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ABSTRACT
Aggressive tennis shots with high ball speed are the key factor in
winning a tennis match. Today’s tennis players are increasingly
focused on improving ball speed. As a result, in recent tennis tour-
naments, records of tennis shot speeds are broken again and again.
The traditional method for calculating the tennis ball speed uses
multiple high-speed cameras and computer vision technology. This
method is very expensive and hard to set up. Another way to cal-
culate the tennis ball speed is to use motion sensors, which are
lower cost and easier to set up. In this paper, we propose an ap-
proach for tennis ball speed estimation based on a racket-mounted
motion sensor. We divide the tennis strokes into three categories:
serve, groundstroke, and volley. For a serve, a regression model is
proposed to estimate the ball speed. For a groundstroke or volley,
two models are proposed: a regression model and a physical model.
We use the physical model to estimate the ball speed for advanced
players and the regression model for beginner players. Under the
leave-one-subject-out cross-validation test, evaluation results show
that TennisEye is 10.8% more accurate than the state-of-the-art
work.
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1 INTRODUCTION
With the advance of ubiquitous computing, cyber physical systems,
and human computer interaction, wearable devices are becoming
more and more popular nowadays [18] [9]. Applications of wear-
able devices have been widely extended to the field of sports. For
example, Hao et al. propose a running rhythm monitoring system
based on the sound of breathing through smartphone embedded
sensors [12]. Kranz et al. propose an automated assessment system
for balance board training called Gymskill, which provides feedback
on training quality to the user based on smartphone integrated sen-
sors [19]. In addition, there are several studies in other sports like
running [1], skiing [10], climbing [15], cricket [14], football [44],
and table tennis [3]. In addition to these research publications, the
industrial wearable devices market is also evolving at a rapid pace.
The global industrial wearable devices market has reached a value
of 1.5 billion dollars in 2017, and is expected to have a compound
annual growth rate (CAGR) of 9.6% [16]. The wearable devices
market in sports is expected to register a CAGR of 9.8%, during the
forecast period (2018 - 2023) [13].

There are also applications of wearable devices in tennis training.
Several commercial tennis assistant systems are available on the
market that aim to improve players’ performance [41] [32] [24] [7].
These products either integrate themotion sensors inside the racket [7],
or require users to attach themotion sensors to the racket [41] [32] [24].
They analyze the motion sensor data and compute the key perfor-
mance metrics for each swing, such as stroke type, ball speed, ball
spin, and ball impact location. In addition to these commercial prod-
ucts, there are also several existing research works on analyzing the
performance of tennis shots. For instance, Srivastava et al. analyze
the consistency of the tennis shots [31]. The authors provide recom-
mendation on wrist rotation based on the shots from professional
players. Sharma et al. analyze the tennis serve [28]. By comparing
the serve phases of a user to those of professionals, the system
provide the user with corrective feedback and insights into their
playing styles.

Tennis ball speed is an important metric in assessing the skill
level of a tennis player. There are two main ways to calculate the
tennis ball speed. One way is to use multiple high-speed cameras
to capture ball movement and calculate speed, such as Hawk-eye
technology [8] [21] and PlaySight [25]. These systems use advanced
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image processing and analytical algorithms to capture ball move-
ment and calculate speed. However, high-speed cameras are very
expensive and hard to set up. Therefore, most players cannot get
access to these systems, which limits their popularity. Another way
is to use motion sensors. Compared with camera-based method, the
motion sensors-based method is lower cost, more energy efficient,
not influenced by lighting environment, and easier to set up. There
are some commercial products on the market that assess the perfor-
mance of the players and estimate the ball speed [41] [32] [24] [7].
However, none of these commercial products open their algorithms
to the public. In addition, to our knowledge, no previous publication
has used motion sensors to calculate the tennis ball speed. There-
fore, we are motivated to explore how to use a motion sensor to
calculate the tennis ball speed.

There are several research publications and commercial prod-
ucts that use motion sensors to analyze tennis shots. However,
none of them open their source codes and datasets to the public.
Source codes and tennis dataset sharing are valuable as they allow
researchers to build their works upon others rather than repeat
already existing research work. In addition, they encourage more
connection and collaboration between researchers, which promotes
the tennis research. Therefore, we are motivated to open our source
codes and tennis dataset to the public1.

We present TennisEye, a tennis ball speed calculation system
using a racket-mountedmotion sensor.We apply a simple threshold-
based method to detect if there is a tennis stroke. Once a tennis
stroke is detected, we use a time window to extract stroke data and
interpolate the sensor readings if the true value exceeds the mea-
surement limit. We apply the Random Forest classifier to classify
each tennis stroke into one of three stroke types: serve, ground-
stroke, and volley. A serve is a shot to start a point. A groundstroke
is a shot that is executed after the ball bounces once on the ground,
while a volley is a shot that is executed before the ball bounces on
the ground. If the tennis stroke is a serve, we apply a regression
model to calculate serve speed. If the tennis stroke is a groundstroke
or volley, we propose twomodels: a physical model and a regression
model. For advanced players, they have correct and constant stroke
gestures. We use the physical model to calculate the ball speed for
them. For beginner players, they have incorrect and varying stroke
gestures. We use the regression model to calculate the ball speed.

We summarize our contributions as follows:

(1) We propose a tennis ball speed calculation system, Tennis-
Eye. It is the first research publication to calculate the serve,
groundstroke and volley speed of a tennis ball using a racket-
mounted motion sensor.

(2) We propose two models to calculate the groundstroke or
volley speed: a physical model and a regression model. We
apply the physical model to calculate the ball speed for ad-
vanced players, and the regression model to calculate the
ball speed for beginner players.

