10 Reducibility

10.1 What is reducibility?

Reading: Sipser 5 (pp. 187-188)

We say that problem A reduces (or is reducible) to problem B, if we can use a solution to B to solve A (i.e., if B is
decidable/solvable, so is A.).

We may use reducibility to prove undecidability as follows: Assume we wish to prove problem B to be undecidable
and we know a problem A that has already been proved undecidable. We use contradiction. Assume B is decidable.
Then there exists a TM Mp that decides B. If we can use Mp as a sub-routine to construct a TM My that decides A, we
have a contradiction. The construction of TM M4 using TM Mp establishes that A is reducible to B.

10.2 Another proof that A7), is not decidable

Recall Ay = {< M,w > |w € L(M)}. Thus Appy = {< M,w > |w & L(M)}. Recall Ap = {w;|w; & L(M;)}.

Proof: Assume that A7y is decidable. Then A7), must be decidable. Let M be the TM that decides Ary,. We will
construct a TM Mp that would decide Ap, an undecidable language. Mp works as follows: For input w; (the ith binary
string in the lexicographic sequence of all binary strings), it first makes a string w;111w; and then feed it to M. We
notice that w;111w; € L(M) iff w;111w; € Agyy iff wi111w; & Aryg iff w; & L(M;) (recall that M; is the TM with code
w;) iff w; € L(Mp). So Mp accepts w; iff M accepts w;111w;.

We just proved that Ap is reducible to Ary,.

10.3 The halting problem

Reading: Sipser 5.1 (pp. 188-189)

Let HALTry = {< M,w > |[M is a TM and M halts on string w}.

HALTr)y is Turing-recognizable since it can be recognized by TM U.

HALTryy is not Turing-decidable.

Proof: We will reduce A7y to HALTry. Assume TM R decides HALTry;. We construct TM S that decides A7y as
follows: On input < M,w > where M is a TM and w is a string, S first run TM R on < M,w >, if R rejects, rejects. If
R accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, reject.

10.4 Undecidable problems about Turing machines
Reading: Sipser 5.1 (pp. 189-192)

¢ The following problems about Turing machines are not decidable:

Whether L(M) = 0 for any TM M. (See proofs below.)
Whether L(M;) = L(M>) for any two TMs M; and M.
Whether L(M) is finite for any TM M

Whether € € L(M) for any TM M.

Whether L(M) = £* for any TM M.

o ™ = 1< > 1S a an = 1S undaeciaable.
Ery = {<M >|MisaTM and L(M) = 0} is undecidabl

Proof: Reduce A7y to E7ps. Assume that E7yy is decidable. Let R be the TM that decides E7);. We use R to
construct TM § that decides Aty as follows: On input < M, w >,

— Construct TM M| which on input x, rejects if x # w and simulates M on w if x = w.
— RunRon <M >.

— If R accepts, reject and if R rejects, accept.

® NEry ={<M>|MisaTM and L(M) # 0} is Turing-recognizable but not decidable.
Proof: To prove that NEr), is Turing-recognizable, we design a TM Mg to recognize NE7y. On input < M >,

17

— MyE systematically generates strings w: €, 0, 1, 00, 01, ... and use the universal TM U to test whether M
accepts w. (What if M never halts on w? Run M on wy,...,w; foristepsfori=1,....)

— If M accepts some w, then Myg accepts its own input M.
We next prove that NE7), is not decidable. Assume that there is a TM Myg that decides NEryy, i.e., TM Myg
determines whether L(M) # 0 for any TM M. We will use Myg to construct a TM M, that would decides the
undecidable Arys. On input < M, w >,

— M, constructs a new TM M’, which rejects if its input is not w and mimics M if its input is w.

— M’ is then fed to Myg.

— Myg accepts its input M” iff L(M') # 0 iff M accepts w.

® Ery is not Turing-recognizable.

¢ Rice’s Theorem: Every nontrivial property of the Turing-recognizable languages is undecidable.

10.5 Other undecidable problems
Reading: Sipser 5.2 (pp. 199-205)

¢ Post’s correspondence problem is undecidable.
We formulate the Post’s Correspondence Problem as a puzzle.
Post’s Correspondence Problem (PCP)
INSTANCE: P = {1’7—1], 2—22, o l% , where t1,t2,...,t and by, by, ... by are strings over alphabet . (P can be
regarded as a collection of dominos, each containing two strings, with one stacked on top of the other.)
QUESTION: Does P contain a match, i.e., i1,i2,...,i; € {1,2,...,k} with > 1 such that #; t;, - - - t;, = b;, bj, - - - b;,?
Equivalently, defined as a language, we have Lpcp = {< P > |P is an instance of PCP with a match}.

b a ca abc
ca’ab’ a’ ¢

}, sequence 2, 1,3,2,4 indicates a match. For P, = {42¢ <a dcc} there js

For example, for P; = ab’ a’ ba

no match.

¢ Any nontrivial property that involves what a program does is undecidable. For example, whether a program
prints a certain message, whether it terminates, or whether it calls a certain function.

¢ It is undecidable whether a CFG is ambiguous.

¢ Let G and G, be CFG’s and let R be a regular expression. It is undecidable whether

— L(GI)NL(Gy) = 0
- L(G1) = L(G).

- L(G1) =L(R)

_ LG =%

- L(G1) CL(G)

- L(R) CL(Gy)

18

