
10 Reducibility
10.1 What is reducibility?
Reading: Sipser 5 (pp. 187-188)
We say that problem A reduces (or is reducible) to problem B, if we can use a solution to B to solve A (i.e., if B is
decidable/solvable, so is A.).
We may use reducibility to prove undecidability as follows: Assume we wish to prove problem B to be undecidable
and we know a problem A that has already been proved undecidable. We use contradiction. Assume B is decidable.
Then there exists a TM MB that decides B. If we can use MB as a sub-routine to construct a TM MA that decides A, we
have a contradiction. The construction of TM MA using TM MB establishes that A is reducible to B.

10.2 Another proof that AT M is not decidable
Recall AT M = {< M,w > |w ∈ L(M)}. Thus AT M = {< M,w > |w "∈ L(M)}. Recall AD = {wi|wi "∈ L(Mi)}.
Proof: Assume that AT M is decidable. Then AT M must be decidable. Let M be the TM that decides AT M . We will
construct a TM MD that would decide AD, an undecidable language. MD works as follows: For input wi (the ith binary
string in the lexicographic sequence of all binary strings), it first makes a string wi111wi and then feed it to M. We
notice that wi111wi ∈ L(M) iff wi111wi ∈ AT M iff wi111wi "∈ AT M iff wi "∈ L(Mi) (recall that Mi is the TM with code
wi) iff wi ∈ L(MD). So MD accepts wi iff M accepts wi111wi.
We just proved that AD is reducible to AT M .

10.3 The halting problem
Reading: Sipser 5.1 (pp. 188-189)
Let HALTT M = {< M,w > |M is a TM and M halts on string w}.
HALTT M is Turing-recognizable since it can be recognized by TM U .
HALTT M is not Turing-decidable.
Proof: We will reduce AT M to HALTT M . Assume TM R decides HALTT M . We construct TM S that decides AT M as
follows: On input < M,w > where M is a TM and w is a string, S first run TM R on < M,w >, if R rejects, rejects. If
R accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, reject.

10.4 Undecidable problems about Turing machines
Reading: Sipser 5.1 (pp. 189-192)

• The following problems about Turing machines are not decidable:

– Whether L(M) = /0 for any TM M. (See proofs below.)
– Whether L(M1) = L(M2) for any two TMs M1 and M2.
– Whether L(M) is finite for any TM M

– Whether ε ∈ L(M) for any TM M.
– Whether L(M) = Σ∗ for any TM M.

• ET M = {< M > |M is a TM and L(M) = /0} is undecidable.

Proof: Reduce AT M to ET M . Assume that ET M is decidable. Let R be the TM that decides ET M . We use R to
construct TM S that decides AT M as follows: On input < M,w >,

– Construct TM M1 which on input x, rejects if x "= w and simulates M on w if x = w.
– Run R on < M1 >.
– If R accepts, reject and if R rejects, accept.

• NET M = {< M > |M is a TM and L(M) "= /0} is Turing-recognizable but not decidable.

Proof: To prove that NET M is Turing-recognizable, we design a TM MNE to recognize NET M . On input < M >,
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– MNE systematically generates strings w: ε, 0, 1, 00, 01, . . . and use the universal TM U to test whether M
accepts w. (What if M never halts on w? Run M on w1, . . . ,wi for i steps for i = 1, . . ..)

– If M accepts some w, then MNE accepts its own input M.

We next prove that NET M is not decidable. Assume that there is a TM MNE that decides NET M , i.e., TM MNE
determines whether L(M) "= /0 for any TM M. We will use MNE to construct a TM Mu that would decides the
undecidable AT M . On input < M,w >,

– Mu constructs a new TM M′, which rejects if its input is not w and mimics M if its input is w.

– M′ is then fed to MNE .

– MNE accepts its input M′ iff L(M′) "= /0 iff M accepts w.

• ET M is not Turing-recognizable.

• Rice’s Theorem: Every nontrivial property of the Turing-recognizable languages is undecidable.

10.5 Other undecidable problems
Reading: Sipser 5.2 (pp. 199-205)

• Post’s correspondence problem is undecidable.

We formulate the Post’s Correspondence Problem as a puzzle.

Post’s Correspondence Problem (PCP)

INSTANCE: P = { t1
b1

, t2
b2

, . . . , tk
bk

}, where t1, t2, . . . , tk and b1,b2, . . . ,bk are strings over alphabet Σ. (P can be
regarded as a collection of dominos, each containing two strings, with one stacked on top of the other.)

QUESTION: Does P contain a match, i.e., i1, i2, . . . , il ∈ {1,2, . . . ,k} with l ≥ 1 such that ti1ti2 · · · til = bi1bi2 · · ·bil ?

Equivalently, defined as a language, we have LPCP = {< P > |P is an instance of PCP with a match}.

For example, for P1 = { b
ca , a

ab , ca
a , abc

c }, sequence 2,1,3,2,4 indicates a match. For P2 = { abc
ab , ca

a , acc
ba }, there is

no match.

• Any nontrivial property that involves what a program does is undecidable. For example, whether a program
prints a certain message, whether it terminates, or whether it calls a certain function.

• It is undecidable whether a CFG is ambiguous.

• Let G1 and G2 be CFG’s and let R be a regular expression. It is undecidable whether

– L(G1)∩L(G2) = /0.

– L(G1) = L(G2).
– L(G1) = L(R).
– L(G1) = Σ∗.
– L(G1)⊆ L(G2).
– L(R)⊆ L(G1).
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