(3) We evaluate the proposed system using the tennis shot data
from players of different levels. Our experiment results show
that TennisEye is 10.8% more accurate than the state-of-the-
art work.

1https://hongyang-zhao.github.io/TennisEye/
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Figure 1: Data Processing of TennisEye

(4) We collect an accurate and high-quality tennis dataset. We
open our source codes and tennis dataset to the public.

The remainder of this paper is organized as follows. First, we
introduce the system design in Section 2. In Section 3, we evaluate
the system performance. We discuss the system and future work
in Section 4. We summarize the related works in Section 5. Finally,
we draw our conclusion in Section 6.

2 TENNISEYE DESIGN
We introduce the system design of TennisEye in this section. First,
we introduce the data processing in Section 2.1. Then, we introduce
the sensor deployment and data collection in Section 2.2. Following
that, modules in the data processing are introduced from Section 2.3
to Section 2.8.

2.1 Overview of TennisEye
The data processing of TennisEye is shown in Fig. 1. A motion
sensor is deployed on a racket handle to collect the accelerometer
and gyroscope readings, which are real-time transmitted to a smart
phone through Bluetooth Low Energy (BLE). Based on the collected
motion data, a threshold-based method is proposed to detect tennis
strokes. Once a tennis stroke is detected, we apply a peak detection
algorithm to find the impact time when a ball hits the racket. Once
the impact time is found, we use a sliding window with a length of
2 seconds to extract the stroke data. For the stroke data, we apply
a cubic spline interpolation to compensate the sensor readings if
the sensor saturates. Then, we use the Random Forest classifier to
classify each tennis stroke into one of three stroke types: serve,
groundstroke, and volley. If the tennis stroke is a serve, we propose
a serve speed estimation method to calculate serve speed. If the
tennis stroke is a groundstroke or volley, we propose two models, a
regression model and a physical model, to calculate the ball speed
for the beginner player and the advanced player, respectively. We
train the models and evaluate the performance of the system using
a laptop.
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Figure 2: Sensor placement and coordinate system

Figure 3: Birdview of the tennis court from a PlaySight cam-
era

2.2 Sensor Deployment
The motion sensor we used is a UG sensor [43]. It includes a triaxial
acceleration sensor and a triaxial gyroscope. The measure range
of the accelerometer and the gyroscope were set to be ± 16д and
± 2000◦/sec , respectively. Both sensors were sampled with 100 Hz.
The UG sensor was fixed at the handle of the players’ rackets. Fig. 2
shows the sensor position and the coordinate system. We call the
side with the UG sensor side A, and the side without the UG sensor
side B.

We collected data in a tennis court that was equipped with a
PlaySight system [25], which included six high definition (HD)
cameras. The PlaySight system uses image processing algorithm
to recognize stroke type, ball speed, and more. We use the stroke
type and the ball speed calculated by the PlaySight system as the
ground truth. The birdview of the tennis court from a PlaySight
camera is shown in Fig. 3.

2.3 Stroke Detection
When a player plays tennis, he/she not only swings a racket, but
also performs some non-stroke actions during a match. For example,
he/she may run on the court, use the racket to pick up a ball from
the court surface, or twirl the racket in his/her hands while waiting
for an opponent to serve. The aim of the stroke detection is to detect
stroke behaviors, rather than those non-stroke actions.

We find that when a player hits a ball, the player swings the
racket in a circular motion. In this circular motion, the racket is
affected by a centripetal acceleration that points to the human torso.
This centripetal acceleration generates a spike in the accelerometer
readings in X-axis, ax . Fig. 4 shows ax when a player plays tennis.
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Figure 4: Accelerometer readings in theX-axiswhen a player
plays tennis

Each spike in the figure is a tennis stroke. Other non-stroke actions,
such as lateral run, twirling a racket, or picking up a ball, do not
generate large values in ax . Therefore, we use ax to detect stroke
behaviors. If ax is larger than a threshold, i.e. 9д, it is regarded as a
stroke.

2.4 Data Segmentation
After a stroke is detected, the next step is to find the start and end
time of a tennis stroke and extract this interval of sensor data as
stroke data. The extracted stroke data will be used for ball speed
calculation.

There are mainly four phases for a tennis stroke: backswing,
acceleration, impact, and follow-through. In a backswing phase, a
player moves a racket behind his/her body and prepares to swing
forward. In an acceleration phase, the player moves the racket
forward. The speed of the racket increases in this phase. At the
end of the acceleration phase and the start of the impact phase,
the speed of the racket reaches maximum. In an impact phase, the
racket hits a tennis ball. Due to impact, the speed of the racket
decreases rapidly. Finally, in a follow-through phase, the player
slows down the racket after hitting a ball.

Based on our study, we find that the impact phase occurs in the
middle of these four phases. In addition, the speed of the racket
reaches maximum at the start of the impact phase. Therefore, by
looking for the time when the speed of the racket reaches maximum,
we find the start of the impact phase. In our coordinate system, no
matter which stroke (serve, forehand, backhand) a player plays, the
racket always rotates around Y-axis. Therefore, the position with
the max absolute value of the gyroscope readings in the Y-axis is
the start of the impact phase.

Fig. 5 shows the gyroscope readings of a tennis serve. From the
figure, we find that the valley of дy is the start of the impact phase.
We apply a peak detection algorithm with a sliding window on
the absolute values of the gyroscope readings in the Y-axis,

��дy ��,
to find the impact start time. As the minimum interval between
two consecutive strokes is 2 seconds, the time window size is set
to be 2 seconds. Specifically,

��дy (t )�� is a peak if it is larger than
all of the samples in the time window of [t − 1s, t + 1s]. Since the
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Figure 5: Gyroscope readings of a serve

minimum of
��дy �� for a stroke in our dataset is 814.5 degree/sec, the

detected peak of
��дy �� should be larger than 814.5 degree/sec. After

the impact start time tstar t is detected, we use a time window of
[tstar t − 1s, tstar t + 1s] to extract the stroke data.

