n
else
/* accept rotation */
vEerbfori=1,---\n
endif
else
/* contraction step */
fori=1,---,n
ek vk —|—0(v£c —v(’)“)
calculate f(cF)
end

RS

_v(l)c)

Sez

=)

), choose p, 60 € @ such that

/*** initialization loop ***/

/*** outer while loop ***/

/* inner repeat loop */

:i=1,---,n}) then

replaced = (min {f(c¥) :i=1,--- ,n} < f(vk))

/* accept contraction */
vieckfori=1,---,n
endif
until replaced
k—k+1
end

/* end repeat loop */

/*¥*¥** end while loop ****/
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We are now ready to introduce the multidirectional search algorithm.

3. Algorithm. A formal statement of the multidirectional search algorithm is
given on the next page. We proceed with a brief description of the algorithm.

In order to understand the algorithm, consider the sequence of “best” vertices
{vk}, where by “best” we mean that for all k,

f(vg)gf(vf) fOI'?::].,"','I’L.

At each iteration of the inner repeat loop a search is conducted from the current
best vertex v§ in each of the n directions determined by the n edges adjacent to v{.
The goal of the search is to replace v§, i.e., to find a new vertex with a function value
that is strictly less than the function value at v§.

There are three possible trial steps: the rotation® step, the expansion step, and
the contraction step, which are illustrated in Fig. 1. Note that the algorithm always
computes the rotation step and then tests to see if a new best vertex has been found.
If a new best vertex has been identified, an expansion step is computed. Otherwise,
the algorithm computes, and automatically accepts, the contraction step.

1

A
k
Vs
k
ck /\
/xk
v
rf k Cf !
1
k Vo
€]
k
Iy
k
€5
A

F1G. 1. The three possible steps given the simplex Sy with vertices (v’g,vf,vg).

The algorithm can thus be viewed in terms of its two primary loops: the outer
while loop, which determines a new set of search directions by considering a new

1 The “rotation” step is analogous to the “reflection” step found in the simplex algorithm of
Nelder and Mead [8]. We choose to depart from the terminology used by Nelder and Mead since
“rotation” more accurately describes the effect of the step on the position of the simplex.
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methods are distinguished by the way in which the new set of search directions is then
determined. As Zangwill [16] points out, care must be taken to ensure that the set
of search directions remains linearly independent. However, once proper precautions
are observed, several nice results can be derived, as shown by both Powell [10] and
Zangwill [16] in their original papers, as well as those found in later works. (See [1],
9],

The direct search methods for which the search directions remain fixed across all
iterations have been analyzed with varying degrees of success. One of the best known
algorithms of this sort is the pattern search algorithm of Hooke and Jeeves. Céa [3]
gives a concise proof of convergence that uses few of the features of the pattern
search algorithm. His analysis does, however, rely on the fact that the algorithm
requires the step sizes to be monotonically decreasing. The multidirectional search
algorithm allows the steps to increase in size if there is a corresponding decrease in
the value of the objective function. Thus, Céa’s result cannot be extended to the
multidirectional search algorithm. Until recently, this has been the only convergence
result of which we were aware for this class of direct search methods. We have since
discovered a more ambitious convergence analysis undertaken by Yu Wen-ci [14], [15].
He, too, noted that the pattern search algorithm of Hooke and Jeeves and the original
simplex algorithm of Spendley, Hext, and Himsworth share the features of fixed search
directions and fixed rescaling factors. Using these observations, and the notion of a
positive basis, he derived a general convergence result for modified versions of both
these algorithms.

Our analysis differs from that of Yu Wen-ci in two important respects. First,
Yu Wen-ci, like Céa, must assume that the step sizes are monotonically decreasing.
Again, this means that his analysis cannot be extended to cover the multidirectional
search algorithm. Our analysis allows the step sizes to increase if decreases are seen
in the corresponding objective function values.

Second, to show that these algorithms cannot take steps that are too long rela-
tive to the amount of decrease in the value of the objective function— in other words,
that there is sufficient decrease in the value of the objective function for the size of
the step taken—Yu Wen-ci introduces the notion of an “error-controlling” sequence.
Unfortunately, it is not clear how such a sequence can be constructed and maintained
in practice. In fact, one of the difficulties in applying the classical analysis for descent
methods to these algorithms is that an explicit calculation of the initial descent slope
is used to enforce the Armijo—Goldstein-Wolfe conditions for sufficient decrease (see
[4], [9]). Direct search methods, by definition, do not compute such information. Our
result places no such burden on the multidirectional search algorithm. We can guar-
antee that the algorithm cannot take steps that are too long, relative to the amount of
decrease in the object function value, without enforcing the Armijo—Goldstein—Wolfe
conditions or introducing any other such measure of sufficient decrease. The key
feature of the multidirectional search algorithm which makes this analysis possible
is that both the search directions and the scaling factors which determine the step
sizes are fixed across all iterations of the algorithm. This feature can also be found
in several of the traditional sequential direct search methods, so one of the goals of
our current research is to extend the results presented here for the multidirectional
search algorithm to these other direct search methods. The only limitation we must
impose is that the scaling factors used to determine the size of the steps taken must
be rational. This mild restriction is easily satisfied by all the algorithms in this class;
the values typically recommended for the scaling factors are % and 2.
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algorithm works and what it also suggests about a more general convergence theory for
an entire class of direct search algorithms, which is a subject of our current research.

