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WiFi Sensing with Channel State Information: A Survey

YONGSEN MA, GANG ZHOU, and SHUANGQUAN WANG, Computer Science Department,
College of William & Mary, USA

With the high demand for wireless data traffic,WiFi networks have very rapid growth because they provide high
throughput and are easy to deploy. Recently, Channel State Information (CSI) measured by WiFi networks is
widely used for different sensing purposes. To get a better understanding of existing WiFi sensing technologies
and future WiFi sensing trends, this survey gives a comprehensive review of the signal processing techniques,
algorithms, applications, and performance results of WiFi sensing with CSI. Different WiFi sensing algorithms
and signal processing techniques have their own advantages and limitations and are suitable for different
WiFi sensing applications. The survey groups CSI-based WiFi sensing applications into three categories:
detection, recognition, and estimation, depending on whether the outputs are binary/multi-class classifications
or numerical values. With the development and deployment of newWiFi technologies, there will be more WiFi
sensing opportunities wherein the targets may go beyond from humans to environments, animals, and objects.
The survey highlights three challenges for WiFi sensing: robustness and generalization, privacy and security,
and coexistence of WiFi sensing and networking. Finally, the survey presents three future WiFi sensing trends,
i.e., integrating cross-layer network information, multi-device cooperation, and fusion of different sensors, for
enhancing existing WiFi sensing capabilities and enabling new WiFi sensing opportunities.
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1 INTRODUCTION
WiFi has a very rapid growth with the increasing popularity of wireless devices. One important
technology for the success of WiFi is Multiple-Input Multiple-Output (MIMO), which provides
high throughput to meet the growing demands of wireless data traffic. Along with Orthogonal
Frequency-DivisionMultiplexing (OFDM), MIMO provides Channel State Information (CSI) for each
transmit and receive antenna pair at each carrier frequency. Recently, CSI measurements fromWiFi
systems are used for different sensing purposes. WiFi sensing reuses the infrastructure that is used
for wireless communication, so it is easy to deploy and has low cost. Moreover, unlike sensor-based
and video-based solutions, WiFi sensing is not intrusive or sensitive to lighting conditions.
CSI represents how wireless signals propagate from the transmitter to the receiver at certain

carrier frequencies along multiple paths. For aWiFi systemwith MIMO-OFDM, CSI is a 3Dmatrix of
complex values representing the amplitude attenuation and phase shift of multi-path WiFi channels.
A time series of CSI measurements captures how wireless signals travel through surrounding
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objects and humans in time, frequency, and spatial domains, so it can be used for different wireless
sensing applications. For example, CSI amplitude variations in the time domain have different
patterns for different humans, activities, gestures, etc., which can be used for human presence
detection [3, 24, 67, 73, 75, 83, 112, 114, 121, 148, 149, 152], fall detection [32, 68, 92, 135, 137], motion
detection [23, 27, 51, 55, 126], activity recognition [6, 14, 16, 18–20, 22, 28, 63, 94, 98, 99, 102, 103,
107, 117, 120, 132], gesture recognition [2–5, 33, 48–50, 62, 64, 72, 77, 81, 85, 89, 127, 134, 140, 147],
and human identification/authentication [10, 11, 34, 53, 54, 82, 96, 97, 118, 124, 133, 139]. CSI phase
shifts in the spatial and frequency domains, i.e., transmit/receive antennas and carrier frequencies,
are related to signal transmission delay and direction, which can be used for human localization
and tracking [36, 41, 43, 52, 63, 69, 74, 76, 84, 89, 93, 97, 109, 115, 126, 130, 131, 136, 137, 148]. CSI
phase shifts in the time domain may have different dominant frequency components which can be
used to estimate breathing rate [1, 58, 61, 95, 101, 138]. Different WiFi sensing applications have
their specific requirements of signal processing techniques and classification/estimation algorithms.
To get a better understanding of existing WiFi sensing technologies and gain insights into future
WiFi sensing directions, this survey gives a review of the signal processing techniques, algorithms,
applications, performance results, challenges, and future trends of WiFi sensing with CSI.
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Fig. 1. Overview of WiFi sensing and paper organization.

The overview of the survey is shown in Fig. 1. The background of CSI, including mathematical
models, measurement procedures, real-world WiFi models, basic processing principles, and experi-
ment platforms, is presented in Section 2.1. Raw CSI measurements are fed to the signal processing
module for noise reduction, signal transform, and/or signal extraction, as shown in Section 3.
Pre-processed CSI traces are fed to modeling-based, learning-based, or hybrid algorithms to get
the output for different WiFi sensing purposes, as shown in Section 4. Depending on the output
types, WiFi sensing can be grouped into three categories: detection/recognition applications try to
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solve binary/multi-class classification problems, and estimation applications try to get the quantity
values of different tasks. Section 5 summaries and compares the signal processing techniques,
algorithms, output types, and performance results of different WiFi sensing applications. With the
development and deployment of new WiFi systems, there will be more WiFi sensing opportunities.
Section 6 gives the future trends and challenges for enhancing existing WiFi sensing capabilities
and enabling new WiFi sensing purposes. In summary, we make the following contributions:

• We give a comprehensive review, including the basic principles, performance/cost compar-
isons, and best practice guidelines, of the signal processing techniques and algorithms of
WiFi sensing in three categories: detection, recognition, and estimation.

• We present the future trends, including cross-layer network stack, multi-device cooperation,
and multi-sensor fusion, for improving the performance and efficiency of existing WiFi
sensing applications and enabling new WiFi sensing opportunities.