2.5 Data Interpolation
In our dataset, we find that the gyroscope readings in the Y-axis
sometimes saturate when a player serves with a high speed. This
saturation happens when a sensor measures a value that is larger
than its measurement range, ± 2000◦/sec . The blue line in Fig. 6
shows an example of the sensor saturation. In the figure, we find
that the raw gyroscope readings in the Y-axis saturate from 0.52
seconds to 0.54 seconds. To deal with this problem, we apply the
cubic spline interpolation [6] to interpolate the saturated gyroscope
readings in the Y-axis. Specifically, we use the gyroscope readings
in the Y-axis within the range of

[
tsat_star t − tw, tsat_star t

)
and(

tsat_end , tsat_end + tw
]
to construct new data points within the

range of
[
tsat_star t , tsat_end

]
. tsat_star t and tsat_end are the start

and end times of the saturation, which are 0.52 seconds and 0.54
seconds in this case. tw is empirically set to be 100ms. The gyro-
scope readings in the Y-axis after interpolation are shown as the
red dashed line in the figure.

2.6 Stroke Classification
After data interpolation, the next step is to classify the stroke type
for each stroke data segment. First, we extract a series of features
from each data segment. The features include mean, standard devi-
ation, skewness, kurtosis, minimum, and maximum of each axis of
accelerometer and gyroscope readings. The amplitude of accelerom-
eter and gyroscope readings are also computed. In total, 38 features
for each data segment are calculated and normalized between [0, 1].
Second, we apply a machine learning classifier to classify each
data segment into one of three stroke types: serve, groundstroke,
and volley. We compare the performance of five classifiers: Naive
Bayes, AdaBoost, Support Vector Machine (SVM), Decision Tree,
and Random Forest. Since the Random Forest performs best as
shown in Section 3.4, we choose the Random Forest classifier for
stroke classification.
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Figure 6: Interpolation of the gyroscope readings in the Y-
axis

2.7 Serve Speed Calculation
For a tennis serve, the initial speed of a ball is quite small and
mainly depends on the racket speed. The larger the racket speed,
the higher the ball speed. This motivates us to use the racket speed
to calculate the serve speed. When a player serves a tennis ball,
the racket swings in a circular motion with the human shoulder
as the center. Because the racket rotates around the Y-axis in our
coordinate system, дy measures the angular speed of the racket.
We use дy at the impact start time to model the ball serve speed
vb_serve by a linear regression model as:

vb_serve = k ·
��дy (tstar t )�� + b, (1)

where k and b are the parameters of the linear regression model.
All of the tennis serve data are used to train the serve model. k and
b are calculated by using the method of least squares [30]. k and b
are 0.025 and 20.06, respectively.

2.8 Groundstroke/Volley Speed Calculation
We propose two models to calculate the ball speed: a physical model
and a regression model. The physical model is built based on the
physical impact between a racket and a ball, while the regression
model applies a linear regression model to estimate the ball speed.
For advanced players, they have correct stroke gestures, and similar
gestures for the same type of the stroke. We propose a physical
model to calculate the ball speed for them. For beginner players, it
is hard to build the physical model due to two reasons. First, their
stroke gestures are incorrect. With incorrect stroke gestures and
terrible tennis skills, they often swing the racket in an awkwardway,
which is hard to build the physical model. Second, for the same type
of the stroke, they may perform different gestures and swing the
racket in different ways. The big variance in their stroke gestures
reduces the accuracy of the physical model. Therefore, instead of
building a physical model, we propose a simple regression model
to calculate the ball speed for the beginner players.

2.8.1 Physical Model. The impact between a racket and a tennis
ball is governed by some physical laws and mechanical principles.
By applying these laws and principles, we propose a physical model
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to estimate ball speed. The outgoing ball speed is mainly influenced
by two factors: the racket speed and the incoming ball speed. The
racket speed can be calculated using motion sensors, while the
incoming ball speed is unknown. Without the incoming ball speed,
the outgoing ball speed cannot be calculated by a physical model.
To solve this problem, we apply a physical law (conservation of
linear momentum [20]) and a mechanical principle (Coefficient
of Restitution [37]). Both the physical law and the mechanical
principle contain the incoming ball speed parameter. We combine
these into one by eliminating the incoming ball speed parameter to
get the outgoing ball speed.

Because of the difficulty in characterizing the physical impact
process using only one racket-mounted motion sensor, we make
several assumptions to simplify the physical model.

(1) The tennis ball horizontally hits and bounces off the racket.
(2) The ball impacts at the center of the racket face.
(3) During impact, there is a constant hand force on the racket.
There are four reasons to these three assumptions. (1) The physi-

cal impact process between a racket and a tennis ball is very compli-
cated. Without these assumptions, it is extremely difficult to build
a physical model only using motion sensors. (2) Even if we build
a model without these simplified assumptions, this model will be
very complicated. A complicated model may require much more
computation and energy cost than the simplified model. This is not
feasible for the small-size device embedded into the racket. (3) As
shown in Section 3, the evaluation results demonstrate that our
proposed models perform quite well already. A complicated model
may only increase the accuracy a little. (4) These assumptions are
made based on our observations on tennis matches. We find that
the angle between a ball and the normal to the racket string plane is
typically quite small. Otherwise, the ball will either move towards
the ground or move towards the sky. Accordingly, we assume that
the ball horizontally hits and bounces off the racket. In addition,
we find that tennis balls usually hit at the center of the rackets for
advanced players. Therefore, we assume that the ball impacts at the
center of the racket face. Finally, we find that the duration of the
impact is roughly 20ms, as shown in Fig. 5. Thus, it is reasonable
to assume a constant hand force during this short period of time.

