
Combinatorics of k-ary n-cubes
with Applications to Partitioning

Weizhen Mao1 and David M. Nicol2

Dept. of Comp. Sci., College of William and Mary, Williamsburg, VA 23185, USA

ABSTRACT Many communication networks can be viewed as graphs called
k-ary n-cubes, whose special cases include rings, hypercubes, and toruses. This
paper explores combinatorial properties of such graphs—in particular, the char-
acterization of the subgraph of a given number of nodes with maximum edge
count. Applications of these properties to partitioning parallel computations
will also be discussed.

1 Introduction

A k-ary n-cube is a graph that may be defined as follows. Each node is identified by an n-bit
base-k address bn−1 . . . bi . . . b0; for every dimension i = 0, 1, . . . , n−1 it shares an edge with
nodes bn−1 . . . bi ± 1(mod k) . . . b0.

We can also define a k-ary n-cube recursively. First, we define a ring of k nodes labeled
0, 1, . . . , k−1 to be a graph with edges between nodes i and i+1(mod k) for i = 0, 1, . . . , k−
1. When k = 1, a ring is a point. When k = 2, a ring is two nodes sharing an edge. When
k ≥ 3, a ring is a conventional ring. The recursive definition of a k-ary n-cube is as follows.

• A k-ary 1-cube is a ring of k nodes. Without loss of generality, we place the k nodes
on a line, and call the leftmost node the 0th position node and the rightmost node the
(k − 1)st position node.

• A k-ary n-cube contains k composite subcubes, each being a k-ary (n−1)-cube, placed
from left to right. For every position i = 0, . . . , kn−1 − 1, edges between composite
subcubes are defined by connecting all k ith position nodes into a ring.

Further, a k-ary n-cube can also be viewed as an n-dimensional torus, which is a
k × · · · × k︸ ︷︷ ︸

n

cube of grids with wrap-around edges.

The second and the third definitions of k-ary n-cubes provide two ways of drawing k-ary
n-cubes. See Figure 1 for an example.

Table 1 shows special cases of k-ary n-cubes. We notice that the class of k-ary n-cubes
contains many topologies important to parallel computations, including rings, hypercubes
and toruses; hence a thorough study of k-ary n-cubes is worthwhile. The following com-
binatorial properties of k-ary n-cubes are easy to verify, except perhaps Property 1.5. We
leave their proofs to the reader.

PROPERTY 1.1. A k-ary n-cube has kn nodes.

PROPERTY 1.2. A k-ary n-cube contains k composite subcubes, each being a k-ary (n−1)-
cube, and the number of edges with endpoints in different composite subcubes is kn−1 for
k = 2 and kn for k ≥ 3.

1This work was supported in part by NSF grant CCR-9210372.
2This work was supported in part by NASA grant NAS1-19480 while the author was on sabbatical at the

Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton,
VA 23681. It was also supported in part by NSF grant CCR-9201195.

662

3−ary 2−cube3−ary 2−cube

3−ary 1−cube 3−ary 1−cube 3−ary 1−cube

Figure 1: A 3-ary 2-cube

Table 1: Special cases of k-ary n-cubes
k\n 1 2 ≥ 3

1 point (ring) point (torus) point
2 edge (hypercube/ring) square (hypercube/torus) hypercube
≥ 3 ring torus k-ary n-cube

PROPERTY 1.3. A k-ary n-cube is a regular graph, i.e., each node has the same degree.
The degree of each node, dk,n, is n for k = 2 and 2n for k ≥ 3.

PROPERTY 1.4. The number of edges in a k-ary n-cube is nkn−1 for k = 2 and nkn for
k ≥ 3.

PROPERTY 1.5. In a k-ary n-cube, for each ith composite subcube (0 ≤ i ≤ k−1) choose mi

nodes, and define m =
∑k−1

i=0 mi. The number of edges with endpoints among these m nodes
but in different composite subcubes is no larger than tk(m0, . . . ,mk−1), where t2(m0,m1) =
min{m0,m1}, and tk(m0, . . . ,mk−1) =

∑k−1
i=0 mi−max0≤i≤k−1{mi}+ min0≤i≤k−1{mi} for

k ≥ 3.

