68 CHAPTER 2. FINITE AUTOMATA

Exercise 2.3.5: In the only-if portion of Theorem 2.12 we omitted the Eomm
by induction on |w| that if 6p(go, w) = p then dn(go,w) = {p}. Supply this
proof.

Exercise 2.3.6: In the box on *Dead States and DFA’s Missing Some Tran-
sitions,” we claim that if V is an NFA that has at most one choice of state for
any state and input symbol (i.e., 6{g, a) never has size greater than 1}, then the
DFA D constructed from N by the subset' construction has exactly the states
and transitions of N plus transitions to a new dead state whenever N is missing
a transition for a given state and input symbol. Prove this contention.

Exercise 2.3.7: In Example 2.13 we claimed that the NFA ¥ is in'state g,
for i =1,2,...,n, after reading input sequence w if and only if the ith symbol
from the end of w is 1. Prove this claim.

2.4 An Application: Text Search

In this section, we shall see that the abstract study of the previous section,
where we considered the “problem” of deciding whether a sequence of bits ends
in 01, is actually an excellent model for several real problems that appear in
applications such as Web search and extraction of information from text.

2.4.1 ‘Finding Strings in Text

A common problem in the age of the Web and other on-line text Hvam.#oﬁmm
is the following. Given a set of words, find all documents that nn.BS.E one
(or all) of those words. A search engine is a popular example of this process.
The search engine uses a particular technology, called inverted indezes, where
for each word appearing on the Web (there are 100,000,000 different words),
a list of all the places where that word occurs is stored. Machines éwﬁ.p very
large amounts of main memory keep the most common of these lists available,
allowing many people to search for documents at once.

Inverted-index techniques do not make use of finite automata, but they also
take very large amounts of time for crawlers to copy the Web and set up the
‘indexes. . There are a number of related applications that are unsuited for in-
verted indexes, but sre good applications for automaton-based techniques. The
‘characteristics that make an application suitable for searches that use automata
are:

1. The repository on which the search is conducted is rapidly changing. For
example:

{a) Every day, news analysts want to search the day’s on-line news arti-
' - -cles for relevant topics. For example, a financial mbmpMmﬁ.Eme search
for certain stock ticker symbols or names of companies.

24. AN APPLICATION: TEXT SEARCH 69

(b) A “shopping robot” wants to search for the current prices charged
for the items that its clients request. The robot will retrieve current
catalog pages from the Web and then search those pages for words
that suggest a price for a particular item.

2. The documents to be searched cannot be cataloged. For example, Ama-
zon.com does not make it easy for crawlers to find all the pages for all the
books that the company sells. Rather, these pages are generated “on the
fly” in response to queries. However, we could send a query for books on
a certain topic, say “finite automata,” and then search the pages retrieved
for certain words, e.g., “ekcellent” in a review portion.

2.4.2 Nondeterministic Finite Automata for Text Search

Suppose we are given a set of words, which we shall call the keywords, and we
want to find occurrences of any of these words. In applications such as these, a
useful way to proceed is to design a nondeterministic finite automaton, which
signals, by entering an accepting state, that it has seen one of the keywords.
The text of a document is fed, one character at a time to this NFA; which then

recognizes occurrences of the keywords in this text., There is & simple form to
an NFA that recognizes a set of keywords,

1. There is a start state with a transition to itself on every input symbol,
e.g. every printable ASCIT character if we are examining text. Intuitively,
the start state represents a “guess” that we have not yet begun to see one
of the keywords, even if we have seen some letters of one of these words.

2. For each keyword ayag -« - az, there are & states, say gi,¢s,...,qs. There
is a transition from the start state to 71 on symbol a;, a transition from
g1 $0 g on symhol @y, and &0 on. The state gx 18 an accepting state and
indicates that the keyword ajas - - - ax has been found.

Example 2.14: Suppose we want to design an NFA to recognize occurrences
of the words web and ebay. The transition diagram for the NFA designed using
the rules above is in Fig. 2.16. State 1 is the start state, and we use ¥ to stand
for the set of all printable ASCII characters. States 2 through 4 have the job
of recognizing web, while states 5 through 8 recognize ebay. 0O

Of course the NFA is not a program. We have two major choices for an
wﬂbymﬁmﬂmﬁg ‘of this NFA, : . :

1. Write a program that simulates this NFA by computing the set of states

it is in after reading each input symbol. The simulation was suggested in
Fig. 2.10. o

2. Convert the NFA to an equivalent DFA using the subset construction.
Then simulate the DFA directly.

70 CHAPTER 2. FINITE AUTOMATA

Figure 2.16: An NFA that searches for the words web and ebay

Some text-processing programs, such as advanced forms of the UNIX grep
command (egrep and fgrep) actually use a mixture of these two approaches.
However, for our purposes, conversion to a DFA is easy and is guaranteed not
to increase the number of states. ’ ’

2.4.3 A DFA to w‘mnomium a Set of Keywords

We can apply the subset construction to any NFA. However, when we apply that
coustruction to an NFA that was designed from a set of keywords, according to
the strategy of Section 2.4.2, we find that the number of states of the DFA is
never greater than the number of states of the NFA. Since in the worst cage the
number of states exponentiates as we go to the DFA, this obgervation is good
news and explains why the method of designing an NFA for keywords and then
constructing a DFA from it is used frequently., The rules for constructing the
set of DFA states is as follows.

a) If'q is the start state of the NFA, then {g} is cne of the states of the
DFA. ’

b) Suppose p is one of the NFA states, and it is reached from the start state

along a path whose symbols are aja; - - am. Then one of the DFA states
. 15 the set of NFA states consisting of: ,

1. da.
2 p.

