
DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing

Woosub Jung
William & Mary

wsjung@cs.wm.edu

Yizhou Feng
Old Dominion University

yfeng002@odu.edu

Sabbir A Khan
Old Dominion University

skhan@cs.odu.edu

Chunsheng Xin
Old Dominion University

cxin@odu.edu

Danella Zhao
Old Dominion University

zhao@cs.odu.edu

Gang Zhou
William & Mary
gzhou@cs.wm.edu

ABSTRACT
As the number of IoT devices has increased rapidly, IoT botnets
have exploited the vulnerabilities of IoT devices. However, it is still
challenging to detect the initial intrusion on IoT devices prior to
massive attacks. Recent studies have utilized power side-channel in-
formation to identify this intrusion behavior on IoT devices but still
lack accurate models in real-time for ubiquitous botnet detection.

We propose the first online intrusion detection system called
DeepAuditor for multiple IoT devices via power auditing. To de-
velop the real-time system, we propose a lightweight power audit-
ing device called Power Auditor. We also design a distributed CNN
classifier for online inference in a laboratory setting. In order to
protect data leakage and reduce networking redundancy, we then
propose a privacy-preserved inference protocol via Packed Homo-
morphic Encryption and a sliding window protocol in our system.
The classification accuracy and processing time are measured, and
the proposed classifier outperforms a baseline classifier, especially
against unseen patterns. We also demonstrate that the distributed
CNN design is secure against any distributed components. Over-
all, the measurements are shown to the feasibility of our real-time
distributed system for intrusion detection on IoT devices.

KEYWORDS
Power Intrusion Detection System, Distributed Online System,
Privacy-preservation, Internet of Things

1 INTRODUCTION
Internet of Things (IoT) devices have become the new cybercrime
intermediaries between attackers and users to process cyberat-
tacks. For example, in October 2016, a massive distributed denial-
of-service (DDoS) attack incapacitated the Domain Name System
provider Dyn. This made several Internet platforms and services,
such as Amazon, Netflix, PayPal, and Twitter, temporarily unreach-
able to numerous users in Europe and North America. This IoT
botnet attack was called Mirai and exceeded 600 Gbps in volume
at its peak. This overwhelming amount of the traffic was sourced
from 65,000 injected IoT devices, including routers, security cam-
eras, and digital video recorders [6]. These IoT devices were known
at the time to have weak security protection and to be vulnerable
to attacks. As reported by Symantec [47], thousands of outdated
routers were targeted by the worms exploiting their vulnerabil-
ity. Since then, many variants of Mirai have emerged to target the
weaknesses of IoT devices. Besides serving as the intermediaries of

DDoS attacks, IoT devices were also found to serve as attack proxies
for multiple cybercrimes, such as clickjacking and spearphishing
[41][40].

Even though the Mirai attack happened five years before the
time of writing, IoT devices are still vulnerable to IoT botnets. Mirai
and its variants used a simple brute-force attack [46] when first
transforming IoT devices into their bots, which is still cybercrimi-
nals’ preferred option for executing attacks [28]. Despite the clear
intrusion procedures of botnet attacks on IoT devices, it is not easy
to determine whether an intrusion has occurred. The main concern
is that the network traffic generated on endpoint devices is not
noticeable as malicious behavior in the initial stages of the attack.
In this situation, deploying network-based botnet detection systems
into different IoT devices/vendors is heavyweight and intrusive to
users. For example, 84 different IoT devices/vendors were found to
engage in the Mirai bots. Moreover, they were related to more than
300 different communication protocols and platforms [6]. Thus,
network-based botnet detection requires a great deal of modifica-
tion in programming languages or operating systems on diverse
IoT devices. One approach to tackling this issue involves the use
of power side-channel information for the detection of stealthy
attacks. Using a power side-channel is durable and universal since
power traces are hard to compromise and can capture accumu-
lated tasks on heterogeneous devices, such as different hardware,
vendors, operating systems, etc. Meanwhile, it is nearly impossi-
ble for adversaries to mimic normal power draw behavior while
attacks. Thus, some pioneering work in this area utilized power
side-channel data to detect malignant behavior on mobile devices
in the early 2010s [27][51]. However, these studies are outdated
and need to be validated in IoT environments.

Several recent studies have utilized power auditing — the anal-
ysis of power consumption — to explore IoT security and defend
against malicious attacks [36][29]. However, those proposed sys-
tems mainly focused on detecting massive DDoS attacks on IoT
devices. It is still therefore challenging to distinguish the subtle ini-
tial stages of an IoT botnet intrusion. Jung et al. [25] introduced IoT
botnet detection via power modeling. In this research, the authors
designed a Convolutional Neural Network (CNN) model using one-
dimensional power side-channel data to classify malicious intrusion.
While the CNN classifier showed promise in detecting subtle dif-
ferences in power traces, the fundamental problem with this study
is that it was conducted offline with a bulky and expensive power
monitor. Thus, it is not practical for ubiquitous botnet detection on
IoT devices. To tackle these challenges, we designed a lightweight

IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22) Jung et al.

power auditing device and a distributed online CNN classification
system for resource-constrained IoT devices. Our proposed end-to-
end system DeepAuditor was developed in a distributed setting and
can simultaneously detect the initial botnet intrusion on multiple
IoT devices via power auditing.

With this aim, our research questions in this paper are as follows:
• How can we audit power side-channel information of IoT
devices in real-time for ubiquitous botnet detection?

• How can we conduct online inference for multiple IoT de-
vices in a distributed setting?

• How can the distributed classifier prevent data leakage and
networking redundancy?

To answer the first question, we designed a small form-factor
device called Power Auditor that is capable of measuring the power
traces of a connected IoT device for behavior classification. Unlike
off-the-shelf power monitors, our Power Auditor is lightweight
and portable. Thus, we envision devices such as Power Auditor as
an important component of future smart plugs. Nowadays, smart
plugs are often used in IoT environments to control electronics
remotely for the sake of convenience, e.g., Amazon Smart Plug
[15]. As IoT devices are getting popular, the smart plug market
also grows quickly; its compounding annual growth rate is approx-
imately 42% over the forecast period between 2021 and 2026 [2].
According to our prototype performance, the proposed algorithms
are lightweight and therefore can easily be integrated into future
smart plugs for ubiquitous botnet detection.

To address the other research questions, we developed distributed
CNN classifier components: Data Inferencer in a user site and Com-
puting Cloud in a cloud site. The proposed CNN design outperforms
the baseline classifier; we increased the classification accuracy by
up to 17% in leave-one-out tests. In our leave-one-device-out tests,
a classifier is trained with a certain device-type dataset and tested
with the remaining device-type data to show its robustness against
a new device. The leave-one-botnet-out tests are also crucial con-
cerning practical deployments because the classifier has to be robust
against unseen attack patterns but not overfitted. We then designed
distributed protocols between our CNN components: a privacy-
preserved CNN protocol and a sliding window protocol. Note that
side-channel information can also reveal users’ private data to the
cloud site [31]. To remedy this concern, we designed the privacy-
preserved CNN protocol in our distributed system. This protocol
also addresses the problem of attackers extracting classifier model
parameters from distributed environments [44] [43]. The sliding
window protocol was developed to reduce networking redundancy.

In summary, our contributions in this study are threefold.
• As a proof of concept, we designed a dedicated small form-
factor device called Power Auditor to realize online botnet
detection. The Power Auditor is lightweight and portable,
and therefore can easily be integrated into future smart plugs.

• We are the first to develop a distributed online intrusion
detection system for IoT devices via power auditing. We
designed distributed CNN components and proposed dis-
tributed protocols between user and cloud sites in order to
conduct real-time inference without data leakage.

• We demonstrated the performance of our classification sys-
tem in a laboratory setting: 1) The proposed CNN classifier

(a) Device Rebooting (b) Botnet Intrusion

Figure 1: Power Traces collected by our Power Auditor

detects malicious behavior with an accuracy of up to 98.9%,
which outperforms the baseline, 2) we theoretically analyzed
the data protection of the privacy-preserved protocol, and
3) the distributed system supports about one hundred IoT
devices simultaneously by using our laboratory server.

The rest of the paper is organized as follows: Section 2 provides
background and a threat model for our study. In Section 3, we
introduce our botnet detection system DeepAuditor. In Section
4, we present the Power Auditor design of our system. Section 5
introduces the distributed online CNN model for botnet detection.
In Section 6, we describe online system implementation. Section 7
demonstrates online performance evaluation of our system. Section
8 presents our thoughts regarding limitations and future work.
Section 9 summarizes related work. Finally, we conclude this paper
in Section 10.

2 BACKGROUND AND THREAT MODEL
This section provides background knowledge and introduces a
threat model.

2.1 Intrusion Detection via Power Modeling
Power traces can capture accumulated tasks to identify abnormal
behavior. Several recent studies demonstrated that subtle activities
on smartphones can be inferred from power consumption data
[27, 50, 51]. Likewise, other studies on IoT security [25][29] explored
how IoT devices’ behavior generates different patterns of power
consumption data. For example, Figure 1 illustrates two examples
of different activities collected by our Power Auditor. As shown
in Figure 1a, rebooting IoT devices generates power traces that
are distinct from the power patterns that occur in Mirai botnet
intrusion [Figure 1b]. In Figure 1b, an attacking bot enters the device
using different username/password combinations and conducts
post-processing. This generates two power traces: one from the
brute-force attack and one from the post-processing. Furthermore,
since the Mirai botnet family utilizes brute force attacks [48], the
power traces generated by these intrusions look nearly identical
across dataset. Thus, it is feasible to identify malign behavior by
analyzing power traces on IoT devices.