Based on these assumptions, the physical impact process is
shown in Fig. 7. Before impact, there is a hand force HF exerted on
a racket. Under the influence of the hand force, the racket of mass
M is moving at velocity vr_star t towards a tennis ball. At the same
time, this tennis ball of massm is moving at velocity vb_in towards
the racket. After impact, the tennis ball bounces off the racket at
velocity vb_out , reducing the velocity of the racket to vr_end .

By conservation of linear momentum, we get:∫ tend

tstar t
HFdt = M ·

(
vr_end −vr_star t

)
+m ·

(
vb_out +vb_in

)
, (2)

where tstar t and tend are the start and end times of impact. In
this equation, tstar t , M , andm are known. tstar t is calculated in
data segmentation module, as shown in Section 2.4.M andm are
300д and 50д. To calculate vb_out , we need to calculate the other
unknown parameters first. They are tend , vr_end − vr_star t , HF ,
and vb_in .

Calculating tend. The impact starts when a ball hits a racket,
and ends when the ball leaves the racket. During the impact, due to
the momentum lost by the ball, the speed of the racket decreases
rapidly. After the ball leaves the racket, the speed of the racket
increases again. By searching for the change of the racket speed,
we find the end time of impact as shown in Fig. 8. More specifically,
by searching from tstar t , tend is calculated as:

tend = t i f
��дy (t)�� < ��дy (t + 1)

�� (3)

Calculating vr_end − vr_start. vr_end − vr_star t can be calcu-
lated as the integration of the accelerometer readings in the Z-axis.
However, as there are two sides of the rackets, the accelerometer
readings in the Z-axis will have opposite values when the tennis
ball hits on the different sides. The motion sensor is attached on
the side A of the racket, as shown in Fig. 2. When the side A of the
racket hits the tennis ball, the movement direction of the racket
is the same as the positive direction of the Z-axis of the sensor.
vr_end −vr_star t is calculated as the integration of the accelerom-
eter readings in the Z-axis. However, when the side B of the racket
hits the tennis ball, the movement direction of the racket is oppo-
site to the positive direction of the Z-axis of the sensor, as shown
in Fig. 7. vr_end − vr_star t is calculated as the integration of the
inverse of the accelerometer readings in the Z-axis. Therefore, to
calculate the ball speed, we need to reorientate the motion sensor
so that the positive direction of the Z-axis of the sensor is the same
as the movement direction of the racket.

There are eight possible impact types between a tennis ball and
a racket, which are summarized in Table 1. From the table, we find
that when the дy (tstar t ) is larger than 0, the positive direction of
the Z-axis of the sensor is the same as the movement direction of the
racket. When the дy (tstar t ) is smaller than 0, the positive direction
of the Z-axis of the sensor is opposite to the movement direction
of the racket. This motivates us to use дy (tstar t ) to reorientate the
sensor readings in Z-axis. The reoriented accelerometer readings
in the Z-axis a

′

z is calculated as:

a
′

z =
{
az дy (tstar t ) > 0
−az дy (tstar t ) < 0 (4)

The change of the racket speed vr_end − vr_star t in Eq. 2 is
calculated as the integration of the reoriented acceleration readings
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Figure 8: Acceleration data (left figure) and gyroscope data (right figure) of a forehand shot performed by a left-hand player.
The start time of impact tstar t is marked as the red dashed line.The end time of impact tend is marked as the black dashed line.

Table 1: Eight impact types between a tennis ball and a racket

Dominant Hand Forehand/Backhand Side that a ball hits a racket дy (tstar t ) DirectionZ−axis and Directionracket

Left

Forehand Side A > 0 Same
Forehand Side B < 0 Opposite
Backhand Side A > 0 Same
Backhand Side B < 0 Opposite

Right

Forehand Side A > 0 Same
Forehand Side B < 0 Opposite
Backhand Side A > 0 Same
Backhand Side B < 0 Opposite

in the Z-axis during impact as:

vr_end −vr_star t =
∫ tend

tstar t
a
′

z (t)dt (5)

Calculating HF. This hand force causes the racket to move in
an accelerated motion, which is measured by the Z-axis of the
accelerometer. As we assume that the hand force is constant during
impact, we use the adjusted accelerometer readings in the Z-axis
a
′

z at the start time of impact tstar t to model the hand force. The
larger the hand force, the larger the acceleration. Thus, we choose
a linear function to model this relationship as shown below:

HF = kHF ·M · a
′

z
(
tstar t

)
+ bHF , (6)

wherekHF andbHF are the model parameters. After substituting
Eq. 3 through Eq. 6 into Eq. 2, Eq. 2 has four unknown parameters:
kHF ,bHF ,vb_in ,vb_out . We use the incoming ball speedvb_in and
outgoing ball speed vb_out calculated from the PlaySight system to
train this model. First, we get the incoming and outgoing ball speeds
for each tennis shot from the PlaySight system. Then, we feed the
incoming and outgoing ball speeds of all the tennis shots into Eq. 2.
Finally, we use the method of least squares [30] to calculate kHF
and bHF . kHF and bHF are 0.236 and 65.83, respectively.