2. Direct search methods. Direct search methods are characterized by the
fact that they do not use derivatives. They forgo this very useful information for very
practical reasons. Often, particularly in experimental settings, analytic derivatives
are simply unavailable. Finite-difference approximations to the gradient could be
used, but the cost of computing the function values on a sequential machine may
make this option prohibitively expensive. Furthermore, in an experimental setting
it is not at all unusual to have function values that can only be trusted to a few
significant digits so that finite-difference approximations to the gradient may prove
unreliable. Another possibility is that the experimental apparatus itself may make
finite-difference approximations to the gradient difficult, if not impossible.

Having relinquished explicit derivative information, the direct search methods
typically consider a natural alternative: at every iteration they explore each direction
in a linearly independent set of n search directions. As we shall see, if this set of search
directions has the right structure, it is possible to derive convergence results for these
algorithms. Our interest in direct search methods arose from the observation that at
every iteration the algorithms typically perform searches in each of n directions. Thus,
it certainly seems reasonable to assume that in most, if not all, of these algorithms
the n searches required for a single iteration can be conducted independently. This,
in turn, suggests a natural way to develop new optimization algorithms for parallel
machines [5], [13].

The direct search algorithms are distinguished both by the way in which the set
of n search directions is chosen and maintained and by the way “exploratory” steps
are taken in each of the n directions. The most important distinction, for theoretical
purposes, is between those methods for which the set of search directions is modified
at the end of each iteration and those methods for which the set of search directions
remains fixed across all iterations. Examples of algorithms in the first class include
Rosenbrock’s method [11], Powell’s method [10], and Zangwill’s method [16]. In the
second class of direct search methods one finds such examples as the factorial design
algorithm of Box [2], the pattern search algorithm of Hooke and Jeeves [7], and the
simplex algorithm of Spendley, Hext, and Himsworth [12] (the method upon which
the simplex algorithm of Nelder and Mead is based).

The Nelder-Mead simplex algorithm [8], perhaps the most popular of the direct
search methods, does not search in each of n linearly independent search directions
at every iteration. It is worth noting that while we know of several attempts to prove
convergence of the Nelder-Mead simplex algorithm, none of these has met with suc-
cess. Furthermore, the experimental evidence gathered while testing and comparing
the multidirectional search algorithm with the Nelder—Mead simplex algorithm sug-
gests that a convergence result for the Nelder-Mead simplex algorithm may not be
possible [13]. The fact that the Nelder-Mead simplex algorithm only searches in a
single direction at each iteration removes it from the domain of this analysis—an ob-
servation which first suggested how the Nelder-Mead simplex algorithm might fail.
However, as yet we can offer no satisfactory explanation of why this failure occurs.
(For a further discussion of the experimental results, see [13].)

The methods which modify the set of search directions at the end of each iteration
use the result of the exploratory searches along each of n linearly independent search
directions to compute a new search direction—that defined by the point used to start
the iteration and the point found at the conclusion of the n exploratory steps. The
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Abstract. This paper presents the convergence analysis for the multidirectional search algo-
rithm, a direct search method for unconstrained minimization. The analysis follows the classic lines
of proofs of convergence for gradient-related methods. The novelty of the argument lies in the fact
that explicit calculation of the gradient is unnecessary, although it is assumed that the function is
continuously differentiable over some subset of the domain. The proof can be extended to treat most
nonsmooth cases of interest; the argument breaks down only at points where the derivative exists
but is not continuous. Finally, it is shown how a general convergence theory can be developed for an
entire class of direct search methods—which includes such methods as the factorial design algorithm
and the pattern search algorithm—that share a key feature of the multidirectional search algorithm.

Key words. unconstrained optimization, convergence analysis, direct search methods, parallel
optimization, multidirectional search, Nelder-Mead simplex algorithm
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1. Introduction. In this paper we shall give the convergence analysis for the
multidirectional search algorithm [13]. The multidirectional search algorithm is a
direct search method designed to solve the unconstrained minimization problem:

Juin f(x),
where f: IR" — IR.

Direct search algorithms presume little of the function—typically only that the
function is continuous—since they do not require, or even directly estimate, gradient
information. It has long been recognized that these methods are gradient-related, but
the convergence analysis for a large class of these algorithms has been incomplete, as
we shall discuss in the next section.

Our proof of convergence for the multidirectional search algorithm will follow
the classic lines of proofs for gradient-related methods. First we will show that the
multidirectional search algorithm is a descent method. Then we will show that the
search directions do not deteriorate. Finally we will show that the algorithm satisfies
a notion of sufficient decrease in the value of the objective function for the size of the
step taken. While we assume that the function is continuously differentiable over some
subset of the domain, we never explicitly compute the gradient. The novelty in this
argument lies in the fact that the algorithm provides enough structure to make explicit
information about the gradient unnecessary. The multidirectional search algorithm
will be introduced in §3. The convergence analysis for the differentiable case will be
developed in §84, 5, and 6.

The result for the smooth case can also be extended to handle most nonsmooth
cases of interest. This extension will be given in §7. Finally, we will close by reviewing
both what the convergence analysis tells us about how the multidirectional search
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