In IoT botnet detection, it is crucial to detect this intrusion be-
havior in its early stages. Otherwise, botnets grow so quickly, so it
will be too late to defend against DDoS attacks. We aim to identify
whether the real-time power traces suggest malicious or benign be-
havior and classify them accordingly. Though RNN could also help
in streaming data, it is more suitable in natural language applica-
tions. Instead, CNN is widely used in sensor streaming applications
and classifies instances very fast in the inference stages. Therefore,

DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22)

Figure 2: DeepAuditor System Overview — The system consists of three subsystems with two distributed protocols.

we designed a CNN design to realize an online botnet intrusion
detection system. More detailed design factors will be discussed in
the following sections.

2.2 Threat Model
2.2.1 Client-side Vulnerabilities. In DeepAuditor, we train power
traces generated by existing IoT botnets. However, we also assume
that an adversary is capable of conducting various patterns of botnet
attacks. Thus, we consider two possible strategies that the adversary
can use to attack our client-side. 1) Exploit vulnerabilities in the
Power Auditor device. 2) Generate complicated post-processing
jobs that create unseen power patterns. For example, downloading
unexpected files or connecting to multiple servers can create more
complicated data patterns.

To minimize the vulnerabilities of the Power Auditor, our pro-
posed Power Auditor only monitors the power consumption of
the physically connected IoT device within a local network; thus,
the Power Auditor does not allow any inbound traffic from remote
sources. This assumption is especially valid when smart plugs also
do not allow users to access ssh/telnet services [2]. Instead, these
smart plugs are mostly managed by manufacturer apps. As we envi-
sion Power Auditor to be an integral part of future smart plugs, both
Power Auditor and the smart plugs are secure against brute-force
attacks. To address the post-processing job vulnerability, segmented
data from different patterns were trained as botnet instances in
our deep learning model. Thus, as long as power side-channel in-
formation is noticeable enough to label, our system is capable of
detecting a diverse set of botnets beyond that are well-known. Our
leave-one-out tests also demonstrate the classifier performance
against unseen patterns in Section 5.1.

2.2.2 Server-side Vulnerabilities. In addition to exploiting the above
vulnerabilities, adversaries could also target our cloud servers. Note
that we implemented our classification model into two cloud-based
edges. Thus, we assume any user-hold application and model-hold
server in our system can become a semi-honest adversary. This
means that they may try to steal information from received mes-
sages. For example, servers may infer IoT device behavior based
on the power trace input, and users try to learn the server’s model
parameters based on the server output. We consider all parties non-
colluding for their input data and output data. It is essential for our
system to avoid user’s privacy data disclosure that leads to poor
credibility.

The emerging attacks presented in [43, 44] are also threats that
we need to consider in our model. User-side can launch the model
extraction attack [44] to extract the convolution layer and fully
connected parameters based on the server received message. Server
can process membership inferences attack [43] to compare the
user input with the server’s pre-trained dataset. In this research,
our privacy-preserving mechanism masks the intermediate/final
output for both user and server. However, the user still can learn the
correct predicted result. Simultaneously, our privacy-preserving
mechanism protects the server holds model parameters from the
user, and user input is oblivious for server. We applied a flexible
method to protect the output correctness and prove our system
security by using a real-ideal paradigm [38], as introduced in detail
in Section 7.3.

3 DEEP AUDITOR SYSTEM OVERVIEW
In this section, we introduce the distributed IoT botnet detection
system DeepAuditor. As shown in Figure 2, the proposed system
consists of three subsystems: Power Auditor, Data Inferencer, and
Computing Cloud. The ultimate goal of DeepAuditor is to identify
subtle power differences in real-time between normal behavior and
IoT botnet intrusions on multiple IoT devices. To build the system,
Power Auditors are used to secure power-trace data of IoT devices.
Data Inferencer and Computing Cloud are then used as online classi-
fiers that can process intrusion detection. Altogether, the proposed
distributed components accomplish the online intrusion detection
via power side-channel auditing.

In the user site, the Power Auditor is connected to each IoT de-
vice to collect power consumption traces; there can be multiple
Power Auditors for the corresponding IoT devices. We propose
several functionalities of the Power Auditor for intrusion detection
as follows. First, the Power Auditor is capable of auditing a de-
vice’s power consumption footprint via the Power Data Processing
module. During the online phase, the Networking module then
transmits the collected data to the Data Inferencer for online clas-
sification. Finally, the Power Controlling module supplies power
to the connected IoT device. Section 4.1 introduces the universal
design of the Power Auditor in detail.

Next, we developed a sliding window protocol between the
Power Auditor and the Data Inferencer in the user site. This is
because overlapping input instances of the CNN classifier can help
to achieve better detection accuracy. However, if clients send those

IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22) Jung et al.

Figure 3: Power Auditor Prototype

overlapping windows to the server sides, this will lead to network-
ing redundancy. For example, if a Power Auditor sends 1.5 seconds
of data every 0.5 seconds, this will bring 67% networking redun-
dancy. Instead, Power Auditors send segmented data to the Data
Inferencer that concatenates the segmented packets for assembling
input instances. Overall, in order to meet the real-time classifica-
tion, our DeepAuditor needs to process each input instance less
than the size of the sliding window. More details will be described
in Section 4.2.

We then designed a one-dimensional CNN classifier for botnet
intrusion detection, which we explain in Section 5.1. Our evaluation
results demonstrate that our classifier outperforms the state-of-the-
art classifier [25] for power modeling. Based on the proposed 1-D
CNN model, we implemented and deployed the pre-trained CNN
classifier into a distributed lab setting.

Lastly, Section 5.2 introduces the Privacy-Preserved CNN infer-
ence protocol for online prediction in a distributed setting. This
protocol enables the CNN communications between user and cloud
sites without leaking data. The Data Inferencer runs in the user site,
receives power traces from Power Auditors, and sends encrypted
data to the Computing Cloud to offload computation resources. In
the cloud site, the Computing Cloud is in charge of CNN inference
computations, i.e., nonlinear activation computations in the CNN.
Then, the Computing Cloud sends the encrypted computation re-
sults to the Data Inferencer for online inference. Finally, the Data
Inferencer classifies the final prediction of whether the given input
power trace is benign or malicious.

4 POWER AUDITOR DESIGN
In section 4.1, we introduce the three universal software compo-
nents of the Power Auditor: Power Controlling, Power Data Pro-
cessing, and Networking modules. In section 4.2, we then describe
the data transmission protocol between the Power Auditor and the
Privacy-Preserved CNN Classifier.

4.1 Component Design
In our Power Monitor, the Power Controlling module supplies
power to a connected IoT device. Next, the Power Data Processing
module reads power consumption traces of the attached IoT device.
The Networking module communicates with the server-side to
convey the sensing data for online classification. Figure 3 shows
our prototype of a Power Auditor and a connected IoT device. All
the source codes for Power Auditors will be available for download.

The Power Auditor bypasses power to the connected IoT device
from an AC adapter. As shown in Figure 4, we built a FET-based

Figure 4: Power Control Circuit

(a) INA219 Sensor (b) Logical Circuit of Power Measurement

Figure 5: Power Measurement Design

switch to turn on the connected IoT device via GPIO pin from the
Power Auditor device. The current draw of this module is only
20mA when the power output is being provided, while a Power
Auditor supplies enough power to most IoT devices. Therefore, IoT
devices do not need any modifications in our system.

We also designed a current circuit for power measurement. To
get the current and voltage reading on the connected IoT device,
we utilized the current sensor INA219 [5], as displayed in Figure 5a.
This sensor includes a shunt resistor and provides ADC conversion
to the Power Auditor. Figure 5b illustrates how the current sensor
provides power consumption data of the IoT device. In this circuit,
Power Auditor measures the voltage drop around the shunt resistor
at a high frequency. Based on this data, we calculate the current
values going through the entire circuit. By doing so, we canmeasure
the power consumption of the IoT device since the voltage input
is also fixed. According to the specification of the sensor used, the
maximum error rate is approximately 0.5%, which is negligible.

After measuring power data, the Power Data Processing module
pushes each power reading instance into a local queue. Then, the
Networking module fetches the queued data periodically and as-
sembles the collected data to a TCP packet for data transmission
to the online classifier. Detailed networking protocol and interface
format are illustrated in the next subsection.

4.2 Sliding Window Protocol
We introduce the interface design between the Power Auditor and
the Data Inferencer for online inference. First, we determined a
window size of 1.5 seconds for botnet intrusion input. Jung et al. [25]
revealed that Mirai and its variants have similar time distributions
for the initial intrusion during the propagation period, which is less
than 1.5 seconds. It should be noted that this invasion time may
vary depending on systems or botnets. However, as long as it is
noticeable to label, a window size would not be a critical issue.

