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Abstract—Unhealthy dietary habits (eating disorder, eating too
fast, excessive energy intake, etc.) are major causes of some
chronic diseases such as obesity, digestive system disease and
diabetes. Dietary monitoring is necessary and important for
patients to break and change their unhealthy diet and eating
habits. Existing audio or video based methods are often invasive
and bring privacy concerns. Motion sensor based related works
are popular for eating detection, but cannot count chews. This
paper presents the first effort in using motion sensor to sense mas-
tication muscle contraction for continuous dietary monitoring.
We observe that during eating the mastication muscles contract
and hence bulge in some degree. In addition, the bulge of the
mastication muscles has the same frequency as chewing. These
observations motivate us to detect eating activity and count chews
through attaching a triaxial accelerometer on the temporalis.
The proposed method does not record any personal privacy
information (audio, video, etc.). The accelerometer is embedded
into a headband. Therefore, it is comparatively noninvasive for
the user’s daily living. Experiments are conducted and the results
are promising. For eating activity detection, the average accuracy
and F-score of five classifiers are 94.4% and 87.2%, respectively,
in 10-fold cross validation test using only 5 seconds of acceleration
data. For chews counting, the average error rate of four users is
12.2%.

I. INTRODUCTION

According to statistics of the World Health Organization

(WHO), nowadays chronic diseases have become one of the

most serious threats to human health [1]. As major causes of

chronic diseases, unhealthy dietary habits lead to prevalence

of obesity, digestive system disease and diabetes. A national

health and nutrition examination survey of 9120 participants

shows that “in 2011-2012, 16.9% of youth (2 to 19-year-olds)

and 34.9% of adults aged 20 years or older in the United

States are obese [2].” The rapid increase of chronic diseases

in recent years forces people to pay more attentions on dietary

monitoring. This helps people optimize their diet composition

and change their unhealthy eating habits. In the eating process,

chewing is one essential step. According to the report of Daily

Mail, “people who thoughtfully chew their food and don’t

rush mealtimes not only avoid indigestion - they could be

preventing diabetes as well [3].” However, chewing is often

overlooked.

In recent years, several methods have been proposed to

recognize a subject’s eating activity and count chews. Self-

report diary based methods [4] are simple and straightforward

but tedious and inaccurate. Audio based methods need to

deploy sensors in the outer ear [5] or at the throat area [6],

which is invasive. Video based methods do not require a person

to wear any sensor, but demand a camera to capture mouth

movement [7] and hence bring privacy concerns. Motion

based methods aim to recognize hand motions [8, 9] or head

vibrations [10] and indirectly infer eating behaviors. But they

cannot count chews. In addition, some other sensors are also

utilized, such as physiological sensors (e.g. electromyography

sensor) and physical sensors (e.g. piezoelectric strain gauge

sensor in [11]). However, these sensors need to be tightly

adhered to skin, which is invasive and discomforting.

How to detect a subject’s eating activity and count the

number of chews in an accurate and noninvasive way? To

answer this question, we investigate the principle of eating

activity and are inspired by following observations:

• Eating activity is activated through a collaborative effort

of four mastication muscles: the masseter, the medial

pterygoid, the lateral pterygoid and the temporalis. The

first three muscles are near mouth cavity and hence not

convenient for sensor deployment. The temporalis is a

broad, fan-shaped muscle located at the side of the skull

and in front of the ear [12]. This is the area where people

often wear a headband or hat. Therefore, the temporalis

is suitable for noninvasive sensing of eating activity.

• During eating, the temporalis contracts to elevate the

mandible, which results in the bulge of this muscle.

We are hence motivated to recognize the eating activity

through detecting the temporalis contractions and bulges.

This is done through embedding an acceleromter into a

headband and attaching the accelerometer on the tempo-

ralis.

• The bulge of the temporalis has the same frequency as

chewing. Thus, the number of chews can also be counted

through recognizing the frequency of periodic muscle

bulges.



In this paper, we propose to detect eating activity and count

chews simultaneously with a triaxial acceleromter. We embed

the accelerometer into a headhand to sense the temporalis

contractions and bulges, which is noninvasive and convenient.