Calculating vb_in.After kHF andbHF are determined, there are
two unknown parameters in Eq. 2: vb_in and vb_out . To calculate
vb_out , we need to calculate vb_in first. However, vb_in is hard

to be calculated using a motion sensor. To solve this problem, we
apply the coefficient of restitution (COR) to build another equation
between vb_in and vb_out . We combine these two equations into
one by eliminating vb_in parameter to calculate vb_out .

The COR is defined as the ratio of the final velocity to the initial
velocity between two objects after their collision [37]. The COR is
a measure of how much kinetic energy remains after the collision
of two bodies, with the value that ranges from 0 to 1. If the COR is
close to 1, it suggests that very little kinetic energy is lost during
the collision; on the other hand, if it is close to 0, it indicates that a
large amount of kinetic energy is converted into heat or otherwise
absorbed through deformation. In our case, the COR is calculated
as:

e =
vb_out −vr_end
vr_star t +vb_in

(7)

To calculate the outgoing ball speedvb_out , we need to calculate
vr_star t , vr_end , e , and vb_in first. The racket speed before impact
vr_star t is calculated by the gyroscope readings in the Y-axis:

vr_star t =
��дy (tstar t )�� · Rswinд , (8)

where Rswinд is the swing radius of the circular motion, which is
the distance between the center of the racket face and the rotation
center. Howard Brody measured the swing radius among a number
of players [4]. He found that the average radius between the butt
end of the racket and the rotation center is 0.2m. As the distance
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between the center of the racket face and the butt end of the racket
is 0.52m, as shown in Fig. 2. Therefore, Rswinд is set to be 0.72m.

By substitutingvr_star t into Eq. 5, we calculate the racket speed
after impact vr_end as:

vr_end = vr_star t +
∫ tend

tstar t
az

′ (t)dt (9)

We feed the incoming ball speeds and outgoing ball speeds cal-
culated from the PlaySight system into Eq. 7 to calculate e . The
distribution of all calculated COR values is shown in Fig. 9. We
find these COR values obey a normal distribution with a mean of
0.16. Because there are many impact factors for COR estimation
(such as ball speed, stroke force, string tension and impact position)
and the correlations between these impact factors and the COR
are unknown, it is extremely difficult to explicitly define the COR
model. In addition, most COR values are close to the mean of this
normal distribution. Therefore, we assume COR to be a constant
value, 0.16, for all the tennis shots to simplify the model.

We then combine Eq. 9 and Eq. 2 by eliminating the incoming
ball speed to get the outgoing ball speed as:

vb_out =
e

1 + e
·
1
m

[
m · vr_star t −M ·

(
vr_end −vr_star t

)
+
m

e
· vr_end +

∫ tend

tstar t
HFdt

] (10)

From the above equation, we find that the outgoing ball speed
vb_out depends on vr_star t , vr_end , tstar t , tend , and HF . The in-
coming ball speed vb_in does not appear in the equation as it is
eliminated when we combine Eq. 2 and Eq. 7. Though vb_in does
not appear in Eq. 10, it indirectly influences the outgoing ball speed
via vr_end , which is calculated based on the integration of accelera-
tion data in the Z-axis during impact as shown in Eq. 9. The larger
incoming ball speed, the larger fluctuation of the acceleration data
during impact. Therefore, the influence of the incoming ball speed
is considered in our model.

2.8.2 Regression Model. When a player performs a groundstroke
or volley, he/she swings the racket in a circular motion. In our
coordinate system, the racket rotates around the Y-axis for both
strokes. Similar to the serve speed model, we use дy to calculate

the outgoing ball speed vb_out by a linear polynomial model as:

vb_out = k ·
��дy (tstar t )�� + b, (11)

where k and b are the parameters of the linear regression model.
We use all the tennis groundstroke and volley data to train this
model by the method of least squares [30]. k and b are 0.039 and
3.94, respectively.

3 PERFORMANCE EVALUATION
We evaluate the performance of TennisEye in this section. We
first introduce the data set in Section 3.1. Then, we introduce the
performance of the physical model and regression model using
leave-one-subject-out cross validation, self test, and 5-fold cross
validation in Section 3.2.1, Section 3.2.2, and Section 3.2.4, respec-
tively. After that, we evaluate the performance of stroke detection
in Section 3.3 and stroke classification in Section 3.4. Finally, we
evaluate the overall performance of TennisEye in Section 3.5.

3.1 Data Set
We collected data from 7 players. Based on their self-report infor-
mation, we divided the subjects into three categories: coach, regular
player, and casual player. The coaches play several times per week,
the regular players play one time per week, and the casual players
play 0∼2 times per month. Table 2 shows the summary of tennis
data we collected with a UG sensor. In total, we collected 569 serves,
1398 groundstrokes, and 18 volleys.

No previous publication has used motion sensors to estimate
tennis ball speed. However, we are aware that there are some ten-
nis sensors on the market, such as Zepp [41], Sony Sensor [29],
Usense [32], and Babolat Play [24]. These sensors are attached to
the tennis racket. By analyzing the tennis data, they compute the
key performance metrics for each swing, such as stroke type and
ball speed. Among them, Sony Sensor and Usense are no longer
manufactured. Babolat Play does not compute the ball speeds of
groundstroke and volley shots, which we focus on. Zepp is a popu-
lar tennis sensor that recognizes stroke types and calculates serve,
groundstroke and volley speeds. Therefore, we choose Zepp as
state-of-the-art work. To compare with the ball speed calculation al-
gorithm in Zepp, we collected tennis data using both a UG and Zepp
sensor. Table 3 shows the summary of the tennis data collected.