Next, we applied a sliding windowwith one-third overlap for bet-
ter classification accuracy. Our reasoning is that malicious instances
can be truncated within a single window. Different overlapping

DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22)

(a) Client-side Implementation (b) Server-side Implementation

Figure 6: Sliding Window Protocol Options— We adopted
the Server-side scheme to reduce networking redundancy

Figure 7: TCP Packet Example in Sliding Window Scheme

ratios are also possible but one needs to consider the trade-off be-
tween classification accuracy and network bandwidth. We were
able to achieve real-time prediction with the one-third overlapping
ratio. Figure 6 illustrates the overlapping sliding window scheme
in our DeepAuditor system. As shown in Figure 6a, if a Power
Auditor transmits a data packet of 1.5 seconds every 0.5 seconds,
this will create redundant packets. Instead, a Power Auditor reads
0.5 seconds of data and sends it out once collected, as illustrated
in Figure 6b. The Data Inferencer then receives the packet every
0.5 seconds. After receiving three consecutive packets, the Data
Inferencer assembles the last three packets and feeds them into the
pre-trained CNN classifier for online inference. By doing so, we
avoided unnecessary network redundancy in a distributed setting.

We then implemented the interface format accordingly. Table 1
illustrates the packet header format. The number of data points is
determined based on the following values. For example, our sam-
pling rate is 1700, and the window size is 1.5 seconds. Consequently,
the number of data points in a single instance for classification is
1700 × 1.5 = 2550. Since we adopted the server-side sliding win-
dow scheme, the Power Auditor also set the Sliding Window Ratio
header to 3. Finally, the number of data points in a single TCP
packet is 2550 ÷ 3 = 850 in our system. The message body contains
a list of the power-sensing data. Figure 7 describes an example of
the raw TCP packet data.

5 DISTRIBUTED CNN CLASSIFIER DESIGN
In Section 5.1, we present a one-dimensional CNN architecture.
Section 5.2 then describes a distributed inference protocol between
the DeepAuditor components that offloads CNN computations and
protects data leakage.

Table 1: TCP Packet Interface Format
Header Type Description Example
Hostname String Hostname of Power Auditor smpg1
Message ID String Unique ID for each message 4da77a50-aeaf-11
Sampling Rate Integer Sampling Rate of Current Sensor (Hz) 1700 (Hz)
Window Size Integer Length of a single window (ms) 1500 (ms)

Sliding Window
Ratio Integer Ratio of Overlapping Data

1: No Overlapping
2 : 1/2 Overlapping
3 : 1/3 Overlapping

Number of
Data Points Integer The number of data points

in a single TCP packet

850 (Sampling Rate *
Window Size / 1000 /
Sliding Window Ratio)

Data Points Float List of Power consumption data (mW) 1854.878, ... (mW)

5.1 1-D CNN Classifier Design
We designed a 1-D Convolutional Neural Network (CNN) archi-
tecture for botnet intrusion detection that outperforms the state-
of-the-art model (CHASE’19) [25]. Jung et al. introduced a CNN
model and conducted an offline evaluation. Although this CNN
classifier showed promise in identifying subtle differences in power
traces, this model performed poorly in some experiments, espe-
cially against unseen patterns. For example, the leave-one-out tests
introduced a prediction accuracy of below 80%, which suggests a
possible overfitting problem. Indeed, achieving high accuracy in
the leave-one-out tests is very important in our system. In a real-
world deployment, it is not possible to train all the cases or botnets
beforehand. Therefore, the poor leave-one-out results motivated
us to propose an enhanced CNN model to avoid overfitting and
increase classification accuracy for IoT botnet intrusion.

5.1.1 CNN Design Philosophy. Figure 8 provides an overview of
the proposed 1-D CNN architecture. This CNN classifies time-series
power-trace input as belonging to one of four behavior classes in IoT
devices: IoT Service, Idle, Reboot, Botnet Intrusion. Thus, we seek
to distinguish malicious intrusions from other common behavior.

Because the DeepAuditor processes power consumption data,
the input layer prepares one-dimensional input to feed into the
convolutional layer. The power sensing model has a sampling rate
of 1.7kHz and a window length of 1.5 seconds (See Section 4.2).
Thus, the input instance size is (1 x 2550). We then use 32 one-
dimensional (1 x 128) kernels at a stride size of 64. Consequently,
the convolutional layer computes a dot product between the power
traces and 32 kernels.

Moving forward, we carefully chose the design factors of the 1-D
CNN to solve the complex problem of botnet intrusion detection
while avoiding overfitting. To demonstrate the effectiveness of each
design factor, we used a public dataset, which was collected in
2019, for botnet intrusion detection [1] containing power trace
data from four different behavior classes (IoT Service, Idle, Reboot,
Botnet Intrusion) from three types of IoT devices (Security Camera,
Router, Voice Assistant) and three IoT botnets (Mirai, Sora, Masuta).
In the dataset, each class has 2,000 instances of 1.5 seconds of
power-consumption data. The CHASE’19 CNN classifier performs
well in self-evaluation tests where the training and test data are
from the same type of device. However, this CNN architecture
performs poorly in leave-one-out tests where the test dataset is
from a different type of device than the training dataset. We can
infer from this that the CNN model is either not powerful enough
or overfitted to the specific datasets.

Figure 8: 1-D CNN Model for the power-trace classification

IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22) Jung et al.

(a) Dropout Layer (b) Pooling Layer (c) Convolutional Layer (d) Fully Connected Layer

Figure 9: Impact of CNN Design Factors

5.1.2 Impact of Design Factors. In this vein, we compared our
design factors with the previous model to show that our model
outperforms it. In particular, we used the leave-router-out test to il-
lustrate the performance difference. In this test, the training dataset
includes security camera and voice assistant data, while the test
dataset has the unseen router power-trace data. Figure 9 demon-
strates the design factors of our 1-D CNN. First, Figure 9a shows
that the dropout layer enhanced the validation accuracy from 84%
to 94%. The dropout layer is helpful because it reduces the number
of trainable features to prevent overfitting during training. The
CHASE’19 model did not use a dropout layer, so the test and vali-
dation accuracy had a gap of 10% and the validation accuracy was
below 80%. In Figure 9b, we observe that the max-pooling method
enables to achieve a better classification accuracy than the average-
pooling method. This result suggests that the max-pooling method
can capture dramatic power-trace spikes well, while the average
pooling method smoothes out those power spikes that may include
important information. In Figure 9c, we achieved a better accuracy
by increasing the number of kernels from 10 to 32. Note that using
64 kernels decreased the prediction performance because the un-
necessary learning ability (more features) overfitted to the dataset.
Lastly, Figure 9d illustrates that we determined the best number
of neurons in the fully connected layer is 128. As illustrated, in-
creasing the number of neurons to 256 hurt the validation accuracy,
which hints at a possible overfitting problem.

Overall, we designed a powerful CNN classifier for botnet in-
trusion detection by optimizing design choices including hyper-
parameters. As a result, our CNN classifier outperforms the baseline
model, which is too simple and overfitted to the dataset in leave-
one-out tests.

5.1.3 Offline Validation of the Proposed Model. For practical de-
ployments, neural network models need to be accurate against
unseen patterns. Therefore, we further conducted offline experi-
ments to determine the robustness of our model. Table 2 compares
the DeepAuditor and CHASE’19 models.

Leave-one-device-out tests are meaningful because they show
the robustness of the classifier in the practical deployment envi-
ronment. For example, it is not possible to train power-trace data
from all IoT devices because there are numerous IoT devices in the
market. Thus, our classifier needs to be robust against unseen data

Table 2: Comparison of Leave-one-out tests
System Metric Leave-router-out Leave-voice-assistant-out Leave-Masuta-out

CHASE’19 [25] Accuracy 77.3% 80.7% 79.6%

DeepAuditor

Accuracy 94.6% 89.1% 95.5%
Recall 98.2% 94.7% 98.4%

Precision 94.7% 87.4% 95.4%
F1-Measure 96.4% 90.9% 96.9%

from new and future IoT devices. As shown in the previous sub-
section, in the leave-router-out tests, we trained power data from
a security camera and a voice assistant. Then, the router dataset
was used to test the classification accuracy. Our DeepAuditor CNN
classifier achieved an accuracy of 94.6%, while the CHASE’19 model
predicted power traces with an accuracy of 77.3%. In the leave-voice-
assistant-out test, we also achieved a nearly 10% improvement in
accuracy.

Leave-one-botnet-out tests are also crucial since they demon-
strate the CNN’s ability to detect new botnet attacks. As discussed
in Section 2, Mirai and its variants utilized brute-force attacks,
which are still adversaries’ preferred options for intrusion into IoT
devices. Although these attacks use slightly different procedures,
they all follow the model of brute-force attacks followed by post-
processing jobs. Thus, it is feasible to identify malicious intrusions
of different botnets through power traces. We achieved over 95%
prediction accuracy, which outperforms the baseline classifier’s
accuracy of below 80%. The above results clearly show that our
model is generalized to different types of devices or botnets.

5.2 Privacy-preserved Inference Protocol
Based on our CNN classifier design, we propose a privacy-preserved
inference protocol. This protocol was designed between the Data
Inferencer and the Computing Cloud to offload computations with-
out data leakage. We will theoretically validate the data protection
of the protocol in Section 7.3.