Compared with existing audio or video based methods, our

method only records the acceleration data. Therefore, our

method has less privacy concerns.

This paper makes the following main contributions:

• We propose to detect eating activity and count chews

through attaching a triaxial accelerometer on the tem-

poralis. To our best knowledge, this is the first work

on motion sensor based sensing of mastication muscle

contraction for continuous dietary monitoring.

• We design and develop an eating activity detection mod-

ule. It accurately differentiates eating activity from six

other daily activities (reading/speaking, sitting, walking,

drinking, coughing and standing) using only 5 seconds

of acceleration data.

• We design and develop a chews counting module. It iden-

tifies the primary periodicity of highly noisy acceleration

data and accurately count the number of chews.

• We evaluate the performance of the proposed method

on real world dataset. Experimental results show that

the average accuracy and F-score are 94.4% and 87.2%,

respectively, for eating activity detection in 10-fold cross

validation test. The average error rate of chews counting

for four users is 12.2%.

The rest of this paper is organized as follows. Section 2

introduces background and motivation of the proposed method.

Section 3 describes the system architecture and implementa-

tion of each module. Experiment and evaluation are presented

in Section 4. Related work is introduced in Section 5, and

Section 6 presents discussion and future work. Conclusion is

drawn in Section 7.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce four mastication muscles.

Then we present the motivation of acceleration data based

eating activity detection and chews counting.

A. Four Mastication Muscles

From a physiological point of view, there are four masti-

cation muscles: the masseter, the medial pterygoid, the lateral

pterygoid and the temporalis [13]. During eating, these four

muscles work together, enabling jaw open-close movements,

to cut and grind the food.

The masseter is located on each side of a face. It connects

the maxillae and the mandible, and primarily serves for

elevating the mandible while the deep tissues help protrude the

mandible forward [14]. The masseter is the most superficial

muscle. It is also one of the strongest mastication muscles.

The medial pterygoid and the lateral pterygoid are located

on the inner surface of the mandible. Contraction of the medial

pterygoid helps elevate the mandible, and thus contributes to

jaw-closing. However, the lateral pterygoid helps lower the

Accelerometer for eating detection and chews counting

EMG sensor for ground truth of chews

Fig. 1. Data collection device and deployment

mandible and open the jaw. It is the only mastication muscle

for jaw-opening [15].

The temporalis is a broad, fan-shaped muscle located on the

side of the skull and in front of the ear [12]. It is one of three

muscles that close the jaw and clench the teeth.

According to the above introduction, we see that the mas-

seter, the medial pterygoid and the lateral pterygoid are in the

face area and near mouth cavity. This area is inconvenient and

invasive for sensor deployment. On the contrary, the temporalis

covers a bigger area. This makes it convenient and noninvasive

to attach a sensor, such as in a headband or hat.

B. Motivation

It is common knowledge that a muscle bulges when con-

tracting. This motivates us to detect a subject’s eating activity

using a triaxial accelerometer attached on the temporalis.

Moreover, as the temporalis contracts and bulges once for each

chew, the number of chews can also be counted by recognizing

the frequency of periodic muscle bulges. In this subsection,

we demonstrate the potential of utilizing acceleration data to

detect eating activity and count the number of chews.

In the experiment, Shimmer2r wireless sensor platform is

used for data collection. Shimmer2r has an integrated ac-

celerometer and can be connected to several types of external

sensors, such as electrocardiogram (ECG), electromyography

(EMG), GPS, etc [16]. We use triaxial accelerometer and

EMG sensors to sample acceleration data and EMG data

simultaneously. The acceleration data is utilized for eating

activity detection and chews counting. The EMG data is used

to obtain the ground truth of chews counting.

The sensor platform and its deployment are shown in Fig. 1.