2 BACKGROUND AND RELATEDWORK
2.1 Background of Channel State Information
CSI characterizes how wireless signals propagate from the transmitter to the receiver at certain
carrier frequencies. CSI amplitude and phase are impacted by multi-path effects including amplitude
attenuation and phase shift. Each CSI entry represents the Channel Frequency Response (CFR)

𝐻 (𝑓 ; 𝑡) =
∑𝑁

𝑛
𝑎𝑛 (𝑡)𝑒−𝑗2𝜋 𝑓 𝜏𝑛 (𝑡 ) , (1)

where 𝑎𝑖 (𝑡) is the amplitude attenuation factor, 𝜏𝑖 (𝑡) is the propagation delay, and 𝑓 is the carrier
frequency [86]. The CSI amplitude |𝐻 | and phase ∠𝐻 are impacted by the displacements and
movements of the transmitter, receiver, and surrounding objects and humans. In other words, CSI
captures the wireless characteristics of the nearby environment. These characteristics, assisted
by mathematical modeling or machine learning algorithms, can be used for different sensing
applications. This is the rationale for why CSI can be used for WiFi sensing.

A WiFi channel with MIMO is divided into multiple subcarriers by OFDM. To measure CSI, the
WiFi transmitter sends Long Training Symbols (LTFs), which contain pre-defined symbols for each
subcarrier, in the packet preamble. When LTFs are received, the WiFi receiver estimates the CSI
matrix using the received signals and the original LTFs. For each subcarrier, the WiFi channel is
modeled by 𝒚 = 𝐻𝒙 + 𝒏, where 𝒚 is the received signal, 𝒙 is the transmitted signal, 𝐻 is the CSI
matrix, and 𝒏 is the noise vector. The receiver estimates the CSI matrix 𝐻 using the pre-defined
signal 𝒙 and received signal 𝒚 after receive processing such as removing cyclic prefix, demapping,
and OFDM demodulation. The estimated CSI is a three dimensional matrix of complex values.

In real-worldWiFi systems, themeasured CSI is impacted bymulti-path channels, transmit/receive
processing, and hardware/software errors. The measured baseband-to-baseband CSI is

𝐻𝑖, 𝑗,𝑘 =

(∑𝑁

𝑛
𝑎𝑛𝑒

−𝑗2𝜋𝑑𝑖,𝑗,𝑛 𝑓𝑘/𝑐
)

︸                       ︷︷                       ︸
Multi-Path Channel

𝑒−𝑗2𝜋𝜏𝑖 𝑓𝑘︸   ︷︷   ︸
Cyclic Shift
Diversity

𝑒−𝑗2𝜋𝜌 𝑓𝑘︸   ︷︷   ︸
Sampling
Time Offset

𝑒−𝑗2𝜋[ (𝑓
′
𝑘
/𝑓𝑘−1) 𝑓𝑘︸              ︷︷              ︸

Sampling
Frequency Offset

𝑞𝑖, 𝑗𝑒
−𝑗2𝜋Z𝑖,𝑗 ,︸        ︷︷        ︸

Beamforming

(2)

where 𝑑𝑖, 𝑗,𝑛 is the path length from the 𝑖-th transmit antenna to the 𝑗-th receive antenna of the
𝑛-th path, 𝑓𝑘 is the carrier frequency, 𝜏𝑖 is the time delay from Cyclic Shift Diversity (CSD) of the
𝑖-th transmit antenna, 𝜌 is the Sampling Time Offset (STO), [ is the Sampling Frequency Offset
(SFO), and 𝑞𝑖, 𝑗 and Z𝑖, 𝑗 are the amplitude attenuation and phase shift of the beamforming matrix.
WiFi sensing applications need to extract the multi-path channel that contains the information of
how the surrounding environment changes. Therefore, signal processing techniques are needed to
remove the impact of CSD, STO, SFO, and beamforming, which is introduced in Section 3.
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Fig. 2. The 4D CSI tensor is a time series of CSI matrices of MIMO-OFDM channels. It captures multi-path
channel variations, including amplitude attenuation and phase shifts, in spatial, frequency, and time domains.

A time series of CSI matrices characterizes MIMO channel variations in different domains, i.e.,
time, frequency, spatial, as shown in Fig. 2. For a MIMO-OFDM channel with𝑀 transmit antennas,
𝑁 receive antennas, and 𝐾 subcarriers, the CSI matrix is a 3D matrix 𝐻 ∈ C𝑁×𝑀×𝐾 representing
amplitude attenuation and phase shift of multi-path channels. CSI provides much more information
than Received Signal Strength Indicator (RSSI). The 3D CSI matrix is similar to a digital image
with spatial resolution of 𝑁 ×𝑀 and 𝐾 color channels, so CSI-based WiFi sensing can reuse the
signal processing techniques and algorithms designed for computer vision tasks. The 4D CSI tensor
provides additional information in the time domain. CSI can be processed, modeled, and trained in
different domains for different WiFi sensing purposes, e.g., detection, recognition, and estimation.

Although CSI is included in WiFi since IEEE 802.11n, it is not reported by all off-the-shelf WiFi
cards. The 802.11n CSI Tool [31] is the most widely used tool for CSI measurements. It uses Intel
5300 WiFi cards to report compressed CSIs by 802.11n-compatible WiFi networks. It provides C
scripts and MATLAB source code for CSI measurements and processing. OpenRF [47] is a similar
tool modified based on the 802.11n CSI Tool. The Atheros CSI Tool [123] gives uncompressed CSIs
using Qualcomm Atheros WiFi cards. For a 20MHz WiFi channel, the number of CSI subcarriers is
52 for the Atheros CSI Tool and 30 for the 802.11n CSI Tool. Both 802.11n CSI Tool and Atheros CSI
Tool can operate at 2.4GHz and 5GHz. Software Defined Radio (SDR) platforms, such as Universal
Software Radio Peripheral (USRP) [17] and Wireless Open Access Research Platform (WARP) [79],
provide CSI measurements at 2.4GHz, 5GHz, and 60GHz.