5.2.1 Motivation and Design Principle. To offload computation re-
sources, we separate multiplication and summation operations
of the convolutional and fully connected layers into the two dis-
tributed components. In particular, Data Inferencer only computes
cheap plaintext summations, while Computing Cloud carries out
the multiplication operations in the ciphertext. Simultaneously, to
make it more efficient, we encode our input data in both Data In-
ferencer and Computing Cloud following the convolution kernel’s
order rather than keeping the data as original format. By doing this,
we also avoid requiring time-consuming permutation operations
[26] and offline secret sharing strategies in both of the convolu-
tional and fully connected layers. This is an improvement on other
works [30, 33, 53]. After that, we feed the output directly into the
next layer.

To make it possible, we utilize Packed Homomorphic Encryption
(PHE) to allow Data Inferencer to encrypt the power trace data be-
fore uploading it to Computing Cloud. Then, the Computing Cloud
runs the CNN computations on the encoded ciphertext. Thus, the
Data Inferencer encodes multiple plaintext data elements into one

DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22)

ciphertext and high-efficiently carries out element-wise homomor-
phic computations in a Single Instruction Multiple Data (SIMD)
manner [8]. This tool is particularly useful for our system as our
input instance includes thousands of sampling data due to the high
sampling rate. Overall, our design uses the CKKS-based PHE that
works on element-wise float point data addition and multiplication
in ciphertext [12, 32].

Protocol 1 Privacy-preserving CNN Inference
Inputs: Received power trace X
Outputs: Prediction Status 𝑙 on the given trace X

The Protocol:
1. Data Inferencer receives raw data X from Power Auditor,

encrypts it as [𝑋 ′]𝐶 , and sends [𝑋 ′]𝐶 to Computing Cloud.
2. Computing Cloud computes [𝑈]𝐶 = 𝐾1𝑊 ′

1 [𝑋
′]𝐶 + 𝐾1𝐵′1 +

𝑁1 where 𝐾1 is a non-zero positive random vector,𝑊 ′
1 is

the encoded weight, 𝐵′1 is the encoded bias, 𝑁1 is a pseudo-
random zero-sum vector. Finally, Computing Cloud sends
[𝑈]𝐶 to Data Inferencer.

3. Data Inferencer decrypts [𝑈]𝐶 and computes 𝑍 𝑗 =∑3
𝑖=0𝑈𝑖+𝑗 , where 𝑗 is the convolution block index. Then,

it feeds the result to the ReLU activation function and max
pooling layer. Finally, it gets the result 𝑌 .

4. Data Inferencer encodes and encrypts 𝑌 as [𝑌 ′]𝐶 , and then
sends it to Computing Cloud.

5. Computing Cloud removes the random number 𝐾1 and com-
putes the [𝑉 ′]𝐶 = 𝐾2𝑊 ′

2 [𝑌
′]𝐶 +𝐾2𝐵′2 + 𝑁2, where the 𝐾2 is

a non-zero positive random number, 𝑁2 is a pseudo-random
zero-sum vector, and the subscript 2 of𝑊 and 𝐵 indicates
the corresponding variables at the fully connected layer in
our CNN model. Then, Computing Cloud sends [𝑉 ′]𝐶 to
Data Inferencer.

6. Data Inferencer decrypts [𝑉 ′]𝐶 and performs the summation
similarly to Step 3 on each hidden unit block. Finally, it
feeds the fully connected layer output into the softmax layer
to get the final prediction status 𝑙 for a given power trace.
Depending upon the policy, Data Inferencer takes further
actions if 𝑙 represents a malicious intrusion.

5.2.2 Detailed Procedures. The detailed privacy-preserved infer-
ence protocol is described in Protocol 1 and Figure 10. In order to
better explain the key idea, we take an identical CNN model with
a smaller size input instead of the original input size. Recall that
the input size of our CNN model is (1 x 2550), and the kernel size is
(1 x 128) with the stride size 64 (See Section 5.1). Instead, we use
a CNN model as an example whose kernel size is (1 x 4) with the
stride size 2.

Let 𝑋 denote the received raw data by Data Inferencer from
Power Auditor. The Data Inferencer first utilizes a PHE package
that uses one packed vector to store multiple encrypted plaintext
data. In Step 1, to implement the convolution function over the
ciphertext, Data Inferencer encodes the data𝑋 to𝑋 ′, as illustrated in
Figure 10. Correspondingly, Computing Cloud encodes the weight
𝑊1 and bias 𝐵1 into packed vectors𝑊 ′ and 𝐵′ in Step 2. With such

Figure 10: Data operations on Data Inferencer and Comput-
ing Cloud in Steps 2 and 3

encoding, the convolution between 𝑋 and𝑊 can be implemented
as the element-wise multiplication between 𝑋 ′ and𝑊 ′, plus 𝐵′.

Steps 2 and 3 show how we securely implement the convolu-
tional layer among ciphertext. After Computing Cloud receives the
ciphertext [𝑋 ′]𝐶 from Data Inferencer, Computing Cloud uses Eq.
(1) to compute the homomorphic multiplication result.

[𝑈]𝐶 = 𝐾1 ×𝑊 ′
1 × [𝑋 ′]𝐶 + 𝐾1 × 𝐵′1 + 𝑁1, (1)

The purpose of using random numbers 𝑁1 and 𝐾1 in Eq. (1) is
to prevent Data Inferencer from inferring the model parameter𝑊 ′

1
from its received message [𝑈]𝐶 . Computing Cloud first generates
a zero-sum vector 𝑁1 ∈ Z, which is a vector of pseudo-random
numbers such that 𝑁1 =

∑3
𝑗=0 𝑛𝑖, 𝑗 = 0 (0 ≤ 𝑗 ≤ 3), to mask each

multiplication result, as illustrated in Fig. 10. Then, Computing
Cloud multiplies a non-zero positive random number vector 𝐾1 =

[𝑘1,0, 𝑘1,1] to mask all multiplication results. With both masks 𝑁1
and 𝐾1, Data Inferencer is unable to learn the parameter𝑊 ′

1 and
𝐵′1 based on [𝑈]𝐶 and 𝑋 ′. Note that 𝑁1 is different across different
kernels in convolution. Simultaneously, recall that the pool size of
max pooling size is 2, 𝐾1 is different for every two kernels to make
sure the correctness for the output of max pooling layer.

Steps 5 and 6 are similar to Steps 2 and 3 but implement the
fully connected layer. However, Computing Cloud only requires to
choose a non-zero positive random number𝐾2 in Step 5 to mask the
ciphertextmultiplication result. At the end of Step 6, Data Inferencer
directly feeds the weighted sum result of the fully connected layer
into the softmax layer to infer the Power Auditor status 𝑙 . If the
𝑙 value represents a malicious intrusion on the IoT Device, Data
Inferencer can take further actions, such as sending a notification
to the administrator or shutting down the IoT device.

6 ONLINE SYSTEM IMPLEMENTATION
For performance evaluation, we have implemented a prototype
system in a distributed setting. Section 6.1 describes the prototype
implementation and Section 6.2 shows the new dataset we collected.

IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22) Jung et al.

Table 3: Online System Testbed
Power Auditor IoT Device Mirai Bot Data

Inferencer
Computing

Cloud
Network

Deployment Local Network Cloud

Hardware
Platform Raspberry Pi 3 Raspberry Pi 3 Raspberry Pi 3 Apple Mac

Mini Desktop Linux Server

CPU 1.4GHz,
Quad-core

1.4GHz,
Quad-core

1.4GHz,
Quad-core

2.5GHz,
Dual-core

2.6GHz,
2*16 cores

Memory 1GB 1GB 1GB 8GB 250GB
Sensor
used

Current Sensor
(INA219A)

- Camera Sensor
- External Microphone N/A N/A N/A

Operating
System Raspbian 9 Raspbian 10 Raspbian 9 macOS 10.15 Ubuntu 18.04

Software
Module

- Power Monitoring
- Networking
- Power Controlling

- Video Streaming
- Motion Detection
- Voice Assistant

Mirai
(Scanner/Loader)

Privacy-preserved
Online Classifier

Privacy-preserved
Online Classifier

6.1 DeepAuditor Implementation
We have built a prototype DeepAuditor for proof of concept. Table
3 describes our testbed environment. First, Raspberry Pi 3 devices
serve as both Power Auditors and IoT devices for prototyping pur-
poses. We also used a desktop in the same local network for Data
Inferencer. Computing Cloud was deployed in a department cloud
server outside the local network.

In Power Auditors, we implemented the proposed modules in
Python for real-time data collection. For prototyping IoT devices,
we installed an open-source camera software called MotionEye
[9] on the connected IoT devices. This software includes a motion
detection feature as well as a video streaming feature. Thus, we
consider the Raspberry Pi 3 device running MotionEye as an IoT
device. Likewise, we also installed the Google AIY project [20] on
another Raspberry Pi 3 device and conducted voice commands on it.
The Power Auditor is connected to an AC adapter. The IoT device
is then supplied with power through the Power Auditor, as shown
in Figure 3.

Next, we implemented the sliding window scheme between the
Power Auditor and the Data Inferencer. Since the Power Auditor
sends segmented power traces of 1.5-second data every 0.5 seconds,
the Data Inferencer is required to predict the power trace data every
0.5 seconds.