The EMG sensor has three electrodes: a positive electrode,

a negative electrode and a neutral reference electrode. The

sensing device is fixed in a headband using scotch tape. The

user wears the headband and places the device near the right

temple. The headband is elastic and adjustable. The X axis



and Y axis of the accelerometer are perpendicular. These

two axes form the tangent plane of the skull at the contact

position. The Z axis of the accelerometer directs outward and

is vertical to the X-Y plane. The accelerometer is calibrated as

following: when one axis points downwards, its acceleration

measurement is set to g (gravity); when it points upwards, the

measurement is set to −g. For the EMG sensor, both positive

and negative electrodes are attached on the right side of the

face to detect contraction of the masseter. The neutral reference

electrode is attached at the ear edge, where there is no muscle

but just bone and skin. Hence, it is selected as the electrically

neutral point of the body.

The sampling rates of the accelerometer and EMG sensors

are the same and about 100Hz. All the collected data is

wirelessly transmitted to the laptop through BlueTooth. Data

of each continuous sampling process is stored in one file for

post processing. The data of eating (while sitting) and six other

non-eating daily activities (reading/speaking, sitting, walking,

drinking, coughing and standing) are collected separately. The

subject is served with multiple small pieces of watermelon.

The reason for choosing watermelon will be discussed in

Section 6.

Fig. 2 shows the acceleration data of eating and six other

daily activities. The walking activity exhibits clear periodicity

and large fluctuation range, which indicates that it could be

easily differentiated. The fluctuation amplitude of the coughing

activity is relatively large, but has no fixed periodicity. The

other five activities, eating, speaking/reading, sitting, standing

and drinking, have similar fluctuation amplitude. However, the

acceleration data of the eating activity shows clear periodic

pattern, especially for the Z axis data. This is because the

bulge of the temporalis is in the same direction as the Z axis.

Fig. 3 shows an example window of raw Z axis acceleration

data (m/sec2) and EMG data (mVolts) during eating, indicated

by a blue solid line and a red dashed line, respectively. We

observe that: 1) both signals have the same periodic cycles.

Each cycle corresponds to one chew; 2) the EMG signal has

obvious spikes at the moments of masseter contraction. It

almost equals to zero between two neighboring chews; 3) the

Z axis acceleration data also has obvious increase during the

muscle contraction, but there is some fluctuation between two

neighboring chews.

According to the above observations, we believe that, de-

spite many challenges, there is a high possibility of differ-

entiating eating from other daily activities. Furthermore, it

is feasible to count the number of chews only using Z axis

acceleration data.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Fig. 4 shows the system architecture of the proposed

method. It contains two main modules: an eating activity

detection module and a chews counting module.

The eating activity detection module includes two processes:

offline training process and online testing process. They are

marked with black arrows and red arrows, respectively. In

the offline training process, with the offline data collected

                            (a) Eating                    (b) Sitting 

                           (c) Standing               (d) Speaking/Reading 

                           (e) Walking                   (f) Drinking 

(g) Coughing 

Fig. 2. Acceleration data of eating and other six activities
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Fig. 3. Z axis acceleration and EMG data during eating

from the triaxial accelerometer, a sliding window of length L
without overlap is used to segment the sensor data. For each

window, the eating activity detection module first composes

the acceleration data of three axes, and then extracts represen-

tative features. By combining normalized feature vectors with

corresponding class labels, the training dataset is built to train
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Fig. 4. System architecture of the proposed method

a two-class classifier for online recognition. The online testing

process has the same operations of data segmentation, data

composition, feature extraction and normalization with those

of the offline training process. After that, unlabeled feature

vectors are fed to the trained classification model. Then, the

eating activity detection results are obtained.

If one window is identified as eating activity, the raw Z

axis acceleration data is used to count the number of chews in

this window. The Z axis acceleration data is first filtered using

median filter to remove some sampling noise. Then, the non-

chewing window is eliminated through checking the difference

of acceleration magnitude. For a chewing window, discrete

Fourier transform (DFT) based frequency analysis is applied,

and the maximum frequency component (MFC) in the chewing

frequency range is extracted. Finally, the number of chews in

this window is estimated based on the frequency corresponding

to MFC and the time length of the sliding window.

We introduce the detailed implementation of the above two

modules as following.

A. Eating Activity Detection

After segmenting the triaxial acceleration data with a sliding

window of length L without overlap, we compose the ith
sensor readings of three axes, aix, aiy and aiz into one scalar

acceleration ai:

ai =
√

(aix)
2 + (aiy)

2 + (aiz)
2 (1)

where i = 1, . . . , L.