2.2 Related Work
There are some surveys on specific types of WiFi sensing applications, including localization [110,
122, 128], gesture recognition [110], and activity recognition [44, 106, 110, 114, 129, 156]. In [110],
the author explores device-free human localization using wireless signal reflections; the survey
also discusses device-free pose estimation and fall detection. Xiao et al. [122] give a survey on
both device-free and device-based indoor localization using wireless signals; the survey focuses
on the models, basic principles, and data fusion techniques. Yang et al. [128] present a survey on
CSI-based localization with an emphasis on the basic principles and future trends; the survey also
highlights the differences between CSI and RSSI in terms of network layering, time resolution,
frequency resolution, stability, and accessibility. In [44], the author gives a brief review on human
motion recognition and human identification using CSI and big data analysis. Each of the four
papers [106, 114, 129, 156] gives a survey on CSI-based human behavior recognition with their
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specific emphasis: basics and applications [106], deep learning techniques [129], data-driven and
model-based approaches [156], and pattern-based and model-based approaches [114].

Table 1. Summary of Related Surveys on WiFi Sensing

Reference Application Scope Topic Focus

E. Wengrowski [110] device-free localization, pose
estimation, fall detection

approaches: Line-of-Sight sensors, Radio To-
mographic Imaging, Through-wall RF tracking

J. Xiao et al. [122] device-free and device-based
indoor localization

models, basic principles, and data fusion tech-
niques

Z. Yang et al. [128] CSI-based and RSSI-based lo-
calization

basic principles and future trends; differences
between CSI-based and RSSI-based solutions

S.-K. Kim [44] motion recognition and hu-
man identification big data analysis

D. Wu et al. [114] human sensing pattern-based and model-based approaches
Y. Zou et al. [156] human behavior recognition data-driven and model-based approaches
Z. Wang et al. [106] human behavior recognition basics and applications
S. Yousefi et al. [129] human behavior recognition deep learning techniques

This survey
All the above applications and
other detection, recognition,
and estimation applications

signal processing techniques, modeling-based
and learning-based algorithms, applications,
performance results, challenges, future trends

This survey is different from existing ones in that its scope is not limited to any specific type of
WiFi sensing applications, as summarized in Table 1. The application scope of this survey includes
but is not limited to human detection, motion detection, activity recognition, gesture recognition,
human tracking, respiration estimation, human counting, and sleepingmonitoring. The survey gives
a comprehensive summary and comparison of the signal processing techniques, algorithms, and
performance results of a wide variety of WiFi sensing applications. Signals processing techniques
are classified into three groups: noise reduction, signal transform, and signal extraction. WiFi
sensing algorithms are grouped into modeling-based and learning-based algorithms with their
specific advantages and limitations. It also gives a guidance of how to select the algorithms and the
corresponding signal processing techniques for different WiFi sensing applications. Finally, the
survey presents future trends and challenges for enhancing existing WiFi sensing capabilities and
enabling new WiFi sensing opportunities.

3 SIGNAL PROCESSING OFWIFI SENSING
This section presents signal processing techniques, including noise reduction, signal transform,
and signal extraction, for WiFi sensing.

3.1 Noise Reduction
Raw CSI measurements contain noises and outliers that could significantly reduce WiFi sensing
performance. Table 2 gives a summary of noise reduction techniques for WiFi sensing.

3.1.1 Phase Offsets Removal. In real-world WiFi systems, raw CSI measurements contain phase
offsets due to hardware and software errors. For example, Sampling Time/Frequency Offsets
(STO/SFO) are due to unsynchronized sampling clocks/frequencies of the receiver and transmitter.
Some detection and recognition applications are not very sensitive to phase offsets. It is more
important to get CSI change patterns. A simple solution is to use CSI phase differences of adjacent
time samples or subcarriers. It cancels CSI phase offsets with the assumption that phase offsets are
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Table 2. Noise Reduction Techniques for WiFi Sensing

Phase
Offsets
Removal

Removing phase offsets, e.g., Sampling Time/Frequency Offset, Carrier Frequency
Offset, Cross-Device Synchronization Errors, Packet Detection Delay, etc., by phase
difference [29, 51, 55, 100, 101, 116, 120] and (multiple) linear regression [46, 62].

Outliers
Removal

Removing outliers and noises byMovingAverage [7, 10, 28, 32, 49, 56, 61, 70, 91, 121,
130, 140], Median Filter [11, 80, 81, 94, 120, 137, 146], Low-Pass Filter [4, 5, 11, 19,
49, 63, 64, 80, 81, 103, 111, 120], Wavelet Filter [2, 33, 57, 58, 68, 85, 95, 117, 127, 152],
Hampel Filter [10, 39, 49, 56–58, 61, 70, 73, 75, 91, 100, 101, 112, 142, 143, 152], Local
Outlier Factor [32, 33, 70, 102, 127], Signal Nulling [3, 21, 35, 41, 116], and so on.

the same across packets and subcarriers. It does not give accurate phases but can recover phase
change patterns which can be fed to classification algorithms.
Many estimation applications require accurate phase shifts. Phase offsets introduce estimation

errors for Angle-of-Arrival (AoA) and Time-of-Flight (ToF), which are used to track and localize
humans and objects. SpotFi [46] removes STO/SFO by linear regression, but it does not consider
different phase shifts of different transmit antennas due to CSD. This is addressed by multiple linear
regression proposed in SignFi [62]. From equation (2), the measured CSI phase is

Θ𝑖, 𝑗,𝑘 = Φ𝑖, 𝑗,𝑘 + 2𝜋 𝑓𝛿𝑘
(
𝜏𝑖 + 𝜌 + [

(
𝑓 ′
𝑘
/𝑓𝑘 − 1

) )
+ 2𝜋Z𝑖, 𝑗 , (3)

where Φ𝑖, 𝑗,𝑘 is the CSI phase caused by multi-path effects, 𝜏𝑖 , 𝜌 , [, and Z𝑖, 𝑗 are the phase offsets
caused by CSD, STO, SFO, and beamforming, respectively, and 𝑓𝛿 is the frequency spacing of two
consecutive subcarriers. The phase offsets are estimated by minimizing the fitting errors across 𝐾
subcarriers, 𝑁 transmit antennas, and𝑀 receive antennas