As mentioned in Section 5.2, our privacy-preserved protocol
utilized CKKS-based PHE [12], which involves three parameters
1: 1) polynomial modulus degree 𝑁 , 2) ciphertext scale 𝑠 , and 3)
coefficient modulus. In our protocol, we set up the CKKS-related
encryption parameters as follows: 1) Parameters for PHE scheme are
selected for a 128-bit security level, 2) the selection of polynomial
modulus degree 𝑁 is a smaller degree that allows to encode 𝑁 /2
elements into one ciphertext. In our case, we selected 𝑁 = 32768 for
the convolution layer and 𝑁 = 4096 for the fully connected layer,
3) a ciphertext scale 𝑠 = 240 is enough to store all the intermediate
results in the convolutional layer, and a ciphertext scale 𝑠 = 220 is
enough to store all the intermediate results in the fully connected
layer, and 4) In seal [32], the modulus switching chain is set up
as coefficient modulus for ciphertext against exponential noise
growth during ciphertext operations. In our case, we selected the
coefficient modulus (60, 40, 40, 60) for the convolutional layer and
(30, 20, 20, 30) for the fully connected layer.

With the above parameters, we fulfilled the CNN classifier in the
Data Inferencer and the Computing Cloud. According to Protocol 1,
the classification procedures comprise six steps; steps 1, 3, 4, and 6
are implemented in the Data Inferencer, whereas steps 2 and 5 are

1The reader is referred to [12, 32] for more details.

Table 4: The Collected Dataset of Power Traces

Class Description Number of
Instances

Total number
of Instances

Idle When IoT Service
is not running 4693 4693

IoT Device
Service Security Camera [9] 5976 8176

Voice Assistant [20] 2200

Reboot When system
is rebooting 2200 2200

Botnet
(Mirai) [22]

Malicious behavior
while system is Idle 2000 3000
Malicious behavior

while system is running
IoT service

1000

implemented in the Computing cloud. Step 6 makes a final decision
for power-trace prediction.

To satisfy the real-time prediction requirement, we adopted
pipeline processing [45] in the six inference steps; each step is
being executed in parallel in the Data Inferencer and the Comput-
ing Cloud. In other words, the Data Inferencer and the Comput-
ing Cloud do not have to wait until all the steps are completed.
This pipelining increases the throughput of the instructions, which
eventually leads to our real-time inference for multiple IoT devices
simultaneously. We will discuss the performance in Section 7.4.

6.2 Dataset Collection for Online Test
As discussed earlier, our classifier predicts which of the four classes
a power instance belongs to. Even though the previous section
already demonstrated the robustness of our classifier design on the
public dataset, we newly collected power traces from two different
types of IoT devices to demonstrate the real-time performance.
Thus, we created a new dataset in our testbed environment, as
shown in Table 4.

Table 4 summarizes the collected dataset. In our environment,
we generated a specific scenario and collected over 2,000 power
instances for each class. For example, the data we collected for
the Idle class comprises 4,693 instances of 1.5-second power traces
when the IoT service was not running. We also collected power
traces when the IoT service was running or the IoT device was
rebooting. For example, we used the open-source MotionEye [9] for
security cameras and the Google AIY project [20] for voice assistant
prototypes. For the Botnet class, we downloaded an open-source
code of Mirai from Github [22] and built it on an IoT bot testbed.
To generate Mirai instances in our local network, we modified the
source code to attack only our IoT devices. Then, we collected 3,000
instances of malicious attacks when the IoT service is running or
the system is idle.

7 ONLINE SYSTEM EVALUATION
In Section 7.1, we validate the performance of the Power Auditor
device. Section 7.2 then demonstrates the system-level online clas-
sification performance. In Section 7.3, we theoretically analyze the
data protection of the privacy-preserved inference protocol. Finally,
Section 7.4 illustrates the scalability evaluation of the system.

7.1 Power Auditor Performance
In Table 5, we compare our power auditing device with the off-
the-shelf device Monsoon Power Monitor [35] that was used in

DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22)

Table 5: Power Auditing Devices Comparison
Our

Power Auditor
Monsoon

Power Monitor [35]
Sampling

Rate Up to 1.7kHz Up to 5kHz

Measurement
Range

Up to 5.5V
Up to 2.3A

Up to 13.5V
Up to 6A

Dimension 3" x 2" x 1" 8" x 6" x 3"
Weight 0.3lb 4lb

Software Text-based
Python Software

Window GUI
Software

Online
Measurement Available Not Applicable

Price $25 $929

the offline study [25]. Our Power Auditor supports a sampling rate
of up to 1.7kHz and a voltage of up to 5.5V. These ranges are less
than the Monsoon device and thus may be limited in measuring
the power of large appliances with built-in computation units, e.g.,
smart fridges or smart microwaves. However, it is still enough
to audit most IoT devices’ power consumption. On the contrary,
the Power Auditor is much smaller and lighter than the Monsoon
device, which makes our device convenient for ubiquitous power
measurement. More importantly, the proposed device is capable
of measuring power-trace data in real-time for online inference.
The Power Auditor also supplies power to connected devices while
measuring power consumption.

Table 6 illustrates the performance metrics for a single Power
Auditor working with our servers. In short, the resources of Rasp-
berry Pi 3 are more than capable of supporting the Power Auditor
device. For example, the maximum CPU load in the Power Audi-
tor is up to 76%, which used roughly 20% of the Raspberry Pi’s
quad-core computing power. Memory (RAM) usage during online
auditing is only 10MBytes out of Raspberry Pi’s 1GB (1%). Based on
the proposed sliding window design, the required network band-
width between the Power Auditor and the Data Inferencer is only
120Kbps. This bandwidth is extremely small and therefore can be
covered by Bluetooth or even the Zigbee protocol. Moreover, the
power consumption of the Power Auditor is approximately 2W
during the real-time inference. That is about an extra $2 in cost per
year for single-device monitoring, which is similar to the power
consumption of existing smart plug devices [3]. Note that these
results were the same regardless of IoT device type. Due to space
constraints, we did not include those results. Overall, our results
confirm that the Power Auditor is lightweight enough for an online
auditing device, and we plan to build a prototype upon real-world
demonstration.

7.2 Online CNN Classifier Performance
We measured online classification results in a laboratory setting.
We provide the classification accuracy and other metrics associated
with this test to validate the classifier performance. We generated
power instances of each class in real-time and conducted online
inference to obtain metrics. For example, the IoT device was in idle

Table 6: Online System Performance per IoT Device
CPU Load
(Max1)

Memory
Usage

Network
Bandwidth

Processing
Delay

Power
Consumption

Power Auditor 76% (400%) 10MB 120Kbps 25ms 2W (400mA)
Data Inferencer 40% (200%) 50MB 11.375Kbps 160ms —

Computing Cloud 35% (3200%) 30MB — 360ms —
1 Maximum CPU Load depends on the number of CPU cores, e.g., Dual-core has a maximum 200%
CPU load.

Figure 11: Online Classification Results

status for the Idle class, while the IoT device streamed video or
conducted voice commands for the IoT Service class. For the Mirai
intrusion class, a bot device sneaked into the IoT device, and we
measured the inference results on the intrusion events.

Table 6 shows the performance of each distributed component
as the classifier is deployed in separate servers. These metrics were
obtained when the DeepAuditor processed continuous data from
a single Power Auditor monitoring an IoT device. The total delay
per power instance is approximately 520 milliseconds: 160𝑚𝑠 in
the Data Inferencer and 360𝑚𝑠 in the Computing Cloud. In our
testbed, the transmission delay between the Data Inferencer and the
Computing Cloud is approximately 20𝑚𝑠 , while the local network
delay is less than 1ms. The network bandwidth between the Data
Inferencer and the Computing Cloud is 11.375Kbps, and thememory
usage is 50MBytes in the Data Inferencer and 30MBytes in the
Computing Cloud. Overall, these numbers are not overwhelming
for online inference since we utilized cloud resources.

Figure 11 also shows the online classification results for each
IoT device. The results demonstrate the exceptional classification
ability of the CNN classifier. For example, we achieved an overall
accuracy of 98.95%. The Precision and Recall metric values for both
tests are also above 98%. Thus, the distributed classifier is able to
distinguish different patterns of device behavior in real-time, as
trained.

Furthermore, Figure 12a illustrates the processing delay of each
step in the privacy-preserved inference protocol. For instance, it
takes about 350𝑚𝑠 to complete the Convolution procedure (Step 2)
on Computing Cloud regardless of device type, which is themajority
of the entire online classification. Other steps consume relatively
fewer computing resources. In addition, Figure 12b demonstrates
an empirical CDF function of the online classification response
time. For both devices, we observe that over 80% of the inferences
were done in 550𝑚𝑠 or less. Note that our system is required to
classify real-time instances per Power Auditor every 500𝑚𝑠 . To
maximize the process throughput, we applied pipeline processing
to the inference protocol. Thus, the entire performance mainly rests

(a) Processing Time per Protocol Step (b) Empirical CDF of Response Time

Figure 12: Online Classifier Processing Time

IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22) Jung et al.

on step 2, which is the most time-consuming job in our classifier.
Even though most instances are completed about 550𝑚𝑠 after the
Data Inferencer receives the power instance, the Computing Cloud
is able to classify two instances per second securely because step
2 takes at most 400𝑚𝑠 , as presented in Figure 12a. Overall, the
DeepAuditor as an entire system is able to reliably predict input
instances every 500𝑚𝑠 in real-time.