Based on the composed data, four groups of features are

extracted to build the feature vector for this window of data.

The first group consists of six time domain features: the

maximum, the minimum, the 1st quartile, the 2nd quartile,

the 3rd quartile and the number of mean cross.

The second group consists of four amplitude statistics

features extracted from the composed window data. They are

defined [17] as:

Amplitude : µamp =
1

L

L
∑

i=1

ai (2)

Standard deviation : σamp =

√

√

√

√

1

L

L
∑

i=1

(ai − µamp)2 (3)

Skewness : γamp =
1

L

L
∑

i=1

(
ai − µamp

σamp

)3 (4)

Kurtosis : βamp =
1

L

L
∑

i=1

(
ai − µamp

σamp

)4 − 3 (5)

The third group consists of four amplitude statistics fea-

tures extracted from single-sided amplitude spectrum (without

direct current component) after Fourier transform [18]. These

features can be computed using the above four formulas after

replacing L and ai with L
2

and si, respectively. Here, si means

the ith component of single-sided amplitude spectrum.

According to [19], chewing activity mainly occurs in the

range between 0.94 Hz (5th percentile) and 2.17 Hz (95th per-

centile). In this paper, we define the chewing frequency range

as 0.5 Hz to 2.5 Hz. Then, the single-sided amplitude spectrum

(without direct current component) can be partitioned into

three bands: (0, 0.5) Hz, [0.5, 2.5] Hz and (2.5, SF/2] Hz.

SF means the sampling frequency of accelerometer. Three

features are extracted from each band to form the fourth group

of features. They are the MFC, the location (i.e. the index)

of the MFC, and the spectral energy. The spectral energy is

defined as the sum of squared spectrum components in each

band.

In total, 23 features are extracted. To eliminate the scaling

effects among different features, all the features are normalized

using the z-score normalization algorithm [20].

The eating activity detection is formulated as a two-class

classification problem. The positive class corresponds to eating

activity, while the negative class corresponds to other daily

activities, such as speaking/reading, sitting, standing, walking,

drinking, coughing, etc. Five commonly used classification

algorithms are compared: decision tree (DT), nearest neighbor

(NN), multi-layer perceptron (MLP), support vector machine

(SVM) and weighted support vector machine (WSVM).

DT algorithm builds a pattern classifier from a labeled

training dataset using a divide-and-conquer approach. It re-

cursively selects the attribute that is used to partition the

training dataset into subsets until each leaf node in the tree

has a uniform class membership [21]. NN algorithm is an



instance-based learning method. It only stores the training

samples but does not generate a specific classification model.

During classification, the distances between the test sample

and all training samples are calculated. The test sample is

assigned the same class label as its nearest neighbor. MLP

algorithm is a feedforward artificial neural network model.

It maps a set of inputs onto a set of appropriate outputs. It

uses a supervised technique called backpropagation to train

the network and obtain the parameters [22]. SVM algorithm

is based on the foundation of statistical learning theory. It gains

promising empirical performance in the fields of nonlinear and

high dimensional pattern recognition [21, 23].

The above four algorithms have different rationales and

model structures. Comparison of their recognition results

should demonstrate performance of the proposed method on

eating activity detection in a comprehensive and unbiased way.

WSVM can deal with the uneven class size problem of SVM

by assigning larger weights to classes with fewer samples [24].

Therefore, it is also included for comparison.

B. Chews Counting

The Z axis acceleration data is used to count the number

of chews in one sliding window. The chews counting module

contains the following five steps:

Step 1: Median filtering. We first use a 7th-order one-

dimensional median filter [25] to remove the sampling noise

in the acceleration data. The median filter runs through the

sliding window sample by sample, and replaces each sample

with the median of neighboring samples [26].

Step 2: Non-chewing window elimination. In the eating

activity detection module, one window is identified as eating

activity or non-eating activity. An eating window may contain

not only chewing, but also food intake and swallowing. In

section II.B, we indicate that the Z axis directs outward and is

vertical to the tangent plane of the skull at the contact position.