Another important property of k-ary n-cubes that we shall devote the remainder of this
paper to is about the relation between the number of nodes and the number of edges in any
subgraph of a k-ary n-cube. A similar property related to VLSI concerns has been explored
by Dally [2]. It is the bisection-width of k-ary n-cubes, the minimum number of edges one
must cut when partitioning the graph into two subsets with equal numbers of nodes. In
this paper we will consider a generalization of this notion: given that one of the subsets has
exactly m nodes, what is the minimum number of edges between the subset and the rest of
the graph?

We have previously studied properties of k-ary n-cubes in the context of load balancing
[4]. Here graph nodes typically represent computation and edges represent communication.
For any subgraph, define an internal edge to be one with two endpoints in the subgraph
and an external edge to be one with one endpoint in the subgraph; viewing the subgraph
as the set of nodes assigned to a processor, the number of external edges is a measure
of the communication cost. Allowing nodes and edges to be weighted (reflecting relative
computation and communication volumes, respectively), the “load” of a subgraph is taken
to be the sum of the weights of its nodes and its external edges. If a k-ary n-cube is
partitioned into P subgraphs, the bottleneck cost of the partition is the maximum load
among all subgraphs. In [4] we showed that certain equi-partitions are optimal in the sense
of minimizing the bottleneck cost, but that, surprisingly, there exist cases where the optimal
partition is not an equi-partition. These results are based on a lower bound on a processor’s

663

communication cost, a bound that is achieved for selected subgraph sizes. The current paper
completes that work by identifying an achievable bound for arbitrary subgraph sizes.

The problem of minimizing the external edge count (and hence the communication cost)
of a subgraph with m nodes is the same as maximizing the number of edges contained in the
subgraph (since k-ary n-cubes are regular graphs). Consider any subgraph Sm of m ≤ kn

nodes in a k-ary n-cube. Let e(Sm) be the number of internal edges in Sm. Define the
maximum number of internal edges in any subgraph Sm in a k-ary n-cube to be

e∗k,n(m) = max
∀Sm

{e(Sm)}.

We will say that a subgraph of a k-ary n-cube with m nodes is optimal if it has e∗k,n(m)
internal edges.

We organize the paper as follows. In Section 2, we give a recursive method of computing
e∗k,n(m) for k = 1, 2, 3, 4 and m ≤ kn. In Section 3, we study the case when k ≥ 5. In Section
4, we mention some applications of our results to partitioning parallel computations. We
conclude in Section 5.

2 Results for k = 1, 2, 3, 4

In this section we report results for cases k = 1, 2, 3, 4. The case of k = 1 is trivial:
e∗1,n(m) = 0 for m ≤ 1n = 1. Now consider k = 2, 3, 4. Recursively define function Fk(m)
as follows. It turns out that Fk(m) exactly captures the quantity of interest.

DEFINITION 2.1. Let Fk(0) = Fk(1) = 0 and Fk(m) = (m mod k)Fk(dm
k e) + (k −m mod

k)F (bm
k c) + tk(dm

k
e, . . . , dm

k
e︸ ︷︷ ︸

m mod k

, bm
k
c, . . . , bm

k
c)︸ ︷︷ ︸

k−m mod k

for m ≥ 2.

LEMMA 2.1. Fk(m) ≥
∑k−1

i=0 Fk(mi) + tk(m0, . . . ,mk−1) for
∑k−1

i=0 mi = m and k = 2, 3, 4.

Proof To save space, we will only prove the lemma for k = 2 since the proofs for k = 3
and k = 4 are too lengthy to be included in this paper. We induct on m. When m is small
enough, the inequality certainly holds. For arbitrary m, consider the following three cases.

Case 1. Both m0 and m1 are even. Let m0 = 2a and m1 = 2b for some a and b.
Therefore, m = 2(a+ b).

F2(m) = 2F2(a+ b) + (a+ b) (Definition 2.1)
≥ 2(F2(a) + F2(b) + min{a, b}) + (a+ b) (Induction hypothesis)
= (2F2(a) + a) + (2F2(b) + b) + min{2a, 2b}
= F2(m0) + F (m1) + t2(m0,m1) (Definition 2.1)

Case 2. Both m0 and m1 are odd. The proof is similar to Case 1.
Case 3. One of m0 and m1 is even and the other is odd. Also similar to Case 1.

THEOREM 2.1. e∗k,n(m) = Fk(m) for k = 2, 3, 4.