3.2 Ball Speed Calculation Accuracy
3.2.1 Leave-one-subject-out Evaluation. To evaluate the perfor-
mance of the proposed ball speed models. First, we use the video
data to locate each tennis stroke in the dataset collected with a
UG sensor as shown in Table 2. Then, we calculate the tennis ball
speeds for each stroke based on the proposed ball speed models.
Finally, we compare the ball speeds calculated by our model with
the ball speeds calculated by other models. Here, we use the leave-
one-subject-out cross validation to evaluate the performance of
the proposed ball speed models. The leave-one-subject-out cross
validation uses the tennis shot data from 6 subjects to train the
ball speed estimation model, and then applies this model to esti-
mate the ball speed from the remaining subject. Mean and standard
deviation of error are considered as the evaluation metrics. The
results are shown in Fig. 10. For the serve ball speed estimation,
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Table 2: Dataset collected with a UG sensor

Player Player Dominant Data Collection Time # Serve # Groundstroke # VolleyDescription Hand
# 1 Male Coach Right 5/8/2018 36 0 0
# 2 Female Coach Left 5/15/2018; 5/22/2018 75 214 5
# 3 Female Coach Right 8/13/2018 50 136 0
# 4 Regular Player Right 5/23/2018 0 302 3
# 5 Casual Player Left 7/7/2018; 7/15/2018; 7/22/2018 0 628 10
# 6 Casual Player Right 5/7/2018; 8/13/2018; 9/7/2018 263 118 0
# 7 Casual Player Right 9/7/2018 145 0 0

Table 3: Dataset collected with both a UG and a Zepp sensor

Player Data Collection Time # Serve # Groundstroke # Volley
# 3 8/13/2018 50 136 0
# 5 7/22/2018 0 209 6
# 6 9/7/2018 46 118 0
# 7 9/7/2018 145 0 0

Serve Groundstroke+Volley Serve+Groundstroke+Volley
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Figure 10: Performance of ball speed estimation models under leave-one-subject-out cross validation

the error of the proposed regression model is 4.3±4.0 miles/hour.
The accuracy is 93.4%. For the groundstroke and volley ball speed
estimation, the error of the proposed physical model and regression
model are 5.0±4.9 miles/hour and 4.9±4.4 miles/hour respectively.
The accuracy are 88.4% and 88.8% respectively. For all the tennis
shot data, the error of the proposed physical model and regression
model are 4.8±4.7 miles/hour and 4.7±4.3 miles/hour, respectively.
The accuracy are 90.0% and 90.2%, respectively. From Fig. 10, we
find that the performance of the physical model is similar to that of
the regression model. For the casual players, the regression model
is slightly better. For the regular players, two models have simi-
lar performances. For the coaches, the physical model performs
slightly better than the regression model. Therefore, we use the
regression model to estimate the ball speed for beginner players
and the physical model to estimate the ball speed for advanced
players.

We compare our ball speed models with two works: the ball
speed model in Zepp and a table tennis ball speed model [3]. There
are two reasons to choose this table tennis ball speed model for
comparison. (1) Both tennis and table tennis belong to racket sports.
Compared with other racket sports, table tennis is most similar to
tennis. (2) As far as we know, this table tennis model is the only mo-
tion sensors-based ball speed model for racket sports. We evaluate
the performance of these three models using leave-one-subject-out
(LOSO) cross validation. The dataset used for evaluation is collected
with both a UG and Zepp sensor, as shown in Table 3. The evalua-
tion results are shown in Table 4. From the table, we find that the
proposed physical model and regression model have similar perfor-
mance. Both of them perform much better than Zepp and the table
tennis model. For all the tennis shot data, the proposed physical
model is 7.8% more accurate than the table tennis model and 11.7%
more accurate than Zepp. The proposed regression model is 8.2%



TennisEye: Tennis Ball Speed Estimation using a Racket-mounted Motion Sensor IPSN’19, April 2019, Montreal, Canada

Table 4: Comparison with State-of-the-art Ball Speed Models

Ball Speed Model Evaluation Metric Serve Groundstroke + Volley Serve + Groundstroke + Volley

Peter et al. [3] Mean±Std 11.6±7.1 miles/hour 7.6±6.9 miles/hour 9.1±7.3 miles/hour
Accuracy 81.4% 81.2% 81.3%

Zepp Mean±Std 5.2±5.7 miles/hour 10.6±miles/hour 8.9±7.8 miles/hour
Accuracy 91.8% 70.8% 77.4%

Phy Mean±Std N/A 5.3±5.7 miles/hour 4.9±5.1 miles/hour
Accuracy N/A 86.7% 89.1%

Reg Mean±Std 4.3±3.9 miles/hour 5.1±4.9 miles/hour 4.8±4.6 miles/hour
Accuracy 93.1% 87.4% 89.5%

Serve Groundstroke+Volley Serve+Groundstroke+Volley
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Figure 11: Performance of ball speed estimation models under self test

more accurate than the table tennis model and 12.1% more accurate
than Zepp. The table tennis model performs better than Zepp, es-
pecially in groundstroke and volley speed estimation. However, it
is still outperformed by our models. We think there are two main
reasons. (1) Table tennis and tennis are two racket sports that differ
a lot in terms of the size, mass, and material of the ball and racket.
In addition, the techniques of swinging the rackets are different. In
table tennis, a player swings the racket with a lot of wrist action.
However, in tennis, a player swings the racket with a lot of body
rotation and less wrist action. Therefore, the table tennis model
may not be appropriate for tennis. (2) In this table tennis model, the
racket speed is modeled as the sum of the wrist linear speed and
wrist rotation speed. However, in tennis, the racket speed mainly
depends on the rotation of the arm and body. Therefore, our models
are more accurate than the table tennis model in characterizing the
tennis racket speed.