Therefore, when the user bows down his head and feeds food

into his mouth, the Z axis directs downwards in some degree.

Accordingly, there is a positive decomposition of gravity on

the Z axis. The gravity decomposition generates a large convex

peak of the Z axis acceleration data, as shown in Fig. 5.

Normally, the magnitude of the convex peak is much larger

than the acceleration variation during chewing. For simplicity,

we calculate the difference between the maximum acceleration

and the minimum acceleration in one window. If the difference

is larger than a predefined threshold, MagDiff , this window

is considered as a non-chewing window and eliminated.

Step 3: DFT based frequency analysis. For one chewing

window, we need to count the number of temporalis bulges.

The most straightforward method is to count the peaks of Z

axis acceleration data. However, as shown by the red line

in Fig. 6, the Z axis acceleration data is very noisy even

after median filtering. There are lots of false peaks caused

by the vibration of the skull during chewing. One observation

is that the chewing frequency is consistent with the primary

periodicity of the acceleration data. We use the MFC to
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Fig. 5. Convex peak during food intake
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Fig. 6. Noisy acceleration data and reconstructed data using MFC

reconstruct the acceleration data only with primary periodicity.

The reconstructed data is shown as the blue line in Fig. 6.

Therefore, for chews counting, we propose to utilize DFT

to transform the acceleration data from time domain into

frequency domain.

Step 4: MFC extraction in chewing frequency range. After

DFT based frequency analysis, we extract the MFC in the

chewing frequency range, i.e. [0.5, 2.5] Hz.

Step 5: MFC based chews counting. We take the frequency

corresponding to MFC, freqMFC , as the approximate chew-

ing frequency. Then we estimate the number of chews in one

window by multiplying freqMFC with the time length of the

window. The time length can be obtained through dividing the

window length by the sampling rate.

IV. EXPERIMENT AND EVALUATION

In this section, we introduce the experimental evaluation on

eating activity detection and chews counting.

A. Data Collection and Ground Truth

We recruit four volunteers to collect the experimental

dataset [27] of seven daily activities, including eating, read-

ing/speaking, standing, sitting, walking, drinking and cough-

ing. For eating, reading/speaking, standing, sitting and walking

activities, one volunteer performs each of them for 6 to 9



minutes. For drinking and coughing activities, one volunteer

performs each of them about 30 seconds. For reading/speaking

and walking, the volunteers are asked to perform in three

different speeds (slow, moderate and fast), and each speed

for 2 to 3 minutes. The acceleration data of three axes and

the EMG data are sampled simultaneously. In total, about 150

minutes of data is collected.

These activities are manually labeled during data collection.

To serve as ground truth of chews counting, the EMG data is

manually identified and counted to obtain the total number of

chews for each volunteer.

B. Evaluation of Eating Activity Detection

Three tests are conducted to evaluate the eating detection

performance of the proposed method. 1) Cross validation

test (CVT). CVT combines all subjects’ samples to form

the dataset. It uses the cross validation method to evaluate

the general eating detection accuracy on multiple subjects;

2) Self test (ST). ST only uses the samples of the subject

himself/herself to form the dataset. For the ST evaluation of

each subject, the same cross validation method as above is

used; 3) Leave-one-subject-out test (LOSOT). LOSOT uses the

samples of all subjects except one to form the dataset and train

the classification model accordingly. Then the model is tested

using the samples of the excluded subject. LOSOT shows how

generic the detection model is for unknown subjects.

Weka toolkit [21] is used for classifier training and testing.

For DT, the J48 algorithm is used. For SVM and WSVM, the

LibSVM wrapper for Weka [28] is used. We adopt the default

parameters for all classifiers in the following experiments. For

cross validation, the fold number is set to 10. Because the

samples of negative class are about three times that of positive

class, the weights of WSVM are set to 3 for positive class and

1 for negative class.

Four evaluation metrics are used to quantify the classifi-

cation performance. They are accuracy, precision, recall and

F-score, which are defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(6)

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F -score = 2 ·
precision · recall

precision+ recall
(9)

where TP denotes true positive, TN denotes true negative, FP

denotes false positive, and FN denotes false negative.

