Poster: Kinetic Tremor Measurement via IMU Sensing Data Analysis

WOOSUB JUNG, William & Mary, USA

KENNETH KOLTERMANN, William & Mary, USA

NOAH HELM, Virginia Commonwealth University, USA

GINAMARI BLACKWELL, Virginia Commonwealth University, USA

INGRID PRETZER-ABOFF, Virginia Commonwealth University, USA

LESLIE CLOUD, Virginia Commonwealth University, USA

GANG ZHOU, William & Mary, USA

Tremor is a common symptom among all stages of Parkinson's Disease (PD) patients. To measure daily tremor events, we utilized IMU sensing data from wrists while PD patients were drawing. We secured 30 patients' IMU sensing data, following standard rating scale activities. With the collected data, we conducted data analysis for dominant tremor and tremor amplitude extractions. Our preliminary analysis and results show the potential of measuring kinetic tremors effectively. We plan to further analyze tremor events of PD patients via wearable sensing devices.

Additional Key Words and Phrases: IMU dataset, tremor detection

ACM Reference Format:

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

Woosub Jung, Kenneth Koltermann, Noah Helm, GinaMari Blackwell, Ingrid Pretzer-Aboff, Leslie Cloud, and Gang Zhou. 2022. Poster: Kinetic Tremor Measurement via IMU Sensing Data Analysis. In ACM/IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE' 22), November 17–19, 2022, Washington, DC, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3551455.3559155

1 INTRODUCTION

Tremor is a common symptom among all stages of Parkinson's Disease (PD) patients. Measuring tremors accurately is critical to mitigate their symptoms, accordingly. The use of subjective observation of tremors by domain experts in the clinic setting is the usual assessment of tremor, which is not preferable in patients' daily lives. To minimize these efforts, wearable technologies are often used because those devices can be accurate and objective to measure tremor events [8]. For example, researchers have proposed non-intrusive methods to infer potential tremor events in daily lives [1].

However, conducting standard protocols for tremor measurement, such as UPDRS and FAHN [5], is also time intensive and requires training to use. In addition, the ground truth data is obtained by experts' naked eyes and can be subjective. In this work, we use wearable sensing data of drawing activity to measure tremor events. Drawing is a common daily activity and easy to perform for any user or PD patient. In addition, standard rating scales include a drawing test, which makes participants draw two spiral circles and three straight lines. Thus, we secure a vast number of drawing events from an IMU-based FAHN dataset. We then propose data analysis

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

54 CHASE' 22, November 17–19, 2022, Washington, DC, USA

55 ACM ISBN 978-1-4503-9476-5/22/11...\$15.00

with a Continuous Wavelet Transform (CWT) technique to measure the tremor of PD patients.

58 59 60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

The objective of this study is to measure and detect the occurrence of PD tremor events in IMU sensing data. To achieve this goal, we first convert the raw data into CWT images so that the input data include meaningful information both in time- and frequencydomains. Our preliminary experiments demonstrate that monitoring drawing activities can suggest potential tremors via wearable prototypes, such as a smartwatch.

2 TREMOR DATA COLLECTION

Among different types of tremors, our study focused on detecting kinetic tremors. Kinetic tremor is measured when a body part is moving. In the FAHN rating scale, different levels of tremors correspond to the range between 0 and 4 in which the maximum 4 represents the most severe tremor.

In our data collection procedure, 30 participants were asked to conduct a set of different behaviors. Spiral-drawing test is one of the tests that can capture kinetic tremor events. This is because PD patients often get tremors while being asked to draw circles or lines. Figure 1 illustrates template drawings provided to PD patients during our data collection. In all of the tests, participants also wore the UG devices, which is a research-purpose IMU sensing device [9], on each wrist for collecting movements in their hands and arms.

Overall, IMU data were collected from de-identified footage from all 30 participants of our tremor study. For each wrist of a participant, 3-axis accelerometer, gyroscope, and magnetometer data were secured under a sample rate of 100Hz. Video data were also recorded as ground truth for further analysis. Figure 2 shows an example of data collection.

Fig. 1. Template Drawings during the FAHN Rating Scale

Fig. 2. Participant conducting a Spiral-Drawing Test

^{© 2022} Copyright held by the owner/author(s).

⁵⁶ https://doi.org/10.1145/3551455.3559155 57

117

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Fig. 3. Samples Outcomes of Tremor Data Analysis Procedures

3 TREMOR DATA ANALYSIS

Our data analysis is twofold; we 1) generate CWT images to extract time- and frequency-domain features and 2) differentiate data to get tremor amplitude.

Frequency Domain Analysis 3.1

IMU sensors generate time-domain features. Figure 3a shows raw accelerometer data on a tremor hand during a spiral-drawing test. The raw data itself cannot provide much information about tremors. When we calculate the composed accelerometer (Figure 3b), we observe that it can be segmented into drawing parts and transition parts. Still, it is hard to distinguish tremors from the signal. As shown in Figure 3c, when we convert the composed accelerometer data into a CWT image, it is noticeable that the CWT image consists of two circle parts and three straight-line parts. Moreover, we can see that there is a dominant tremor frequency of around 8Hz across times. This is possible since the CWT conversion allows us to have frequency-domain features. We plan to analyze these CWT images for further tremor research.