3.2.2 Self Evaluation. The self test partitions the dataset for each
player into 5 randomly chosen subsets of equal size. Four subsets
are used to train the model, and the remaining one is used to val-
idate the model. This process is repeated 5 times, such that each
subset is used exactly once for validation. The results of the self
test are shown in Fig. 11. Mean and standard deviation of error
are considered as the evaluation metrics. For the serve ball speed

estimation, the error of the proposed regression model is 4.0±3.6
miles/hour. For the groundstroke and volley speed estimation, the
error of the proposed physical model and regression model are
4.6±4.6 miles/hour and 4.2±3.9 miles/hour. For all the tennis shot
data, the error of the proposed physical model and regression model
are 4.4±4.3 miles/hour and 4.2±3.8 miles/hour. Under the self test,
both the regression model and the physical model perform better
than that under leave-one-subject-out cross validation. In addition,
under the self test, the regression model always performs slightly
better than the physical model for all the players.

3.2.3 Cross Evaluation. The 5-fold cross-validation test uses all the
data to form the dataset. It partitions the dataset into 5 randomly
chosen subsets of equal size. Four subsets are used to train the
model, and the remaining one is used to validate the model. This
process is repeated 5 times such that each subset is used exactly once
for validation. The results of the 5-fold cross validation are shown
in Fig. 12. Mean and standard deviation of error are considered as
the evaluation metrics. For the serve ball speed estimation, the er-
ror of the proposed regression model is 4.1±3.8 miles/hour. For the
groundstroke and volley speed estimation, the error of the proposed
physical model and regression model are 4.8±4.8 miles/hour and
4.6±4.0 miles/hour. For all the tennis shot data, the error of the pro-
posed physical model and regression model are 4.6±4.5 miles/hour
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Figure 12: Performance of ball speed
estimation models under 5-fold cross
validation
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Figure 13: Performance of the phys-
ical model under different incoming
ball speeds
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Figure 14: Performance of the phys-
ical model under different racket
speeds

and 4.4±3.9 miles/hour. Under the 5-fold cross-validation test, both
the regression model and the physical model perform better than
that under leave-one-subject-out cross validation, and worse than
that under self test. In addition, under the 5-fold cross-validation
test, the regression model always performs slightly better than the
physical model.

3.2.4 Influence Factors on the Physical Model. We evaluate the
performance of the physical model under different incoming ball
speeds and racket speeds using the leave-one-subject-out cross
validation. The results are shown in Fig. 13 and Fig. 14. From Fig. 13,
we find that the physical model performs well for both advanced
and beginner players under various incoming ball speeds. Therefore,
the incoming ball speed factor does not have significant influence
on the accuracy of the physical model. From Fig. 14, we find that the
physical model performs well for advanced players under various
racket speeds. However, when the racket speed is too low (< 30
miles/hour) or too high (≥ 60 miles/hour), the physical model does
not performwell for beginner players. The reduction of the accuracy
results from the awkward and incorrect swing gestures performed
by beginner players when they swing the racket too slow or too
fast.

3.3 Stroke Detection Accuracy
Fig. 15 shows the performance of the stroke detection under differ-
ent thresholds. Three evaluation metrics are considered: precision,
recall, and F-measure. F-measure considers the balance between
precision and recall as described in Eq. 12:

F -measure = 2 ∗
Precision ∗ Recall

Precision + Recall
(12)

From the figure, we find that as the threshold increases, the
precision increases and the recall decreases. When the threshold is
9д, the F-measure is at highest value: 97.8%. Therefore, we choose
9д as the threshold for stroke detection. Under this threshold, the
precision and recall are 98.5% and 97.2%. The promising results
show the effectiveness of the proposed stroke detection method.

3.4 Stroke Classification Accuracy
We apply the WEKA machine-learning suite [11] to train five com-
monly used classifiers. The classifiers include AdaBoost (run for 100

Table 5: Comparison of Machine Learning Algorithms for
Stroke Classification

Algorithm Precision Recall F-Measure
AdaBoost 92.1% 92.5% 92.3%

Naive Bayes 79.6% 71.6% 73.9%
SVM 92.1% 94.2% 92.9%

Decision Tree 83.4% 85.3% 84.4%
RandomForest 96.2% 98.2% 97.2%

iterations), Naive Bayes, SVM (with polynomial kernels), Decision
Tree (equivalent to C4.5 [27]), and Random Forests (100 trees, 4
random features each) [42]. Table 5 shows the performance of these
five classifiers under 5-fold cross validation test. Same as stroke
detection, precision, recall, and F-measure are considered as the
evaluation metrics. From the table, we find that the Random Forest
classifier performs the best. The precision, recall, and F-measure
are 96.2%, 98.2%, and 97.2%, respectively. Therefore, we choose the
Random Forest classifier for stroke classification.

3.5 TennisEye Performance
Fig. 16 shows the overall performance of TennisEye system and
Zepp using the leave-one-subject-out cross validation. Mean and
standard deviation of error are considered as the evaluation metrics.
The cumulative distribution functions of TennisEye and Zepp are
shown in Fig. 17. The error of TennisEye is 5.6±4.9 miles/hour,
while that of Zepp is 8.9±7.8 miles/hour. The accuracy of TennisEye
is 88.2%, while that of Zepp is 77.4%. Therefore, TennisEye is 10.8%
more accurate than Zepp in terms of the accuracy.