1) Cross validation test (CVT): Fig. 7 shows the accuracy,

precision, recall and F-score of CVT for different window

lengths: 256, 512 and 1024. From Fig. 7 we see that: (1) For

all these five classification models, their accuracy is larger

than 90%, and their F-score is larger than 80%. Table I and

Table II give the accuracy and F-score of the five classifiers.

                              (a) DT                     (b) NN 

                             (c) MLP                     (d) SVM 

(e) WSVM 

(%
)

Fig. 7. CVT results of five classifiers

The average accuracy of the five classifiers are 93.8% (window

length of 256), 94.4% (window length of 512) and 95.0%
(window length of 1024), respectively. The average F-score

of the five classifiers are 85.4% (window length of 256),

87.2% (window length of 512) and 88.5% (window length

of 1024), respectively. This indicates that the proposed eating

activity detection method is able to accurately distinguish

eating activity from the six other daily activities; (2) The

accuracy outperforms precision, recall and F-score in all

these cases. Through comparing equations (6), (7) and (8),

we know that the accuracy metric not only takes TP and

FP into consideration, but also TN and FN. High accuracy

indicates that TN is much larger than FN and FP. That is

to say, all the models can identify most negative samples;

(3) For DT, NN, MLP and SVM, their precision is better

than recall. This is because that, according to equations (7)

and (8), FP is smaller than FN. This implies that all these

four models misclassify more positive samples as negative

class than negative samples as positive class. In other words,

these models are biased to negative class. Through assigning

a larger weight to the positive class, WSVM reverses the

bias and obtains higher recall than precision; (4) As to the

five classifiers, DT, MLP and WSVM outperform NN and

SVM. Specifically, DT performs best for window length of

256 and 512. MLP performs best for window length of 1024;

(5) The classification performance improves with the increase

of window length, but the improvement is only two to three

percent. As longer window length causes larger time delay, in



all the following experiments, the window length is set to 512

to balance the accuracy and delay.

TABLE I
THE accuracy OF FIVE CLASSIFIERS IN CVT

Win. DT NN MLP SVM WSVM Average

256 95.2% 91.9% 93.8% 93.5% 94.4% 93.8%

512 97.1% 91.7% 94.4% 93.7% 95.2% 94.4%

1024 96.2% 92.6% 96.5% 93.9% 95.7% 95.0%

TABLE II
THE F-score OF FIVE CLASSIFIERS IN CVT

Win. DT NN MLP SVM WSVM Average

256 89.1% 80.3% 85.5% 84.1% 87.8% 85.4%

512 93.6% 80.2% 87.2% 85.0% 89.8% 87.2%

1024 91.6% 82.6% 92.1% 85.6% 90.8% 88.5%

2) Self test (ST): Fig. 8 depicts the ST results of these

four users. For user 1 and user 2, the ST performances of

the five classifiers on almost all these four metrics are highly

accurate. Both the accuracy and F-score are higher than those

of CVT. For user 3, the F-score of SVM is a little low.

For user 4, while the accuracy of all these classifiers is

above 90%, the F-score of NN and SVM is lower than 80%.

However, DT and MLP still perform quite good for user 4.

The accuracy of DT and MLP is larger than 95%, and the

F-score of DT and MLP is above 90%. We believe that the

performance difference between different classifiers is mainly

because that we adopt the default parameters for all classifiers.

The performance of these classifiers could be improved after

parameter optimization.

                                (a)                        (b) 

                                (c)                        (d) 

Fig. 8. ST results of four users

3) Leave-one-subject-out test (LOSOT): Fig. 9 presents the

LOSOT results of four users. Comparatively, the performance

of LOSOT falls below that of CVT and ST. This is reasonable

as the data of testing user is not included in the training

dataset. Table III shows the average accuracy and F-score of

the five classifiers for these four users. For user 1, user 2 and

user 3, the average accuracy is between 89.8% and 93.4%,

and the average F-score is between 76.6% and 85.1%. These

are still good. For user 4, the average accuracy is 81.6%,

but the average F-score is only 55.4%. Why is the detection

performance of user 4 lower than that of the other three users?