𝜏, 𝜔, 𝛽 = arg min
𝜏,𝜔,𝛽

∑
𝑖, 𝑗,𝑘

(
Θ𝑖, 𝑗,𝑘 + 2𝜋 𝑓𝛿𝑘 (𝑖𝜏 + 𝜔) + 𝛽

)2
, (4)

where [,𝜔 and 𝛽 are the curve fitting variables [62]. As shown in Fig. 3a, the unwrapped CSI phases
of each transmit antenna have different slopes caused by CSD. Pre-processed CSI phases Φ̂𝑖, 𝑗,𝑘 are
obtained by removing the estimated phase offsets, 𝜏, 𝜔, 𝛽 , from the measured CSI phases Θ𝑖, 𝑗,𝑘 .
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Fig. 3. Raw CSI measurements do not capture how CSI phases change over subcarriers and sampling time.
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Phase offset removal also improves performance for binary and multi-class classification applica-
tions. It recovers CSI phase patterns over subcarriers and sampling time. The raw measured CSI
phases give redundant information about how CSI phases change. Phase offset removal unwraps CSI
phases and recovers the lost information. As shown in Fig. 3a, raw CSI phases change periodically
from −𝜋 to 𝜋 , while pre-processed CSI phases change nearly linearly in a wider range. CSI phase
variations over time are also corrected. As shown in Fig. 3b, raw CSI phases of the first and second
transmitting antenna change similarly, but they have very different patterns after pre-processing.

3.1.2 Outliers Removal. Moving Average and Median Filters are simple and widely used methods to
remove high frequency noises. Each data point is replaced by the average or median of neighboring
data points. Usually a sliding window and multiplying factors are used to give different weights,
e.g., Weighted Moving Average (WMA) and Exponentially Weighted Moving Average (EWMA).
Low-Pass Filters (LPF) can also remove high frequency noises assisted by signal transform methods,
e.g., Fast Fourier Transform (FFT). Wavelet Filter is similar to LPFs; the major difference is that it
uses Discrete Wavelet Transform (DWT) instead of FFT. Details of signal transform methods and
frequency-domain filters are introduced in Section 3.2 and 3.3.

The Hampel Filter computes the median𝑚𝑖 and standard deviation 𝜎𝑖 of a window of nearby data
points. If |𝑥𝑖 −𝑚𝑖 |/𝜎𝑖 is larger than a given threshold, the current point 𝑥𝑖 is identified as an outlier
and replaced with the median𝑚𝑖 . Sometimes the outliers are dropped rather than being replaced
by the medians. Local Outlier Factor (LOF) is widely used in anomaly detection. It measures the
local density of a given data point with respect to its neighbors. The local density is calculated by
the reachability distance from a certain point to its neighbors. The data points with a significantly
lower local density than their neighbors are marked as outliers. Signal Nulling is a special method
for WiFi sensing to remove outliers. WiFi devices can used hardware, e.g., directional antennas,
and software, e.g., transmit beamforming, algorithms for canceling noise signals.

3.2 Signal Transform
Signal transformmethods are used for time-frequency analysis of a time series of CSI measurements.
Note that the signal transform output in this scope represents the frequency of CSI change patterns
rather than the carrier frequency. The summary of signal transform methods is shown in Table 3.

Table 3. Signal Transform Techniques for WiFi Sensing

Fast Fourier
Transform

𝑋 [𝑘] = ∑𝑁
𝑛=1 𝑥 [𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁 ; 𝑘 : frequency index. [1, 2, 10, 18, 29, 35,

39, 56, 72, 81, 82, 94, 100, 115, 120, 126, 133, 140]
Short Time Fourier
Transform

𝑋 (𝑡, 𝑘) = ∑∞
𝑛=−∞ 𝑥 [𝑛]𝑤 [𝑛 − 𝑡]𝑒−𝑗𝑘𝑛 ; 𝑡 : time index, 𝑘 : frequency index,

𝑤 : window function. [10, 68, 74, 76, 77, 88, 92, 97, 127, 131, 146]
Discrete Hilbert
Transform

𝐻 [𝜔] = 𝑋 [𝜔] · (− 𝑗 · sgn(𝜔)); 𝜔 : frequency index, 𝑋 [·]: Fast Fourier
Transform, sgn(·): sign function. [130, 146]

Discrete Wavelet
Transform

approximation coefficients:𝑦1,𝑙𝑜𝑤 [𝑛] =↓𝑄 [∑∞
𝑘=−∞ 𝑥 [𝑘]𝑔[𝑛−𝑘]], detail

coefficients: 𝑦1,ℎ𝑖𝑔ℎ [𝑛] =↓𝑄 [∑∞
𝑘=−∞ 𝑥 [𝑘]ℎ[𝑛 − 𝑘]]; ↓𝑄 [·]: downsam-

pling filter, 𝑔[𝑛]: low-pass filter, ℎ[𝑛]: high-pass filter. [1, 2, 4, 5, 48–
50, 57, 58, 68, 85, 89, 90, 95, 98–100, 117, 124, 126, 126, 127, 152]

FFT is widely used to find the distinct dominant frequencies and can be combined with a LPF
to remove high frequency noises. It can also get the target signals in certain frequencies with
Band-Pass Filters (BPF). For example, a time series of CSIs has different dominant frequencies when
a nearby person is static or moving. FFT and BPFs can be used for human motion detection and
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breathing estimation, as shown in Section 3.3. Short-Time Fourier Transform (STFT) divides the
input into shorter segments of equal length and computes the FFT coefficients separately on each
segment, as shown in Table 3. STFT can identify the change of dominant frequencies over time by
representing the time series data in both time and frequency domains. DHT adds an additional
phase shift of 𝜋/2 to the negative frequency components of FFT, as shown in Table 3. It converts a
time series of real-valued data to its analytic representation, i.e., a complex helical sequence. DHT
is useful for analyzing the instantaneous attributes of a time series of CSI measurements.

