10 Reducibility

10.1 What is reducibility?

Reading: Sipser 5 (pp. 187-188)

We say that problem A reduces (or is reducible) to problem B, if we can use a solution to B to solve A (i.e., if B is decidable/solvable, so is A.).

We may use reducibility to prove undecidability as follows: Assume we wish to prove problem *B* to be undecidable and we know a problem *A* that has already been proved undecidable. We use contradiction. Assume *B* is decidable. Then there exists a TM M_B that decides *B*. If we can use M_B as a sub-routine to construct a TM M_A that decides *A*, we have a contradiction. The construction of TM M_A using TM M_B establishes that *A* is reducible to *B*.

10.2 Another proof that A_{TM} is not decidable

Recall $A_{TM} = \{\langle M, w \rangle | w \in L(M)\}$. Thus $\overline{A_{TM}} = \{\langle M, w \rangle | w \notin L(M)\}$. Recall $A_D = \{w_i | w_i \notin L(\underline{M}_i)\}$. Proof: Assume that A_{TM} is decidable. Then $\overline{A_{TM}}$ must be decidable. Let \overline{M} be the TM that decides $\overline{A_{TM}}$. We will construct a TM M_D that would decide A_D , an undecidable language. M_D works as follows: For input w_i (the *i*th binary string in the lexicographic sequence of all binary strings), it first makes a string $w_i 111w_i$ and then feed it to \overline{M} . We notice that $w_i 111w_i \in L(\overline{M})$ iff $w_i 111w_i \in \overline{A_{TM}}$ iff $w_i 111w_i \notin A_{TM}$ iff $w_i \notin L(M_i)$ (recall that M_i is the TM with code w_i) iff $w_i \in L(M_D)$. So M_D accepts w_i iff \overline{M} accepts $w_i 111w_i$.

10.3 The halting problem

Reading: Sipser 5.1 (pp. 188-189) Let $HALT_{TM} = \{ < M, w > | M \text{ is a TM and } M \text{ halts on string } w \}$. $HALT_{TM}$ is Turing-recognizable since it can be recognized by TM U. $HALT_{TM}$ is not Turing-decidable.

 $HALI_{TM}$ is not Turing-decidable.

Proof: We will reduce A_{TM} to $HALT_{TM}$. Assume TM *R* decides $HALT_{TM}$. We construct TM *S* that decides A_{TM} as follows: On input $\langle M, w \rangle$ where *M* is a TM and *w* is a string, *S* first run TM *R* on $\langle M, w \rangle$, if *R* rejects, rejects. If *R* accepts, simulate *M* on *w* until it halts. If *M* accepts, accept; if *M* rejects, reject.

10.4 Undecidable problems about Turing machines

Reading: Sipser 5.1 (pp. 189-192)

- The following problems about Turing machines are not decidable:
 - Whether $L(M) = \emptyset$ for any TM *M*. (See proofs below.)
 - Whether $L(M_1) = L(M_2)$ for any two TMs M_1 and M_2 .
 - Whether L(M) is finite for any TM M
 - Whether $\varepsilon \in L(M)$ for any TM *M*.
 - Whether $L(M) = \Sigma^*$ for any TM *M*.
- $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Reduce A_{TM} to E_{TM} . Assume that E_{TM} is decidable. Let *R* be the TM that decides E_{TM} . We use *R* to construct TM *S* that decides A_{TM} as follows: On input $\langle M, w \rangle$,

- Construct TM M_1 which on input x, rejects if $x \neq w$ and simulates M on w if x = w.
- Run *R* on $< M_1 >$.
- If *R* accepts, reject and if *R* rejects, accept.
- $NE_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \neq \emptyset \}$ is Turing-recognizable but not decidable.

Proof: To prove that NE_{TM} is Turing-recognizable, we design a TM M_{NE} to recognize NE_{TM} . On input $\langle M \rangle$,

- M_{NE} systematically generates strings w: ε , 0, 1, 00, 01, ... and use the universal TM U to test whether M accepts w. (What if M never halts on w? Run M on w_1, \ldots, w_i for i steps for $i = 1, \ldots$)
- If M accepts some w, then M_{NE} accepts its own input M.

We next prove that NE_{TM} is not decidable. Assume that there is a TM M_{NE} that decides NE_{TM} , i.e., TM M_{NE} determines whether $L(M) \neq \emptyset$ for any TM M. We will use M_{NE} to construct a TM M_u that would decides the undecidable A_{TM} . On input $\langle M, w \rangle$,

- M_u constructs a new TM M', which rejects if its input is not w and mimics M if its input is w.
- M' is then fed to M_{NE} .
- M_{NE} accepts its input M' iff $L(M') \neq \emptyset$ iff M accepts w.
- E_{TM} is not Turing-recognizable.
- Rice's Theorem: Every nontrivial property of the Turing-recognizable languages is undecidable.

10.5 Other undecidable problems

Reading: Sipser 5.2 (pp. 199-205)

• Post's correspondence problem is undecidable.

We formulate the Post's Correspondence Problem as a puzzle.

Post's Correspondence Problem (PCP)

INSTANCE: $P = \{\frac{t_1}{b_1}, \frac{t_2}{b_2}, \dots, \frac{t_k}{b_k}\}$, where t_1, t_2, \dots, t_k and b_1, b_2, \dots, b_k are strings over alphabet Σ . (*P* can be regarded as a collection of dominos, each containing two strings, with one stacked on top of the other.)

QUESTION: Does *P* contain a match, i.e., $i_1, i_2, ..., i_l \in \{1, 2, ..., k\}$ with $l \ge 1$ such that $t_{i_1}t_{i_2}\cdots t_{i_l} = b_{i_1}b_{i_2}\cdots b_{i_l}$? Equivalently, defined as a language, we have $L_{PCP} = \{ < P > | P \text{ is an instance of PCP with a match} \}$.

For example, for $P_1 = \{\frac{b}{ca}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c}\}$, sequence 2,1,3,2,4 indicates a match. For $P_2 = \{\frac{abc}{ab}, \frac{ca}{a}, \frac{acc}{ba}\}$, there is no match.

- Any nontrivial property that involves what a program does is undecidable. For example, whether a program prints a certain message, whether it terminates, or whether it calls a certain function.
- It is undecidable whether a CFG is ambiguous.
- Let G_1 and G_2 be CFG's and let R be a regular expression. It is undecidable whether
 - $L(G_1) ∩ L(G_2) = ∅.$ - L(G_1) = L(G_2). - L(G_1) = L(R). - L(G_1) = Σ*. - L(G_1) ⊆ L(G_2). - L(R) ⊆ L(G_1).