We believe that it is because of sensor position bias, which

causes larger variance of the sampled acceleration data for user

4.

                               (a)                         (b) 

                               (c)                         (d) 

Fig. 9. LOSOT results of four users

TABLE III
THE AVERAGE accuracy AND F-score IN LOSOT

User 1 User 2 User 3 User 4

Avg. accuracy 93.4% 89.8% 91.1% 81.6%

Avg. F-score 85.1% 77.1% 76.6% 55.4%

C. Evaluation of Chews Counting

We evaluate the chews counting accuracy for each user in

the following experiments. For non-chewing window elimi-

nation, the difference threshold, MagDiff , is set to 3. To

describe the chews counting accuracy, the following detection

error rate is used:

Error rate =
|Detection−Ground truth|

Ground truth
× 100% (10)

Table IV describes the ground truth in terms of the number

of chews, chewing time and chewing frequency of these four

users. Compared with the chewing frequency range reported

in reference [19], the chewing frequencies in Table IV are a

little low. This is because we do not exclude the time spent in

biting and swallowing.

Table V depicts the chews counting results for four users.

The error rates are 9.9%, 21.8%, 4.0% and 13.2%. Though

the error rate for user 2 is a little high, the average error rate

of four users is about 12.2%.

In Step 2 of chews counting module, we drop the whole

window if the acceleration magnitude difference is larger

than the predefined threshold. The dropped window may



TABLE IV
GROUND TRUTH OF CHEWING OF FOUR USERS

User 1 User 2 User 3 User 4

Number of chews 473 596 323 380

Chewing time (Sec.) 532 481 492 461

Chewing frequency 0.9 Hz 1.2 Hz 0.7 Hz 0.8 Hz

TABLE V
CHEWS COUNTING RESULTS OF FOUR USERS

User 1 User 2 User 3 User 4

Chews counting 520 466 310 330

Error rate 9.9% 21.8% 4.0% 13.2%

contain a few chews. Therefore, in most cases, the chews

counting results are underestimated, as we can see from the

results of user 2, 3 and 4. The best solution is to design a

segmentation algorithm to extract whole chewing segments

for chews counting. We leave this as our future work.

For the threshold of acceleration magnitude difference, we

use a fixed value for all the users. Considering the user

difference and sensor location variance, a user-dependent and

online adaptive threshold should be better.

In summary, the above experiments demonstrate that the

proposed method is able to accurately detect users’ eating

activity and count the number of chews.

V. RELATED WORK

A self-report diary [29] is often used in dietary monitoring.

Though people may roughly record the food type and amount

under request, they often tend to miscalculate and underreport

the food consumed [30]. Furthermore, few people are willing

to estimate the eating speed or count the number of chews

during eating. Recently, some progress has been made on

automatic dietary monitoring, including audio based methods,

video based methods and motion based methods.

An audio based method uses a wearable microphone to

detect the sound during eating. Reference [6] uses a modi-

fied Bluetooth headset with embedded microphone to collect

sounds in a user’s throat area. Time domain features, frequency

domain features and cepstral features are extracted from the

recorded sounds to train the classification model. The F-

measure accuracy reaches 79.5% and 71.5% for laboratory

study (12 activities) and small-scale in-the-wild study (4

activities), respectively. Reference [5] places the microphone

inside the ear canal to differentiate chewing from speech and

silence. At the same time, this method can also differentiate

several types of food, such as potato chips, apple, mixed

lettuce and pasta, based on the difference of their chewing

sounds. Even though the above related works demonstrate the

validness of the audio based method, the sensor deployment is

invasive. A user may not be willing to wear a microphone near

the throat or in the ear during eating. Besides, audio recording

raises potential privacy concerns.

An Active Appearance Model (AAM) is utilized in [7]

to track a subject’s face and detect chewing activity from

surveillance video. This is based on the observation that

variations in AAM parameters have distinct periodicity dur-

ing chewing. The experimental results demonstrate a cross-

validated percentage agreement of 93.0%. The video based

method needs no on-body sensor, and the video sequence

can be acquired without any user intervention. However, this

method brings many privacy concerns. Its accuracy is also

affected by environmental lighting changes and face occlusion.