STFT has no guarantee of good frequency resolution and time resolution simultaneously. A long
window length gives good frequency resolution but poor time resolution. The frequency components
can be easily identified but the time of frequency changes cannot be located. On the other hand,
a short window length allows to detect when the signals change but cannot precisely identify
the frequencies of the input signals. Wavelet Transform gives both good frequency resolution for
low-frequency signals and good time resolution for high-frequency signals. The output of DWT
can be fed to a wavelet filter to remove noises. DWT preserves mobility information in different
scenarios and is more robust than Doppler phase shift [98, 99].

3.3 Signal Extraction
Signal extraction is for extracting target signals from raw or pre-processed CSI measurements.
Sometimes it needs thresholding, filtering, or signal compression to remove unrelated or redundant
signals. In some cases, it requires composition of multiple signal sources and data interpolation to
get more information. Table 4 shows signal extraction methods widely used for WiFi sensing.

Table 4. Signal Extraction Techniques for WiFi Sensing

Filtering and
Thresholding

Excluding signals with certain frequencies, power levels, etc., by filtering [1,
6, 10, 18, 20, 27–29, 48, 50, 51, 56, 72, 74, 76, 77, 80, 82, 92, 94, 97, 108, 124, 126,
132, 135, 146, 147] or thresholding [1, 2, 7, 10, 18, 20, 27, 28, 39, 41, 48, 50, 52–
54, 56, 68, 77, 80, 84, 88, 89, 91–93, 95, 97–101, 103–105, 109, 113, 115, 120, 124,
130, 137, 140, 142, 143, 150, 154]; separating signals into different domains,
e.g., direct/reflected paths and LoS/NLoS paths [52, 109].

Signal
Compression

Removing unrelated/redundant signals by dimension reduction such as
PCA [4, 5, 18, 19, 21, 48–50, 67, 68, 70, 74, 76, 77, 85, 88, 89, 97–99, 120, 124,
126, 130, 146, 148, 148, 151, 152], ICA [34, 66], SVD [21, 57, 58, 118], etc.,
or metrics such as self/cross correlation [24, 39, 84, 112, 115, 118, 142, 143],
Euclidean distance [7, 15, 27, 40, 116], distribution function [18], and so on.

Signal
Composition

Composition of signals from multiple devices [35, 46, 57, 58, 60, 81, 84, 95,
103, 119, 127, 132], carrier frequencies [87, 123, 136], and so on.

3.3.1 Filtering and Thresholding. High-, low-, and band-pass filters are widely used to extract
signals with certain dominant frequencies. For example, the average resting respiration rates of
adults are from 12 to 18 breaths per minute. WiFi-based respiration monitoring can use a BPF
to capture the impact of chest movements caused by inhalation and exhalation. It can also filter
out high-frequency components caused by motions. The input signals for filtering are usually
from FFT, DHT, or STFT. Butterworth filters are widely used due to its monotonic amplitude
response in both passband and stopband and quick roll-off around the cutoff frequency. High-Pass
Filters (HPFs) can be used to filter out signals from static objects that have relatively stable signal
reflections. WiFi-based gesture recognition can use HPF to extract the target signals reflected by
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Fig. 4. High-pass filter for removing low-frequency signals that are reflected by static objects.

human movements, as shown in Fig. 4. Combined with DWT, wavelet filters are also used for
outliers removal.
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Fig. 5. Thresholding of RSS and CSI amplitudes for extracting gesture signals. The user makes three sign
language gestures during time 1 to 4 seconds.

In the time domain, thresholding can be used to extract signals with certain power levels, AoAs,
ToFs, etc. As shown in equation (1), CSI is impacted by wireless signals from multi-path channels.
Device-free human tracking can exclude signals of the direct path by cutting off signals with the
shortest ToF. The ToFs of different paths can be calculated by Power Delay Profile (PDP), which
is shown in Section 4.1. WiFi-based gesture recognition can use thresholding to exclude signals
when the user is not making gestures. As shown in Fig. 5a, when the user is making gestures, the
RSS of TX3 are higher than that when the user is static. The CSI amplitudes are also in different
ranges when the user is making gestures, as shown in Fig. 5b. Thresholding of other metrics, e.g.,
CSI cross correlation, can be used for signal compression.

3.3.2 Signal Compression. Processing raw CSI measurements sometimes requires extensive com-
putation resources. For example, 𝑠𝑖𝑧𝑒 (𝐻 ) = 3×3×52×100×32/8 = 187200 bytes for a 20MHzWiFi
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channel with 3TX/3RX, 52 subcarriers, and 100 CSI samples with each value represented by 32 bits.
Raw CSIs can be compressed by dimension reduction techniques such as Principal/Independent
Component Analysis (PCA/ICA), Singular Value Decomposition (SVD), etc., or metrics such as
self/cross correlation, Euclidean distance, distribution function, etc. Signal compression can also
remove redundant and unrelated information from raw CSI measurements in different domains.
PCA and ICA are widely used for feature extraction and blind signal separation. PCA uses

an orthogonal transformation to convert a matrix to a set of principal components. The input
is assumed to be a set of possibly correlated variables and the principal components are a set
of linearly uncorrelated variables. PCA can be done by SVD or eigenvalue decomposition of the
covariance or correlation matrix of the input. ICA assumes that the input signal is a mix of non-
Gaussian components that are statistically independent. It maximizes the statistical independence
by minimizing mutual information or maximizing non-Gaussianity, i.e., Kurtosis. Many PCA/ICA
components can be discarded. For a time series of CSI matrices, redundant measurements can be
removed if adjacent samples are highly correlated.