7.3 Theoretical Analysis of the
Privacy-preserved Inference Protocol

In this subsection, we demonstrate that our distributed classifier
design is secure in that 1) Computing Cloud cannot obtain the
client’s power-trace data, and 2) Data Inferencer cannot obtain the
model parameters𝑊 and 𝐵 of the CNN model in Computing Cloud.
Hence, there is no information leakage between Computing Cloud
and Data Inferencer.

We used a security analysis method called ideal/real world par-
adigm [38]. Let P1 denote Data Inferencer with input 𝑥 and P2
Computing Cloud with input 𝑦. Let 𝑓 = (𝑓1, 𝑓2) be a set of func-
tionality and 𝜋 be a protocol which is implemented in our online
system for computing 𝑓 . The party 𝑃𝑖 wishes to obtain the protocol
output 𝑓𝑖 (𝑥,𝑦) (𝑖 ∈ {1, 2}). The view of 𝑃𝑖 during an execution
of 𝜋 on the set of input 𝑥 = {𝑥,𝑦} is denoted as view𝜋

𝑖
(𝑥), and it

equals to (𝑤, 𝑟𝑖 ;𝑚1
𝑖
, . . . ,𝑚𝑡

𝑖
) where 𝑤 ∈ 𝑥,𝑦 is the input of 𝑃𝑖 for

𝑖 ∈ {1, 2}. 𝑟𝑖 is equals to the set of random numbers inside 𝑃𝑖 , and
𝑚

𝑗
𝑖
represents the 𝑗-the message received by 𝑃𝑖 .
The adversary can compromise any one party in our model, but

not the majority and all of them are non-colluded. There exists a
probabilistic polynomial-time simulator that has same functionality
as 𝜋 . The security of 𝜋 is defined as follows:

Definition 7.1. A Protocol 𝜋 can securely execute 𝑓 in the pres-
ence of semi-honest adversaries, if for any exists a probabilistic
polynomial-time simulator 𝑆𝑖 , such that for the corrupted parities
𝑃𝑖 , it has:

{(𝑆1 (1𝑛, 𝑥, 𝑓1 (𝑥)), 𝑓 (𝑥))} ≡ view𝜋
𝑖 (𝑥)}

{(𝑆2 (1𝑛, 𝑦, 𝑓2 (𝑥)), 𝑓 (𝑥))} ≡ view𝜋
𝑖 (𝑥)} (2)

where ≡ represents computationally indistinguishable, and 𝑖 ∈
{1, 2}.

The protocol 𝜋 is secure against semi-honest adversaries if the
views of the real-world execution are computationally indistin-
guishable from the view of the simulator in ideal world. In the
following section, we use the method above to prove our online
system is secure against semi-honest adversaries.

7.3.1 Data Security against Compromised Data Inferencer. We as-
sume that Data Inferencer is compromised by Adversary A. We use
the simulator sim to behave as Adversary A which interacts with f.
The sim, f, and Data Inferencer conduct the following steps:

1) sim first gets [𝑋 ′]𝐶 fromData Inferencer. Then, it sends [𝑋 ′]𝐶
to f. f returns [𝑈]𝐶 to sim.

2) Starting Data Inferencer, sim generates random number 𝑊̄ ,
𝐵, 𝐾 and 𝑁 , and computes [𝑈 ′]𝐶 = 𝐾𝑊̄ [𝑋 ′]𝐶 + 𝐾𝐵 + 𝑁 by Eq. (1).
Then, sim sends [𝑈 ′]𝐶 to Data Inferencer.

3) sim decrypts and outputs𝑈 and𝑈 ′

The above protocol is secure against adversary Data Inferencer
based on the randomness of 𝐾 ′ and 𝑁 ′ which makes the view of
𝑈 ′ that is generated by sim computationally indistinguishable from
the view of 𝑈 that the real output from f. This conclusion can also
be applied to the view of the Fc layer in our system.

7.3.2 Data Security against Compromised Computing Cloud. Simi-
larly, we assume that Computing Cloud is compromised by Adver-
sary A which interacts with sim. The sim, f, and Computing Cloud
conduct the following steps:

1) sim first gets𝑊1, 𝐵1, 𝐾1, 𝑁1,𝑊2, 𝐵2, 𝐾2, and 𝑁2 from Com-
puting Cloud. Then, it sends𝑊1, 𝐵1, 𝐾1, 𝑁1,𝑊2, 𝐵2, 𝐾2, and 𝑁2 to
f. f returns None to sim.

2) Starting Computing Cloud, sim generates and encrypts a group
of random numbers 𝑋 as [𝑋]𝐶 . Then, sim sends it to Computing
Cloud.

3) sim receives [𝑈 ′]𝐶 from Computing Cloud, sim generates and
encrypts a group of random numbers 𝑌 as [𝑌]𝐶 . Then, sim sends
[𝑌]𝐶 to Computing Cloud.

4) sim outputs ([𝑋]𝐶 , [𝑌]𝐶).
Our system is secure against Computing Cloud because the

view of the Data Inferencer’s input data [𝑋]𝐶 and the intermediate
output [𝑌 ′]𝐶 is computationally indistinguishable from the [𝑋]𝐶
and [𝑌]𝐶 that is generated by sim based on the fact that the PHE
algorithm is semantically secure [8].

7.3.3 Computation Complexity Analysis. We analyzed the over-
all computation complexity for the convolutional layer and fully
connected (FC) layer of DeepAuditor in Table 7. Let denote that 𝑟
is kernel size for the convolutional layer and 𝐶 is the number of
output channels for the convolutional layer. We compared our work
with a naive method of Gazelle [26], which is a more state-of-the-
art protocol with speed-up than some classic privacy-preserving
inference protocol like [19]. Based on our benchmark on Protocol 1,
Computing Cloud needs 𝐶 times ciphertext multiplication and ad-
dition to compute the intermediate result [𝑈]𝐶 . Meanwhile, Data
Inferencer only conducts a cheap plaintext summation [𝑈]𝐶 to
complete the convolution output 𝑍 𝑗 . The total computation cost for
our protocol design is much less than the Gazelle, which requires 𝑟
times ciphertext permutation, 𝑟𝐶 times ciphertext multiplication,
and 𝑟𝐶 times ciphertext addition.

To improve the computation efficiency in the FC layer. We ex-
tended our data encode operation presented in Figure 10, which
enables all max-pooling outputs to be packed into one ciphertext.
Let 𝑛𝑖 denote the number of data in each output channel of max-
pooling, 𝑛𝑜 denote the output data for the FC layer, 𝑛 denote the
number of slots for one ciphertext, and 𝑘 denote the kernel size
for the FC layer. Each ciphertext can hold 𝐶𝑛𝑖𝑛𝑜

𝑛 data. Compared
with Gazelle’s input packing method [26], the Computing Cloud in
our protocol needs 𝑘 times less than ciphertext multiplication and

Table 7: Comparison of Computation Complexity
Methodology Permutation Multiplication Addition

Gazelle-Convolution O(𝑟) O(𝑟𝐶) O(𝑟𝐶)
DeepAuditor-Convolution 0 O(𝐶) O(𝐶)

Gazelle-FC O(𝑘) O(𝑘𝐶𝑛𝑖𝑛𝑜𝑛) O(𝑘𝐶𝑛𝑖𝑛𝑜𝑛)
DeepAuditor-FC 0 O(𝐶𝑛𝑖𝑛𝑜𝑛) O(𝐶𝑛𝑖𝑛𝑜𝑛)

DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22)

(a) CPU Utilization (b) Processing Time in Step 2

Figure 13: Scalability Performance Evaluation

addition. The FC layer of our protocol also does not require cipher-
text permutation, while Gazelle still requires 𝑘 times ciphertext
permutation.

7.4 Scalability Evaluation
As shown in Figure 2, a single Computing Cloud supports multiple
Power Auditors. We deployed the online CNN classifier in a dis-
tributed environment to offload computation resources and handle
multiple IoT devices simultaneously. In our testbed, we evaluated
how many IoT devices the cloud servers could support for intrusion
detection.

To test scalability, we set up a distributed environment with eight
Power Auditors, two Data Inferencers, and one Computing Cloud.
Four Power Auditors are connected to each Data Inferencer, both
of which are connected to the same Computing Cloud. The eight
Power Auditors collect power traces from their respective IoT de-
vices in real-time. Note that system scalability relies on efficient use
of available resources, such as throughput and CPU utilization [24],
regardless of device or botnet type. Figure 13 deficits performance
results of four tests of 1, 2, 4, and 8 Power Auditors. In Figure 13a,
as the number of Power Auditors increases, the CPU utilization of
the Computing Cloud increases linearly. The Computing Cloud’s
CPU utilization per Power Auditor is approximately 35%, which
is consistent with the result in Table 6. Moreover, when we tested
with eight Power Auditors, the total CPU utilization was less than
300% out of 3,200% (32 Cores).

Furthermore, Figure 13b demonstrates that the DeepAuditor
classifies multiple IoT devices’ data in real-time. As discussed in
Section 7.2, the inference time mostly relies on the processing time
in step 2 of our protocol. In Figure 13b, as we increased the number
of Power Auditors, the average processing time does not change
substantially. As long as the processing time in step 2 is less than 0.5
seconds, our DeepAuditor system can guarantee real-time inference
for online detection.