Proof Since a k-ary n-cube contains k composite subcubes, each being a k-ary (n − 1)-
cube, assume that mi nodes are chosen in the ith composite subcube, for i = 0, . . . , k − 1
and

∑k−1
i=0 mi = m. First we prove by induction on m that e∗k,n(m) ≤ Fk(m). When

664

m=4m=3 m=5 m=6

Figure 2: Subgraphs of a 2-ary n-cube achieving internal edge count F2(m)

m = 0, 1, e∗k,n(m) = Fk(m) = 0. Assume that the inequality holds for ≤ m − 1. Now
consider m.

e∗k,n(m) ≤ max
∀

P
mi=m

{
k−1∑
i=0

e∗k,n(mi) + tk(m0, . . . ,mk−1)} (Property 1.5)

≤ max
∀

P
mi=m

{
k−1∑
i=0

Fk(mi) + tk(m0, . . . ,mk−1)} (Inductive hypothesis)

≤ Fk(m) (Lemma 2.1).

Next we show that there is a subgraph Sm with exactly Fk(m) edges. Consider the k
composite subcubes, each being a k-ary (n− 1)-cube, in the k-ary n-cube. We allocate dm

k e
nodes into each of the first m mod k composite subcubes and bm

k c nodes into each of the
remaining composite subcubes; the same method is then used recursively to allocate the
nodes in each composite subcube. The total number of edges between these k subgraphs is
given by Property 1.5.

Figure 2 illustrates optimal subgraphs of a 2-ary n-cube for m = 3, 4, 5, 6.

3 Results for k ≥ 5

Given that essentially the same approach defines the structure of optimal subgraphs for
three successive values of k, one might suspect a general pattern for all k. It turns out
that this is not the case. Consider the case of k = 5, m = 6. If we partition (in a certain
dimension) into one subgraph of two nodes and four subgraphs of one node each we achieve
six internal edges (a ring of five nodes, with one extra node hanging off the ring). However,
it is possible to embed the six node graph illustrated in Figure 2 into the 5-ary n-cube, and
achieve seven internal edges. An ability to embed subgraphs of a 2-ary n-cube into a k-ary
n-cube turns out to be what is needed to characterize the optimal subgraphs of a k-ary
n-cube with m nodes, when k ≥ 5 and m ≤ 2n (This second condition is needed in order to
embed an optimal subgraph of a hypercube into k-ary n-cubes).

LEMMA 3.1. F2(m) ≥
∑k−1

i=0 F2(mi) + tk(m0, . . . ,mk−1) for
∑k−1

i=0 mi = m and any k ≥ 5.

Proof Similar to the proof of Lemma 2.1.

THEOREM 3.1. e∗k,n(m) = F2(m) for k ≥ 5 and m ≤ 2n.

Proof Similar to the proof of Theorem 2.1, using Lemma 3.1 instead of Lemma 2.1.
What is e∗k,n(m) when m > 2n? For this case we assume that either k is so large relative

to m that an optimal subgraph cannot include wrap-around edges, or that the graph of

665

2
(−1)l l l(−1)

dim 2

dim 1

Figure 3: Construction of C2(m)

2
l(−1)

3
(−1)ll

2
(−1)l

dim 1

dim 2

dim 3

l

Figure 4: Construction of C3(m)

interest is a mesh (without wrap-around edges) whose local structure is like that of a k-
ary n-cube. In other words, we now also consider multi-dimensional rectangular meshes,
structures we will call n–D meshes.

Intuition tells us that the maximum number of internal edges e∗k,n(m) may be reached
when the m nodes are placed as tightly as possible to form a “cubish” polyhedron. In this
section, we report that this intuition is correct. In any dimension i, a subgraph of m nodes
can be viewed as consisting of layers, each of which contains nodes with the same coordinate
in dimension i. Furthermore, there may be edges between adjacent layers.

DEFINITION 3.1. Let m be such that li−1(l − 1)n−i+1 < m ≤ li(l − 1)n−i for some l ≥ 2
and some 1 ≤ i ≤ n. Let δ = m− li−1(l− 1)n−i+1. The n–D cubish polyhedron of m nodes
in a k-ary n-cube, denoted as Cn(m), can be defined recursively as follows.

• C1(m) is a line of m nodes.

• To construct Cn(m), we start with an l × · · · × l︸ ︷︷ ︸
i−1

× (l − 1)× · · · × (l − 1)︸ ︷︷ ︸
n−i+1

n–D rectangle

(or cube if i = 1). For the remaining δ nodes, we construct an (n−1)–D layer Cn−1(δ)
and add it on the top of the n–D rectangle (or cube) in dimension i.