3.3.3 Signal Composition. SomeWiFi sensing applications need CSIs from multiple devices, carrier
frequency bands, data packets, etc. For example, SpotFi [46] requires CSIs frommultipleWiFi devices
and multiple data packets to accurately estimate AoAs and ToFs for decimeter-level localization.
Chronos [87] requires multiple frequency bands for decimeter-level localization using a single WiFi
AP. WiFi sensing algorithms using signal composition are presented in Section 4.1.

4 ALGORITHMS OFWIFI SENSING
This section presents modeling-based and learning-based algorithms for WiFi sensing. A brief
summary and some examples of WiFi sensing algorithms are shown in Table 5.

4.1 Modeling-Based Algorithms
Modeling-based algorithms are based on physical theories like the Fresnel Zone model, or statistical
models like the Rician fading model.

4.1.1 Theoretical Models. As shown in equation (1) in Section 2.1, CSI is a matrix of complex values
representing the CFR of multi-path MIMO channels. CSI amplitude attenuation and phase shift are
impacted by the distance between the transmitter and receiver and the multi-path effects including
radio reflection, refraction, diffraction, absorption, polarization, and scattering. The amplitude
attenuation of Free Space Propagation is

𝑃𝑟/𝑃𝑡 = 𝐷𝑡𝐷𝑟 (_/4𝜋𝑑)2 , 𝑑 ≫ _, (5)

where 𝐷𝑡 and 𝐷𝑟 are the antenna directivity of the transmitter and receiver, respectively, _ is the
carrier wavelength, and 𝑑 is the distance between the transmitter and receiver. It models wireless
signals traveling through free space by the LoS path. In real-world scenarios, there are other objects
and humans. According to equation (1), the phase shift is impacted by the time delay of each path.
Phase shift is also impacted by the Doppler effect when either the transmitter or receiver moves
with a speed lower than the velocity of radio waves in the medium. The observed frequency is
𝑓 = 𝑓0 (𝑐 + 𝑣𝑟 )/(𝑐 + 𝑣𝑡 ), where 𝑣𝑟 and 𝑣𝑡 are the velocity of the receiver and transmitter, respectively,
with respect to the medium, 𝑐 is the velocity of radio waves, and 𝑓0 is the original carrier frequency.
Doppler phase shift is an effective model for motion detection and speed estimation.

CSI amplitude and phase are impacted by radio waves from multiple paths rather than a single
path. The Fresnel Zone model divides the space between and around the transmitter and receiver
into concentric prolate ellipsoidal regions, or Fresnel zones. The radius of the 𝑛-th Fresnel Zone is
calculated as shown in Fig. 6. It shows how radio signals propagate and deflect off objects within the
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Table 5. Summary of WiFi Sensing Algorithms

Model: 𝑌 = 𝑓 (𝑋 ), 𝑋 : CSI measurements, 𝑌 : detection, recognition, or estimation results
Algorithm: to find the mapping function 𝑓 (·) to detect, recognize, or estimate 𝑌 given 𝑋
Algorithm Type Examples
Modeling-based:
(1) modeling 𝑋 by theoretical models
based on physical theories or statisti-
cal models based on empirical measure-
ments;
(2) inferring 𝑓 (·) by the model of 𝑋 ;
(3) predicting 𝑌 by the modeled function
𝑓 (·) and measurements of 𝑋 , sometimes
assisted by optimization algorithms.

Theoretical Models: Fresnel Zone Model, Angle
of Arrival/Departure, Time of Flight, Amplitude
Attenuation, Phase Shift, Doppler Spread, Power
Delay Profile, Multi-Path Fading, Radio Propaga-
tion: Reflection, Refraction, Diffraction, Absorp-
tion, Polarization, Scattering; Statistical Models:
Rician Fading, Power Spectral Density, Coher-
ence Time/Frequency, Self/Cross Correlation; Al-
gorithms:MUSIC, Thresholding, Peak/Valley De-
tection, Minimization/Maximization

Learning-based:
(1) Training: learning 𝑓 (·) by training
samples of 𝑋 ′ and 𝑌 ′;
(2) Inference: predicting 𝑌 by the learned
function 𝑓 (·) and measurements of 𝑋 .

Learning Algorithms: Decision Tree, Naive
Bayes, Dynamic Time Wrapping, k Nearest Neigh-
bor, Support Vector Machine, Self-Organizing Map,
Hidden Markov Models, Convolutional/Recurrent
Neural Network, Long Short-Term Memory

Hybrid:
(1) modeling the problem by 𝑌 =

𝑓 (𝑔(𝑋 ));
(2) getting 𝑓 (·) and 𝑔(·) by modeling-
based or learning-based algorithms;
(3) predicting𝑌 by the modeled or learned
function 𝑓 (𝑔(·)) and measurements of 𝑋 .

modeling-based 𝑔(·) → learning-based 𝑓 (·):
e.g., (1) extracting mobility data by Doppler Spread
→ recognizing gestures by kNearest Neighbor [72];
e.g., (2) estimating position and orientation features
by Channel Frequency Response → recognizing
gestures by k Nearest Neighbor [89]
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Fig. 6. Fresnel Zone Model. 𝐹1 is the radius of the first Fresnel zone (𝑛 = 1) at point P.

Fresnel zone regions. The deflected signals travel through multiple paths to the receiver. Depending
on the path length and the resulting amplitude attenuation and phase shift, the deflected signals
lead to constructive or destructive effect at the receiver.