Overall, these results demonstrate that the Computing Cloud sup-
ports inference computations for multiple IoT devices to the extent
that CPU cores are available. For example, step 2 takes approxi-
mately 350𝑚𝑠 on average, and the CPU utilization of Computing
Cloud is about 35% for handling a single Power Auditor. Thus, a
single core of Computing Cloud can handle up to three Power Au-
ditors per second. Since the Computing Cloud in our environment
has 32 CPU cores, this server can support almost a hundred Power
Auditors. We further plan to enhance the convolution processing
time in the future because the current performance is bounded by
the processing time in step 2.

Table 8: Our classifier was validated on different datasets

Experimental
Environment

Power Monitoring
Device

Year
Collected

Number of
Device Type

Number of
Instances

CHASE’19 [1] Lab Monsoon
Power Monitor 2019 3 8000

DeepAuditor At-home Our Proposed
Device 2021 2 15869

8 DISCUSSION
In this section, we present our thoughts with regard to limitations
and future work.

8.1 Power Auditor Prototype
Since we utilized a Raspberry Pi device for prototyping the Power
Auditor, our current version is still bulky and costly for ubiquitous
power measurement. Several researchers have already developed a
small form-factor power meter for communication purposes [23]
[16]. However, because it was not designed for IoT devices, the
power ranges are slightly higher than those of many IoT devices,
whereas our current Power Auditor is able to monitor low-powered
IoT devices. Thus, we plan to make our Power Auditor an AC-plug
meter device that can be attached to off-the-shelf IoT devices. This
task requires PCB board manufacturing and is shown to be feasible
by other works. If so, the Power Auditor will be even smaller and
cheaper than the current prototype. Moreover, since the smart plug
industry has grown dramatically, we believe that in the future, our
model can be integrated into generic smart plug devices for online
intrusion detection.

8.2 Real-world Deployment
DeepAuditor is the first distributed online system to assess the
power consumption of IoT botnet intrusion following the emer-
gence of Mirai and similar IoT botnets. Fundamentally, our dis-
tributed system components process the power consumption of the
connected IoT devices in real-time for intrusion detection, which
has never been tackled before. Thus, we focused on demonstrating
the validity of our system design since other approaches may not be
directly comparable with the DeepAuditor. Nevertheless, our pro-
posed CNN classifier was tested with two different datasets. Table
8 shows the environments of the two datasets, including location,
time, and power monitor devices. As demonstrated in the previous
sections, our classifier performed well in both environments.

However, our system still needs to be tested in a real-world de-
ployment. Based on the proven concept, we plan to further expand
our current system to a wild setting in which commercial IoT de-
vices will be used for validation purposes. We will tackle this task
in the future.

9 RELATEDWORK
Section 9.1 presents side-channel studies on IoT security. In Section
9.2, we summarize the related work with regard to IoT security
via power auditing. Then, Section 9.3 introduces the existing work
concerning about the preservation of data privacy.

IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22) Jung et al.

9.1 IoT Security via Side-channel Information
The literature has scrutinized IoT security against botnets for decades
[7, 49]. This area includes network-based solutions as well as power-
auditing-based detection methods. While network-based solutions
have struggled to address the endpoint security on IoT devices
[10], several works have utilized side-channel information, such as
electromagnetic (EM) data. Especially for resource-constrained de-
vices, using side-channel information is efficient because it utilizes
existing resources instead of requiring many modifications [39].

Nazari et al. [37] proposed an EM-based spike detection method
to identify injected codes in program execution. The EM spectrum
was monitored in order to detect malware, and the results showed
promise in using side-channel information. Sehatbakhsh et al. [42]
also utilized EM-based monitoring to identify anomalous behavior
during execution on medical devices. While EM-based side-channel
monitoring also showed potential in program execution, system-
level monitoring is preferred in the identification of malicious IoT
botnets. This is because IoT botnets often enter and compromise
entire target devices [25].

9.2 IoT Security via Power Auditing
Power side-channel information has also been utilized to infer mali-
cious behavior on end devices. For example, some pioneering works
used power side-channel data to detect malign behavior on mobile
devices in the early 2010s [27][51]. Recently, several researchers
[25, 29, 36] have worked on IoT devices to characterize malicious
behavior as IoT botnets have been popular. Myridakis et al. [36] im-
plemented a power monitoring circuit for botnet prevention for IoT
devices. However, this system mainly focused on detecting massive
DoS attacks on IoT devices with a spike detection method instead
of intrusion detection. Li et al. [29] addressed energy auditing for
physical and cyber attacks. For cyber attacks, it utilized dual-CNNs
to infer massive DoS attacks such as network flood using energy
meters [21]. Clark et al. [14] aimed to identify malware behavior
on medical devices via power auditing. Similarly, they conducted
offline classification experiments on a dataset collected from a sin-
gle device. Jung et al. [25] pioneered IoT botnet intrusion detection
via power modeling. While their CNN classifier showed promise
in detecting subtle differences in power traces, the study was con-
ducted offline with a bulky and expensive power monitor. Thus, it
is not practical for ubiquitous botnet detection on IoT devices. In
summary, Table 9 summarizes the related works on IoT security via
power auditing. Overall, there is still a gap between power auditing
techniques and practical IoT intrusion detection. For efficient IoT
botnet detection, a scalable real-time solution via power auditing is
needed. We are the first to realize a distributed online classification
system for botnet intrusion detection on multiple IoT devices via
ubiquitous power auditing.

9.3 Preservation of Data Privacy
Preservation of data privacy has been widely studied in the lit-
erature. There are three major approaches. The first approach is
differential privacy [17], which injects noise into query results, such
as perturbating stochastic gradient descent (SGD) [4]. However, the
additive noise may degrade model accuracy. The second approach
designs privacy-preserved protocols based on secure multi-party

Table 9: Comparison of IoT Security via Power Auditing

Target
Attacks

Testbed
Environment

Learning
Method

Concurrent
Capacity

Auditing
Device

Classification
Accuracy

Jung [25] Botnet
Intrusion

Offline
Modeling

1-D
CNN

Single
Device Monsoon [35] 96.5%

Li [29] DoS
Attacks

Online
Classification

Dual
1-D CNNs

Single
Device

IoT
Hardware [21] MSE 0.032

Myridakis [36] DoS
Attacks

Online
Classification

Spike
Detection

Single
Device

IoT
Hardware 100%

Clark [14] Malware
Attacks

Offline
Classification

kNN, RF,
Perceptron

Single
Device

AC
Outlet [13] 94%

DeepAuditor Botnet
Intrusion

Online
Classification

Distributed
1-D CNN

90+
Devices

IoT
Hardware 98.9%

computations. They usually distribute secrets among a group of
parties to achieve security computations at the expense of high com-
putational overhead and strong security assumptions [11][52][34].
Thus, they are rarely adopted in general scenarios.

A new solution for privacy preservation was introduced by using
the fully homomorphic encryption [18]. It allows users to encrypt
data and offload the computation to a cloud. The cloud computes
encrypted data and sends back encrypted results [19][30][26]. How-
ever, the nonlinear activation computation cannot be supported
by the homomorphic encryption, and the approximation often has
to be used. Compared with existing work, our solution is novel in
that our proposed scheme capitalizes on the proposed CNN model
structure to adopt a smart design to address this problem.

10 CONCLUSION
In this paper, we proposed a distributed online intrusion detection
system for IoT devices via power auditing. We first developed a
portable power-auditing device to measure power side-channel
information of IoT devices in real-time. The one-dimensional CNN
classifier was then designed and deployed in a distributed setting.
The online CNN classifier predicted IoT devices’ behavior with up to
98.9% accuracy, which outperforms the baseline classifier, especially
in leave-one-out tests. In addition to the system components, we
also designed distributed protocols to avoid data leakage and reduce
networking redundancy. Finally, we evaluated the scalability of
the system in a laboratory setting. Altogether, the DeepAuditor
system is the first online intrusion detection system that classifies
multiple IoT devices’ behavior via power traces. This kind of cloud
system that uses power auditing of multiple IoT devices has not
been addressed before in the literature, so such system can be used
on IoT devices for other purposes.

In the future, we plan to enhance the performance of the in-
ference protocol. Currently, the convolutional layer consumes the
majority of the entire processing time. If we reduce that procedure,
our system will be more reliable and scalable. In addition to the
pre-trained classifier, we further plan to apply unsupervised learn-
ing so that users can use their dataset without labeling. This can
expedite system deployment in a practical setting.

ACKNOWLEDGEMENTS
This research is partially supported by COVA CCI Cybersecurity
Research and Innovation Funding, COVA CCI Cybersecurity Inno-
vation Bridge Fund (Grant #HC-4Q21-005), COVA CCI Dissertation
Fellowship, and NSF grant CNS-2120279. We would like to thank
all the anonymous reviewers for their valuable comments.