The above procedure for constructing Cn(m) is very much like making a ball of yarn.
The idea is to fill in each side (dimension) with yarn (nodes), one side (dimension) at a time.
Figure 3 shows the construction of C2(m), and Figure 4 shows the construction of C3(m).
Let en(m) be the number of edges in the cubish polyhedron Cn(m). We next prove that
en(m) = e∗k,n(m).

THEOREM 3.2. The edge count en(m) in a cubish polyhedron Cn(m) is the maximum among
all subgraphs Sm of m nodes in a k-ary n-cube (or in a n–D mesh), when wrap-around edges
can be discounted.

666

2

3

3

4

5

6

6

7

6

5

3

6

7

4

3

2

Figure 5: Rearrange Sm (in the k-ary 2-cube) without decreasing e(Sm)

Proof We prove by induction on n. When n = 1, the theorem is trivially true. Assume
that the theorem holds true for n − 1. Now consider the case of n. Let m be such that
li−1(l − 1)n−i+1 < m ≤ li(l − 1)n−i for some l ≥ 2 and some 1 ≤ i ≤ n. Let δ =
m− li−1(l− 1)n−i+1. Let Sm be any subgraph of m nodes with e(Sm) internal edges in the
k-ary n-cube. We wish to prove that e(Sm) ≤ en(m).

We can view Sm as having several (n− 1)-D layers of nodes stacked on each other in a
certain dimension. Rearrange the order of the layers by sizes (node counts) and within each
layer rearrange the nodes into an (n−1)-D cubish polyhedron. See Figure 5 for an example.
The numbers in the figure are the sizes of the layers. If after this rearrangement there are
h layers and si is the size of the ith layer with s1 ≤ s2 ≤ · · · ≤ sh, then by the inductive
hypothesis we have

e(Sm) ≤ (en−1(s1) + s1) + (en−1(s2) + s2) + · · ·+ (en−1(sh−1) + sh−1) + en−1(sh).

Note that s1 + s2 + · · ·+ sh−1 is the number of edges (legs) between adjacent layers.
We have a few observations about the new subgraph obtained. First, layers in each

dimension (not just the dimension chosen in the rearrangement) are stacked on each other
by sizes. Second, h ≥ l. Assume that h ≤ l − 1 for all dimensions. We must have m ≤
(l − 1)n, which is impossible. Third, s1 ≤ li−1(l − 1)n−i. Suppose not. We must have
m = s1 + · · ·+ sh ≥ hs1 ≥ ls1 > li(l − 1)n−i, which is impossible.

Let us go back to the induction step, in which we assume that en−1(m) is maximum
and wish to prove that en(m) is maximum. We need another induction on m to prove this.
When m = 1, 2, en(m) is obviously maximum. Assume that en(j) is maximum for j ≤ m−1.
Now consider the case j = m. We know by the inductive hypothesis that

e(Sm) ≤ (en−1(s1) + s1) + en(m− s1).

By Definition 3.1, we know that Cn(m− δ) is in fact an n-D mesh with li−1(l− 1)n−i+1

nodes. Cn(m − δ) can also be viewed as having l (or l − 1 if i = 1) layers stacked on each
other, where each layer is an (n− 1)-D mesh and has L nodes. Clearly,

L =
{

(l − 1)n−1 if i = 1;
li−2(l − 1)n−i+1 if i ≥ 2.

We can show that s1 < L + δ. Suppose not. We must have m ≥ hs1 ≥ ls1 ≥ lL + lδ >
lL+ δ ≥ m, which is impossible. To continue, we consider two cases.

Case 1. s1 ≤ δ. We must have li−1(l − 1)n−i+1 ≤ m − s1 < li(l − 1)n−i. Let m − s1 =
li−1(l − 1)n−i+1 + δ′. Then s1 + δ′ = δ. So

en(m− s1) = (en−1(δ′) + δ′) + en(li−1(l − 1)n−i+1)

667

and
en−1(s1) + en−1(δ′) ≤ en−1(δ).

Therefore,

e(Sm) ≤ (en−1(s1) + s1) + en(m− s1)
= (en−1(s1) + s1) + (en−1(δ′) + δ′) + en(li−1(l − 1)n−i+1)
≤ (en−1(δ) + δ) + en(li−1(l − 1)n−i+1)
= en(m).

Case 2. s1 > δ. This case is more complicated than the previous one. Due to the page
limit of this paper, details are omitted but can be found in the full report [3].