AoAs and ToFs are two popular models for CSI-based tracking and localization. They characterize
the amplitude attenuation and phase shift of multi-path channels in terms of directions and distances.
AoAs and ToFs are estimated by the phase shift or time delay from CSI measurements of an antenna
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Fig. 7. Estimation of Angle-of-Arrival and Time-of-Flight by CSI.

array. The Multiple Signal Classification (MUSIC) algorithm is widely used for estimating AoAs. It
computes the Eigen value decomposition of the covariancematrix fromCSI [46]. AoAs are calculated
based on the steering vectors orthogonal to the Eigen vectors. Fig. 7a shows an example of MUSIC
spectrum of different AoAs. ToFs can be estimated by Power Delay Profile (PDP) which represents
the signal strength of multiple paths with different time delays. PDP is calculated by the Inverse Fast
Fourier Transform (IFFT) of CSI. The corresponding PDP of CSI 𝐻 (𝑓 ) is ℎ(𝑡) = ∑𝑁

𝑛=1 𝛼𝑛𝛿 (𝑡 − 𝜏𝑛),
where𝑁 is the number of paths,𝛼𝑛 and 𝜏𝑛 are the attenuation and delay of the𝑛-th path, respectively,
and 𝛿 (·) is the impulse function. The norm of ℎ(𝑡) is the signal strength of each path along which
the signal arrives at the receiver with time delay 𝑡 , as shown in Fig. 7b.

4.1.2 Statistical Models. Statistical models rely on empirical measurements or probability functions
to characterize wireless channels. Rician fading is a stochastic model used by some WiFi sensing
applications. It is a simple model for multi-path channels with a dominant path that is stronger
than others. The received signal amplitude of a Rician fading channel follows a Rice distribution
with a2 = 𝐾Ω/(1 + 𝐾) and 𝜎2 = 2Ω/(1 + 𝐾), where 𝐾 is the ratio between the power in the direct
path and the power in the other scattered paths, and Ω is the total power, i.e., Ω = a2 + 2𝜎2. CSI
similarity is a widely used metric for motion-related WiFi sensing applications. It is calculated by
the cross correlation of two CSI matrices [30]. Empirical measurements show that CSI similarity
is a good indicator of whether the WiFi device and surrounding objects are static or moving [30].
Coherence time and coherence bandwidth, which represent the time duration or bandwidth during
which the CIR is coherent, can also be used to detect the mobility status of WiFi devices.

4.1.3 Algorithms for Theoretical and Statistical Models. Threshold-based methods, peak/valley
detection, and clustering are widely used modeling-based algorithms for WiFi sensing. Threshold-
based methods are simple and effective for amplitude attenuation, cross correlation and distance
metrics, especially for detection applications. As shown in Fig. 5, RSS and CSI amplitude are
in different ranges when the user is making gestures and when the user is static. Different CSI
similarity thresholds can also be used to determine the mobility status: if CSI similarity is less
than 0.9, the WiFi device is moving; if it is no less than 0.9 but less than 0.99, it is environmental
mobility; otherwise, it is static [30]. Threshold-based methods can also be used with other statistical
metrics such as variance, Mean Absolute Deviation (MAD), Power Spectral Density (PSD), etc.,
and distance metrics such as Dynamic Time Wrapping (DTW), Euclidean distance, Earth Mover’s
Distance (EMD), etc. Peak/valley detection is widely used for phase shift and Doppler Spread for
WiFi-based respiration and moving speed estimation. In these cases, CSI phases have periodic
patterns, which can be detected by peak/valley detection or frequency-domain analysis.
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Fig. 8. Localization by CSIs from multiple WiFi devices and frequency bands. Real-world applications need
more than three WiFi devices, assisted by clustering or majority vote, to mitigate noises and estimation errors.

For WiFi sensing using AoAs and ToFs, it usually requires CSI measurements from multiple
devices, frequency bands or data packets. SpotFi [46] uses AoAs and ToFs from multiple WiFi APs
to localize the target, as shown in Fig. 8a and 8b. It also measures CSIs by multiple data packets to
mitigate the impact of noises and estimation errors. Gaussian mean clustering is used to identify
AoAs and ToFs from the same path but different packets. The assumption is that the direct path has
the smallest ToF, so a large ToF means a low likelihood to be the direct path. SpotFi selects the path
with the highest likelihood as the direct path. Chronos [87] achieves decimeter-level localization
with a single WiFi AP. It estimates ToFs from multiple frequency bands such that it does not require
multiple WiFi devices. As shown in Fig. 8c, a single frequency band gives a set of potential ToFs.
The true ToF is identified by the Least Common Multiple (LCM) algorithm.

4.2 Learning-Based Algorithms
Binary and multi-class classification applications usually use learning-based algorithms. These
algorithms try to learn the mapping function using training samples of CSI measurements and the
corresponding ground truth labels.

4.2.1 Shallow Learning Algorithms. Similar to threshold-based methods, Decision Tree (DT) learn-
ing tries to find a branching rule to predict the target classes. The difference is that the branching
rule of DT is learned from training data instead of hand-crafted. Naive Bayes is another technique
for constructing simple and lightweight classifiers based on the Bayes’ theorem. A Bayesian network
is a probabilistic graphical model that represents the instances and their conditional dependencies
b a Directed Acyclic Graph (DAG). Another widely used statistical algorithm is Hidden Markov
Model (HMM) which can be regraded as the simplest dynamic Bayesian network. HMM represents
the classification problem as a Markov process wherein the true states are hidden.