DeepAuditor: Distributed Online Intrusion Detection System
for IoT Devices via Power Side-channel Auditing IPSN’22, In Information Processing in Sensor Networks (IPSN’ 22)

REFERENCES
[1] Iot-botnet-detection via power consumption modeling. https://woossup.github.

io/IoT-Botnet-Detection.
[2] Smart plug market - growth, trends, covid-19 impact, and forecasts (2021 - 2026).

https://www.mordorintelligence.com/industry-reports/smart-plug-market.
[3] What is a smart plug and how it eliminates energy waste. https://www.

atlanticenergyco.com/post/smart-plug-energy-savings/.
[4] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
308–318, New York, NY, USA, 2016. ACM.

[5] Adafruit. INA219 Current Sensor, 2020. https://learn.adafruit.com/adafruit-ina219-
current-sensor-breakout.

[6] M. Antonakakis. Understanding the Mirai Botnet. USENIX Security Symposium,
July 2017.

[7] L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori. A systematic review on
Deep Learning approaches for IoT security. Computer Science Review, 40:100389,
Jan. 9999.

[8] Z. Brakerski, C. Gentry, and S. Halevi. Packed ciphertexts in lwe-based ho-
momorphic encryption. In K. Kurosawa and G. Hanaoka, editors, Public-Key
Cryptography – PKC 2013, pages 1–13, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[9] ccrisan. MotionEye, 2020. https://github.com/ccrisan/motioneye.
[10] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki. Network

intrusion detection for iot security based on learning techniques. IEEE Commu-
nications Surveys Tutorials, 21(3):2671–2701, 2019.

[11] T. Chen and S. Zhong. Privacy-preserving backpropagation neural network
learning. IEEE Transactions on Neural Networks, 20(10):1554–1564, Oct 2009.

[12] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arith-
metic of approximate numbers. In T. Takagi and T. Peyrin, editors, Advances in
Cryptology – ASIACRYPT 2017, pages 409–437, Cham, 2017. Springer International
Publishing.

[13] S. S. Clark. The security and privacy implications of energy-proportional computing.
University of Massachusetts Amherst, 2013.

[14] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu, and K. Fu.
{WattsUpDoc}: Power side channels to nonintrusively discover untargeted mal-
ware on embedded medical devices. In 2013 USENIX Workshop on Health Infor-
mation Technologies (HealthTech 13), 2013.

[15] CNet. These smart plugs are the secret to a seamless smart home, 2019.
[16] S. DeBruin, B. Ghena, Y.-S. Kuo, and P. Dutta. Powerblade: A low-profile, true-

power, plug-through energy meter. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pages 17–29, 2015.

[17] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[18] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[19] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine Learning, pages 201–210,
2016.

[20] google. Google AIY Projects, 2021. https://aiyprojects.withgoogle.com.
[21] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Romansky.

Greenminer: A hardware based mining software repositories software energy
consumption framework. dl.acm.org, 2014.

[22] jgamblin. Mirai-Source-Code, 2017. https://github.com/jgamblin/Mirai-Source-
Code.

[23] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and implementation
of a high-fidelity ac metering network. In 2009 International Conference on
Information Processing in Sensor Networks, pages 253–264. IEEE, 2009.

[24] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems.
IEEE Transactions on Parallel and Distributed Systems, 11(6):589–603, 2000.

[25] W. Jung, H. Zhao, M. Sun, and G. Zhou. IoT Botnet Detection via Power Con-
sumption Modeling. In ACM/IEEE CHASE, 2019.

[26] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. {GAZELLE}: A low latency
framework for secure neural network inference. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1651–1669, 2018.

[27] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy anomalies and mobile
malware variants. MobiSys, page 239, 2008.

[28] M. Kuzin, Y. Shmelev, and V. Kuskov. New trends in the world of iot threats.
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/, 2018.

[29] F. Li, Y. Shi, A. Shinde, and J. Ye. Enhanced cyber-physical security in internet of
things through energy auditing. ieeexplore.ieee.org, 2019.

[30] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 619–631, 2017.

[31] A. Maiti and M. Jadliwala. Light Ears - Information Leakage via Smart Lights. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2019.

[32] microsoft Research. Microsoft seal (release 3.2), Feb. 2019. https://github.com/
Microsoft/SEAL.

[33] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa. Delphi: A
cryptographic inference service for neural networks. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pages 2505–2522, 2020.

[34] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages
19–38, May 2017.

[35] Monsoon. Monsoon power monitor. https://www.msoon.com/high-voltage-
power-monitor, 2017.

[36] D. Myridakis, P. Myridakis, and A. Kakarountas. A Power Dissipation Moni-
toring Circuit for Intrusion Detection and Botnet Prevention on IoT Devices.
Computation, 2021.

[37] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic. Eddie: Em-based
detection of deviations in program execution. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, pages 333–346, 2017.

[38] G. Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, USA, 1st edition, 2009.

[39] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach. Dynamic malware analysis
in the modern era—a state of the art survey. ACM Computing Surveys (CSUR),
52(5):1–48, 2019.

[40] N. Panwar, S. Sharma, S. Mehrotra, L. Krzywiecki, and N. Venkatasubramanian.
Smart Home Survey on Security and Privacy. arXiv.org, 2019.

[41] Radware. A game of cat and mouse: Dynamic ip address and cyber attacks,
Feb. 2016. https://security.radware.com/ddos-threats-attacks/ddos-attack-types/
dynamic-ip-address-cyber-attacks.

[42] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic. Syndrome:
Spectral analysis for anomaly detection on medical iot and embedded devices. In
2018 IEEE international symposium on hardware oriented security and trust (HOST),
pages 1–8. IEEE, 2018.

[43] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 3–18, 2017.

[44] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine
learning models via prediction apis. In 25th USENIX Security Symposium (USENIX
Security 16), pages 601–618, Austin, TX, Aug. 2016. USENIX Association.

[45] Wikipedia. Pipeline (computing). https://en.wikipedia.org/wiki/Pipeline_
(computing), 2004.

[46] Wikipedia. Brute-force attack. https://en.wikipedia.org/wiki/Brute-force_attack,
2018.

[47] Wikipedia. 20-year-old flaw found in ubiquiti networking gear running ancient
php., 2020.

[48] Wikipedia. Brute-Force Attack, 2020. https://en.wikipedia.org/wiki/Brute-force_
attack.

[49] Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo. Survey on Botnet Detection Tech-
niques: Classification, Methods, and Evaluation. Hindawi, Mathematical Problems
in Engineering, pages 1–24, Apr. 2021.

[50] Q. Yang, P. Gasti, K. S. Balagani, Y. Li, and G. Zhou. USB side-channel attack on
Tor. Comput. Networks, 2018.

[51] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani. On inferring
browsing activity on smartphones via usb power analysis side-channel. IEEE
Transactions on Information Forensics and Security, 12:1056–1066, 2017.

[52] J. Yuan and S. Yu. Privacy preserving back-propagation neural network learn-
ing made practical with cloud computing. IEEE Transactions on Parallel and
Distributed Systems, 25(1):212–221, Jan 2014.

[53] Q. Zhang, C. Xin, and H. Wu. SecureTrain: An approximation-free and com-
putationally efficient framework for privacy-preserved neural network train-
ing. IEEE Transactions on Network Science and Engineering, (in press), URL:
https://ieeexplore.ieee.org/document/9271910.

https://woossup.github.io/IoT-Botnet-Detection
https://woossup.github.io/IoT-Botnet-Detection
https://www.mordorintelligence.com/industry-reports/smart-plug-market
https://www.atlanticenergyco.com/post/smart-plug-energy-savings/
https://www.atlanticenergyco.com/post/smart-plug-energy-savings/
https://learn.adafruit.com/ adafruit-ina219-current-sensor-breakout
https://learn.adafruit.com/ adafruit-ina219-current-sensor-breakout
https://github.com/ccrisan/motioneye
https://aiyprojects.withgoogle.com
 https://github.com/jgamblin/Mirai-Source-Code
 https://github.com/jgamblin/Mirai-Source-Code
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https:// github.com/Microsoft/SEAL
https:// github.com/Microsoft/SEAL
https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor
https://security.radware.com/ ddos-threats-attacks/ddos-attack-types/dynamic-ip-address-cyber-attacks
https://security.radware.com/ ddos-threats-attacks/ddos-attack-types/dynamic-ip-address-cyber-attacks
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Brute-force_attack
 https://en.wikipedia.org/wiki/ Brute-force_attack
 https://en.wikipedia.org/wiki/ Brute-force_attack

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Intrusion Detection via Power Modeling
	2.2 Threat Model

	3 Deep Auditor System Overview
	4 Power Auditor Design
	4.1 Component Design
	4.2 Sliding Window Protocol

	5 Distributed CNN Classifier Design
	5.1 1-D CNN Classifier Design
	5.2 Privacy-preserved Inference Protocol

	6 Online System Implementation
	6.1 DeepAuditor Implementation
	6.2 Dataset Collection for Online Test

	7 Online System Evaluation
	7.1 Power Auditor Performance
	7.2 Online CNN Classifier Performance
	7.3 Theoretical Analysis of the Privacy-preserved Inference Protocol
	7.4 Scalability Evaluation

	8 Discussion
	8.1 Power Auditor Prototype
	8.2 Real-world Deployment

	9 Related Work
	9.1 IoT Security via Side-channel Information
	9.2 IoT Security via Power Auditing
	9.3 Preservation of Data Privacy

	10 Conclusion
	References