4 Applications to Partitioning

There are different ways in which k-ary n-cubes are appropriate descriptions of parallel
computations. One way is when at the lowest level the communication pattern of the
computation is that of a k-ary n-cube. Another is when the communication patterns reflect a
k-ary n-cube because the computation is about a k-ary n-cube. For instance, the computation
may be a direct-execution simulation of an application running on an architecture whose
communication network is a k-ary n-cube [6].

The results so far, especially the characterization of subgraphs with maximum internal
edge count, despite having theoretical interest, have practical applications to partitioning.
The first application arises when one wants to obtain an unequal bisection of a k-ary n-cube
with the minimum number of edge cuts. Assume that one of the subgraph has m nodes.
Then we have that the minimum number of edge cuts between the two parts of the k-ary
n-cube is mdk,n − 2e∗k,n(m).

Our results may also be used in the context of computing lower bounding functions in
branch-and-bound algorithms for partitioning. Consider a fine grained data parallel compu-
tation whose communication structure can be viewed as a k-ary n-cube, or related structure.
The nodes of the graph are weighted individually to reflect computation costs, the edges of
the graph are also weighted to reflect communication costs. We wish to find a rectilinear
partitioning [5] of the graph into P subgraphs such that the bottleneck cost is minimized.
A rectilinear partition is one in which the separating cuts are all hyperplanes of the form
xi = cij , a constant. Since finding the optimal rectilinear partition is intractable for dimen-
sions larger than 2, branch-and-bound algorithms [1] are often used to obtain near-optimal
partitions. The ability to compute e∗k,n(m) efficiently provides a way to establish a tight
lower bounding function needed to direct the search in the branch-and-bound procedure.
The details will not be discussed here.

Another application of our results is to identify optimal partitions (with respect to the
bottleneck metric), even when those partitions are not entirely regular. Consider the problem
of partitioning an 8-ary 2-cube (8×8 torus) into 13 subgraphs, assuming that all nodes have
common computation weight w and all edges have unit communication cost. The problem
clearly does not divide evenly. The minimal cost to a processor of having m nodes is
wm + C(m), where C(m), the external edge count of an optimal subgraph with m nodes,
is 4m − 2e∗8,2(m); note that the cost function increases monotonically in m. The processor
with the most nodes assigned will have at least d64/13e = 5 nodes. The optimal subgraph
of the 8-ary 2-cube with 5 nodes is a square, with an attached singleton node. As illustrated
in Figure 6, it is possible to nearly tessellate the 8-ary 2-cube with this optimal subgraph,

668

Figure 6: Optimal partition of an 8-ary 2-cube into 13 subgraphs

the only exception being one subgraph (the center square). The optimality of this partition
derives from the fact that wm+ C(m) is monotone increasing in m, so that the bottleneck
cost max{wm1 +C(m1), . . . , wm13 +C(m13)} is minimized when the mi’s are nearly equal.
The partition shown achieves the lower bound of 5w + C(5) = 5w + 10.

5 Conclusions

This paper explores the combinatorial properties of k-ary n-cubes, and, in particular, de-
scribes how to construct subgraphs that are optimal in the sense of maximizing the number
of internal edges, thus minimizing the number of external edges, given m nodes in the sub-
graph. While these results have combinatorial interest, they also have serious applications
to partitioning parallel computations. k-ary n-cubes arise frequently in studies of parallel
processing. The results and applications developed here help us to better understand these
important graphs.

References

[1] G. Brassard and P. Bratley, Algorithms: Theory and Practice, Prentice-Hall, 1988.

[2] W. J. Dally, Performance analysis of k-ary n-cube interconnection networks, IEEE
Trans. on Comput. 39, 775–785 (1990).

[3] W. Mao and D. M. Nicol, On k-ary n-cubes: Theory and Applications, Tech. Rep.,
College of William and Mary, Williamsburg, Virginia, 1994.

[4] D. M. Nicol and W. Mao, On bottleneck partitioning of k-ary n-cubes, submitted for
publication.

[5] D. M. Nicol, Rectilinear partitioning of irregular data parallel computations. Journal
of Parallel and Distributed Computing, to appear.

[6] P. Dickens, P. Heidelberger and D. M. Nicol, A distributed memory LAPSE: Parallel
simulation of message-passing programs. Proceedings of the 8th Workshop on Parallel
and Distributed Simulation, 32–38 (1994).

669