3.2 Tremor Amplitude Analysis

To obtain tremor amplitude, we first segment raw accelerometer data into a single event data. From the composed accelerometer data (Figure 3b), we can easily extract accelerometer data from different events. For example, Figures 5a and 5b correspond to the ground truth drawings in Figures 5c and 5d, respectively. After segmentation, we conduct differentiation from raw accelerometer data to obtain velocity data. Assuming tremors often occur in the X-axis of UG devices, as described in Figure 4, we compute velocity

. Vol. 1, No. 1, Article , Publication date: September 2022.

data of accelerometer data in the X-axis for both hands. While nontremor hands do not show obvious tremor results (Figure 5a), data from tremor hands include dominant tremor events (Figure 5b). From these observations, we plan to measure tremor events more accurately in future work.

RELATED WORK 4

A fair amount of studies have been done working to measure tremors while drawing using different sensors, including IMU sensors [4, 6, 7]. Work has also been done using deep learning networks to infer tremor events [2, 3]. In this study, we aim to provide an accurate and non-invasive solution that utilizes CWT images derived from IMU sensing data while drawing. We also plan to secure a comprehensive dataset and use deep learning techniques for better classification performance.

5 CONCLUSION

This study aims to analyze kinetic tremor events of PD patients via IMU sensing data. For easier tremor screening, we focus on spiral-drawing tests of the FAHN rating scale. With the IMU dataset collected by 30 PD patients, we analyze dominant tremor events in the converted CWT images and obtain tremor amplitude in IMU velocity data. Our preliminary analysis demonstrates that IMU sensing data can suggest potential tremor events in daily drawing activities, which will be beneficial for screening PD tremors at early stages.

ACKNOWLEDGMENTS

This research was supported by the U.S. NIH NINDS under grant #R01NS120560. The authors would like to thank everyone who helped collect the PD patient's data.

REFERENCES

- [1] Minja Belić, Vladislava Bobić, Milica Badža, Nikola Šolaja, Milica Đurić-Jovičić, and Vladimir S Kostić. 2019. Artificial intelligence for assisting diagnostics and assessment of Parkinson's disease-A review. Clinical neurology and neurosurgery (2019)
- [2] Sabyasachi Chakraborty, Satyabrata Aich, Eunyoung Han, Jinse Park, Hee-Cheol Kim, et al. 2020. Parkinson's disease detection from spiral and wave drawings using convolutional neural networks: A multistage classifier approach. In 2020 22nd International Conference on Advanced Communication Technology (ICACT).
- [3] Akalpita Das, Himanish Shekhar Das, Arijeet Choudhury, Anupal Neog, and Sourav Mazumdar. 2020. Detection of Parkinson's Disease from Hand-Drawn Images Using Deep Transfer Learning. In Congress on Intelligent Systems. Springer, 67-84.
- Peter Drotár, Jiří Mekyska, Irena Rektorová, Lucia Masarová, Zdeněk Smékal, and Marcos Faundez-Zanuy. 2016. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease. Artificial intelligence in Medicine 67 (2016), 39-46
- Stanley Fahn, Eduardo Tolosa, Concepcíon Marín, et al. 1993. Clinical rating scale [5] for tremor. Parkinson's disease and movement disorders (1993).
- [6] João Paulo Folador, Maria Cecilia Souza Santos, Luiza Maire David Luiz, Luciane Aparecida Pascucci Sande de Souza, Marcus Fraga Vieira, Adriano Alves Pereira, and Adriano de Oliveira Andrade. 2021. On the use of histograms of oriented gradients for tremor detection from sinusoidal and spiral handwritten drawings of people with Parkinson's disease. Medical & Biological Engineering & Computing 59, 1 (2021), 195-214.
- Yan Pang, Jake Christenson, Feng Jiang, Tim Lei, Remy Rhoades, Drew Kern, John A Thompson, and Chao Liu. 2020. Automatic detection and quantification of hand movements toward development of an objective assessment of tremor and bradykinesia in Parkinson's disease. Journal of Neuroscience Methods 333 (2020).
- [8] Minglong Sun, Amanda Watson, Gina Blackwell, Woosub Jung, Shuangquan Wang, Kenneth Koltermann, Noah Helm, Gang Zhou, Leslie Cloud, and Ingrid Pretzer-Aboff. 2021. TremorSense: Tremor Detection for Parkinson's Disease Using Convolutional Neural Network. In 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). IEEE, 1-10.
- Hongyang Zhao, Shuangquan Wang, Gang Zhou, and Daqing Zhang. 2019. Ultigesture: A wristband-based platform for continuous gesture control in healthcare. Smart Health 11 (2019), 45-65.

223

224

225

226

227

228

172

173

174

175