3. Every other state of the NFA that is reachable from ¢o by following
a path whose labels are a suffix of gqas - - - @m, that is, any sequence
of symbols of the form LY TRy

Note that in general, there will be one DFA state for each NFA state p. However,
in step (b), two states may actually yield the same set of NFA states, and thus
become one state of the DFA. For example, if two of the keywords begin with
the same letter, say a, then the two NFA states that are reached from go by an

2.4. ‘AN APPLICATION: TEXT SEARCH 71

arclabeled o will yield the same set of NFA. states .m.Em thus get %mnﬂma inthe
DFA. :

- Figure 2.17: Conversion of the NFA from m.Hm 2.16 to a DFA

Example 2.15: The construction of a DFA from the NFA of Fig. 2.16 is shown
in Fig. 2.17. Each of the states of the DFA is located in the same position as
the state p from which it is derived using rule (b) above. For example, consider
the state 135, which is our shorthand for {1,3.5}. This state was constructed
from state 3. It includes the start state, 1, because every set of the DFA states
does. It also includes state 5 because that state is reached from state 1 by a
suffix, e, of the string we that reaches state 3 in Fig. 2.186.

The transitions for each of the DFA states may be calculated aceording to
the subset construction. However, the rule is simple. From any set of states that
includes the start state g; and some other states {p1,02,...,ps}, determine, for
each symbol =, where the p;’s go'in the NFA, and let this DFA state have g
transition labeled @ to the DFA state consisting of go and all the targets of the

72 . CHAPTER 2. FINITE AUTOMATA

pi's on symbol . On all symbols © such that there are no transitions out of
any of the pi’s on symbol z, let this DFA state have a transition on = to that
state of the DFA consisting of go and all states that are reached from gp in the
NFA following an arc labeled z.

For instance, consider state 135 of Fig. 2.17. The NFA of Fig. 2.16 has
transitions on symbol b from states 3 and 5 to states 4 and 6, respectively.
Therefore. on symbol b, 135 goes to 146. On symbol e, there are no transitions
of the NFA out of 3 or 5, but there is a transition from 1 to 5. Thus, in the
DFA, 135 goes to 15 on input e. Similarly, on input w, 135 goes to 12.

On every other symbol &, there are no transitions out or 3 or 5, and state 1
goes only to itself. Thus, there are transitions from 135 to 1 on every symbol
in ¥ other than b, e, and w. We use the notation & — b ~ e — w to represent
this set, and use similar representations of other sets in which a few symbols

are removed from £. [‘ .

2.4.4 FExercises for mmnﬂcw 2.4 K
Exercise 2.4.1: Design Z_.ﬂ%m to recognize the momoﬁﬁhm sets om ms,Emm.
* a) abc, abd, and aacd. Assume the alphabet is {a,d,¢, &.
b) 0101, 101, and 011, &
¢) ab, be, and ca. Assume the alphabet is {a, b,c}.
Exercise 2.4.2: 00ﬁ<m3 each of your NFA’s from Exercise 2.4.1 to DFA’s.

2.5 Finite Automata With Epsilon-Transitions

We shall now introduce another extension of the finite antomaton. The new -

“fenture” is that we allow a transition on €, the empty string. In effect, an
NFA is allowed to make a transition spontaneously, without receiving an input
symbol. Like the nondeterminism added in Section 2.3, this new capability does
not expand the class of languages that can be accepted by finite automata, but it
does give us some added “programming convenience.” We shall also see, when
we take up regular expressions in Séction 3.1,'how NFA’s with e-transitions,
which we call e-NFA’s, are closely related to regular expressions and useful
in proving the equivalence between the &mmmmm OW wmhmmmmmm m.nnmvwmm by finite
automata and by regular expressions.

2.5.1 Uses of ¢-Transitions o .

We shall begin with an informal treatment of e NFA’s, using transition diagrams
with ¢ allowed as a label. In the examples to follow, think of the automaton
as accepting those sequences of labels-along paths from the start state to an
accepting state. However, each e along a path is “invisible”; i.e., it contributes
nothing to the string along the path.

2.5. FINITE AUTOMATA WITH EPSILON-TRANSITIONS 73

mungw_muwmub m_pm mHmmmmbm,ZSP gma manmvﬁm mmnpﬁﬂﬁcﬂwmnmoou.
sisting of: :

1. An optional + or — sign,

2. A string of digits,

3. A decimal point, and

4. Another string of digits. Either this string of digits, or the string (2) can

be empty, but at least one of the two strings of digits must be nonempty.

0,1,....9

Start

()=

Figure 2.18: An eNFA accepting decimal numbers

Of particular interest is the transition from gy to ¢ on any of €, +, or —.
Thus, state gi. am@ammmhdm the situation in which we have seen the sign if there
is one, and perhaps some digits, but not the decirhal point. State gz represerits
the situation where we have just seen the decimal point, and may or may not
have seen prior digits. In g4 we have definitely seen at least one digit, but
not the decimal point. Thus, the interpretation of gz is that we have seen a
decimal point and at least one digit, either before or after the decimai peint.
We may stay in ¢ reading whatever digits there are, and also have the option

of “guessing” the string of digits is complete and going spontanecusly to ¢s, the
accepting state. O

Example 2.17: The strategy we outlined in Example 2.14 for building an
NFA that recognizes a set of keywords can be simplified further if we allow
e-transitions. For instance, the NFA recognizing the keywords web and ebay,
which we saw in Fig. 2.16, can also be implemented with e-transitions as in
Fig. 2.19. Tn general, we construct. a complete sequence of states for each
keyword, as if it were the only word the automaton needed to recognize. Then,
we add a new start state (state 9 in Fig. 2.19), with e-transitions to the start-
states of the automata for each of the keywords. O