4 DISCUSSION AND FUTUREWORK
In our physical model, we make several assumptions. For example,
we assume that the tennis ball horizontally hits and bounces off the
racket. In addition, we assume that the ball impacts at the center
of the racket face. We make these two assumptions based on the
observations that coaches always swing the racket horizontally and
hit the tennis ball at the sweet spot of the racket. However, we also
observe that the casual players often swing the racket at different
angles and hit the tennis ball at bad positions, i.e., racket frame.
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For casual players, the large variance of their tennis swings and
bad hit positions significantly reduce the accuracy of the proposed
physical model. Thus, the physical model does not perform well
for casual players. We plan to further improve the accuracy of the
physical model by releasing these two assumptions.

In our study, we only consider the horizontal impact between
a tennis racket and a tennis ball. However, the racket not only
moves horizontally, but also vertically. During impact, the vertical
momentum of the racket converts to the vertical speed and spin
speed of the tennis ball. It would be interesting to explore how
muchmomentum are converted to the vertical speed and howmuch
momentum are converted to the spin speed. We plan to take the
vertical speed of the racket into consideration to further improve
the accuracy of the ball speed estimation model. In addition, we
also plan to estimate ball spin speed in the future.

In addition, the impact process between a tennis ball and a tennis
racket is very short. To accurately measure the racket vibration
during the impact, a high sampling rate of the UG sensor is needed.
The sampling rate in our system is set to be 100Hz. It would be
interesting to investigate whether the accuracy will be further
improved or not with a higher sampling rate. This will be explored
in the future.

5 RELATEDWORK
There are mainly two ways to analyze tennis shots. One way is to
use computer vision technology. The other way is to use wearable
motion sensors.

In computer vision technology, some researchers use one camera
to study the trajectory of tennis ball. For example, Yan et al. intro-
duce a methodology to process low quality single camera videos
and track a tennis ball with the aid of a modified particle filter [39].
Qazi et al. combine machine learning algorithms with computer
vision techniques to predict ball trajectories [26]. Wang et al. em-
ploy a neural network approach to predict ball trajectories [33].
These one camera-based methods can only capture video data in
two dimensions. The lack of the video data in the third dimension
makes data not usable for high precision applications such as line
calling or player performance analysis. For this reason, some re-
searchers use multiple dimensional video data to study the tennis
shots. Pingali et al. are pioneers to build a multiple camera real time
ball tracking system based on six cameras [23]. So far, there have

been several commercial products for three dimensional tennis ball
tracking and line calling, such as Hawk-eye technology [8] [21] and
PlaySight [25]. Hawk-eye technology achieves extremely precise
results (mean error rating of 2.6 mm) as it employs 6 to 10 high-
dimensional cameras to equip the court. This technology has been
applied by many researchers [34] [35] [36]. In addition to Hawk-
eye, PlaySight is another multi-camera based sports video-review
and analytics system [25]. This system is equipped with six high-
dimensional cameras, and uses advanced image processing and
analytical algorithms to capture and log stroke type, ball trajectory,
speed and spin, in-depth shot data, player movement and more.
The computer vision-based technology requires that a tennis court
is equipped with camera systems. However, most tennis courts
are not equipped with such systems. Therefore, most players can
not get access to these systems, which limits the popularity of this
technology.

Recent trends show that inertial motion sensors are being used to
analyze tennis shots. Someworks focus on the stroke behaviors clas-
sification. They classify tennis stroke types into forehand, backhand,
serve, volley, smash, top spin, and back spin [38] [22] [5] [17] [2].
A variety of machine learning algorithms have been applied, in-
cluding SVM [38], longest common subsequence [5], Random For-
est [17], CNN, and Bidirectional Long Short-Term Memory Net-
works (BLSTM) [2]. In addition to stroke classification, some re-
searchers assess the performance of tennis strokes and provide
recommendations to improve tennis skills [31][40][28]. Srivastava
et al. study the consistency of tennis shots [31]. The authors provide
recommendations on wrist rotation based on shots performed by
professional players. TennisMaster used Hidden Markov Model to
segment a tennis serve into 8 phases [40]. By studying the power,
gesture, and rhythm for each phase, the authors build a regression
model which outputs the score of a serve. Sharma et al. segment a
tennis serve into various phases, including backswing, pronation,
and follow-through [28]. By comparing the serve phases from a
user and that from professionals, the system provide the user with
corrective feedback and insights into their playing styles. Different
from stroke behaviors classification and performance assessment,
we investigate the interaction between the racket and the ball. To
our knowledge, none of the previous works use motion sensors to
estimate tennis ball speed.
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In addition to these research works, there are also some com-
mercial products on the market that assess the performance of
the players, such as Zepp [41], Usense [32], Babolat Play [24], and
Babolat Pure Drive [7]. These products either integrate the motion
sensors inside the racket [7], or require users to attach the motion
sensors onto the racket [41] [32] [24]. They analyze the tennis data
and compute the key performance metrics for each swing, such as
stroke type, ball speed, ball spin, and sweet spot. However, none of
these commercial products opens their algorithms to the public. In
addition, we compare our proposed ball speed calculation algorithm
with the ball speed calculation algorithm in Zepp. The evaluation
results show that our algorithm is more accurate than that in Zepp.

6 CONCLUSION
In this paper, we propose TennisEye, a tennis ball speed calculation
system using a racket-mounted sensor. It detects tennis strokes,
recognizes stroke types, and calculates the ball speed. We propose
a regression model to estimate the serve speed. In addition, we
propose two models, a regression model and a physical model,
to estimate the groundstroke and volley ball speed for beginner
and advanced players, respectively. For the leave-one-subject-out
cross-validation test, experiments with human subjects show that
the TennisEye is 10.8% more accurate than the state-of-the-art
work. TennisEye is promising and has commercial potential as it
is lightweight and more accurate than the existing commercial
product.
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