In recent years, the popularity of wearable devices (smart

glasses, smartwatch, smart wristband, etc.) has made motion

based dietary monitoring possible. Reference [31] combines

accelerometers from a smartwatch and Google glass to rec-

ognize a user’s eating activity. Reference [32] only uses a

glasses mounted accelerometer to distinguish chewing from

non-chewing activities. Similarly, reference [33] uses motion

sensors on Google glass to detect head movement and infer

eating activity. Reference [10] integrates an EMG sensor

and vibration sensor into 3D-printed eyeglasses for detecting

chewing and identifying food categories. Reference [8] uses a

watch-like device, which is embedded with a micro-electro-

mechanical gyroscope, to track wrist motions and detect

food intake. Moreover, reference [34] uses a smartwatch

to detect eating activity. Reference [35] designs a sensor-

embedded digital fork, Sensing Fork, to sense a child’s eating

behavior. Furthermore, a mobile game named Hungry Panda

is developed to encourage the child to eat diverse foods

during mealtime. However, the above methods are mainly for

eating or chewing activities detection. Chews counting is not

included. Li et al [36] propose a novel method that embeds a

small accelerometer inside artificial teeth to capture unique

motion characters during chewing, drinking, speaking and

coughing. This method is too invasive to be widely accepted.

In addition, safety issues and frequent battery changes also

need to be addressed. In [27], we published a poster paper

to present our preliminary idea, by which this technology

had not been fully developed yet. In that poster publication,

we used a single axis accelerometer to detect eating activity

and count chews. However, this method requires much larger

sliding windows. Besides, further experiments show that its

eating detection accuracy is very low for the leave-one-subject-

out test. We believe that it is because one axis acceleration

data is not enough to distinguish motion characters between

eating and other activities, and the extracted features are not

representative enough.

In addition to audio, video and motion based methods, there

are some other ways for dietary monitoring. For example,

references [11] and [37] deploy a piezoelectric sensor below

the ear to capture the movement of the lower jaw and detect

chewing rate. Reference [38] places a piezoelectric sensor

on the temporalis to detect the chewing bouts. However, the

piezoelectric sensor needs to be attached on the skin tightly.

This is invasive and unfriendly for users.

VI. DISCUSSION AND FUTURE WORK

We chose multiple pieces of watermelon as the food in

all evaluation experiments. Watermelon is one of the softest

foods. Thus, the user chews it with little effort. According to



commonsense, the more strength the mastication muscles use,

the greater the muscle bulge is. Therefore, if eating watermelon

can be accurately recognized by the proposed method, it is

reasonable to expect that eating harder food could also be

accurately recognized. Besides, it may be possible for the

proposed method to recognize the food types through detecting

the chewing strength. We leave this for future work.

For the ground truth in terms of the number of chews, the

EMG data is used as the reference to identify and count each

chew. The EMG signal during food intake is ignored. At the

same time, as shown in the green boxes in Fig. 10, occasionally

the EMG signal may be less obvious and hard to identify.

Thus, the ground truth may not be perfectly obtained, but the

error is very small according to our observation.

For the feature extraction, when the window length is 256,

there is only one frequency component in the band of (0, 0.5)
Hz. Thus, the MFC location feature in this band always equals

1, which is useless for classification. We delete this feature in

the CVT experiment for window length of 256.

The proposed eating detection method is complementary to

other methods for recognizing more complex dietary activities.

We also leave this for future work.
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Fig. 10. Less obvious EMG signal

VII. CONCLUSION

In this paper, we propose a novel eating activity detection

and chews counting method. It is done through identifying the

mastication muscle contractions using a triaxial accelerometer

attached on the temporalis. The accelerometer is embedded

in a headband, and only the acceleration data is recorded.

Therefore, the proposed method is noninvasive and privacy-

preserving. Experiments are conducted with multiple human

subjects. The results demonstrate that the proposed method

accurately distinguishes eating activity from other daily activ-

ities using only 5 seconds of acceleration data. Moreover, the

average error rate of chews counting for four users is 12.2%.
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