Instance-based learning algorithms, such as k Nearest Neighbor (kNN), Support Vector Machine
(SVM), and Self-Organizing Map (SOM), are widely used for detection and recognition applications.
These algorithms compute the distance between each testing sample and every training samples.
For kNN, the testing sample is classified by the majority vote of the ground truth labels of its 𝑘
nearest neighbors. SVM separates data points by a set of hyperplanes in a high dimensional space
to maximize the functional margin, i.e., the distance to the nearest training data points of any
class. SOM represents training samples in a low dimensional space. It is a type of neural networks
using competitive learning instead of backpropagation with gradient descent as the optimization
algorithm. A distance metric, such as Euclidean and Hamming distance, is needed for instance-based
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learning algorithms. Dynamic Time Wrapping (DTW) and data interpolation are widely used when
the input is a time series of CSIs with different time durations or number of samples.
The input for shallow learning algorithms could be raw CSIs, pre-processed CSIs, or feature

vectors. Since raw CSIs are usually too large and noisy, they rarely serve as the input. Pre-processed
CSIs could be the filtered components of CSIs after signal transform techniques such as FFT, STFT,
DWT, etc. The output of thresholding and subcarrier selection could also be the input of learning
algorithms. Pre-processing helps remove noises and reduce the input size. Sometimes pre-processed
CSIs are still too large and noisy for shallow learning algorithms. Feature engineering helps extract
meaningful and compressed information, e.g., domain knowledge, from raw or pre-processed CSIs.
It is widely used for shallow learning algorithms such as kNN and SVM. Statistical metrics are
commonly used features, and dimension reduction techniques such as PCA, ICA, and SVD can also
be used to extract feature vectors. Feature extraction and selection usually have a great impact on
the performance of shallow learning algorithms.

4.2.2 Deep Learning Algorithms. For shallow learning algorithms, it is hard to extract and select
the right features effectively and efficiently. Deep Neural Networks (DNN) address this problem by
learning features automatically. DNNs require very little or none signal processing, feature engi-
neering, and parameter tuning. DNNs are very powerful for multi-class classification applications.
A DNN is organized into multiple layers. The output of the 𝑖-th layer is represented by

𝒚 (𝑖) = 𝑔 (𝑖)
(
𝑾 (𝑖)𝒙 (𝑖) + 𝒃 (𝑖)

)
, (6)

where 𝒙 (𝑖) is the input,𝑾 (𝑖) is the weight matrix, 𝒃 (𝑖) is the bias vector, and 𝑔 (𝑖) is the activation
function [25]. The output of the previous layer is the input of the current layer, i.e., 𝒙 (𝑖) = 𝒚 (𝑖−1) .
The first layer 𝒙 (1) is the original input, i.e., raw or pre-processed CSI measurements. The last layer
𝒚 (𝑛) is the final output, i.e., binary or multi-class labels. DNNs learn the weights𝑾 and biases 𝒃 ,
using an optimization algorithm, to minimize the cost function. For example, Stochastic Gradient
Descent with Momentum (SGDM) is a widely used optimization algorithm that takes small steps in
the direction of the negative gradient of the loss function. To prevent overfitting, L2 regularization
is usually used to add a regularization term for the weights to the loss function.
A Convolutional Neural Network (CNN) is a DNN with at least one of its layers involving

convolution operations. CNNs are effective for learning local features. CNNs are relatively fast
to run during training and inference due to shared kernels. CNNs are proven to have very good
performance and are seen in almost all modern neural network architectures. For a sequence or a
temporal series of data samples, it is usually better to use 1D CNNs or Recurrent Neural Networks
(RNNs). 1D CNNs use one dimensional instead of two dimensional convolution, so they have low
computational cost and good performance for simple classification problems. A major characteristic
of CNNs is the lack of memory for a sequence or a time series of data points. A RNN has internal
connections by iterating through the time series of input elements. Simple RNNs have the vanishing
gradient problem that the network becomes untrainable as new layers added to the network [12].
Long Short-Term Memory (LSTM) is an effective and widely used architecture to address this
problem. It saves the state information for later units so it prevents previous states from gradually
vanishing during training. RNNs with LSTM are usually the right choice for processing a sequence
or a time series of data points where temporal ordering matters. The major drawback of RNNs and
LSTM is that they have very high computation cost.

A 3D CSI matrix with 𝑠𝑖𝑧𝑒 (𝐻 ) = 𝑁 ×𝑀 × 𝐾 is similar to a digital image with spatial resolution
of 𝑁 ×𝑀 and 𝐾 color channels, so WiFi sensing can reuse DNNs that have high performance for
computer vision tasks. Besides, CSI data have some unique properties that are different from images
and videos. For example, CSI has much smaller spatial resolutions and more frequency channels
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than images. Another challenge is that CSI is impacted by multi-path effects and interferences
from all directions, so it contains a lot of noises and is very sensitive to environmental changes.
Therefore, WiFi sensing may need new DNN architectures specifically designed for CSI data.

4.3 Hybrid Algorithms
Modeling-based and learning-based algorithms have their own advantages and limitations. For
example, one of the major limitations of learning-based algorithms is overfitting, since the training
process usually can only find the patterns and information that are present in the training data.
Different algorithms have different requirements of signal processing techniques and are suitable
for different types of WiFi sensing applications. Modeling-based algorithms are more suitable
for estimation applications, and learning-based algorithms are better choices for recognition
applications. For detection applications, either modeling-based or shallow learning algorithms can
be the right choice. The pros and cons of modeling-based WiFi sensing algorithms are listed below.
Pros: (1) need very little or none training data collection, model training, and ground truth labeling

(2) need only simple algorithms, e.g., thresholding, peak/valley detection, clustering, etc.
(3) usually have low costs and run fast for both off-line analysis and real-time running

Cons: (1) need efforts for building the suitable models and finding the right model parameters
(2) need very accurate measurements and estimations, along with a lot of signal processing
(3) usually not reusable, versatile, or scalable for new tasks, scenarios, environments, etc.

Use Case: Mostly used for estimation applications which require accurate estimations of numerical
values. Noise removal is crucial for modeling-based algorithms and estimation applications.

The pros and cons of learning-based WiFi sensing algorithms are summarized below.
Pros: (1) need very little or none signal processing

(2) evolvable: could improve when there are more training data, especially for deep learning
(3) automatic for deep learning: no need of feature engineering or learning parameter tuning
(4) reusable for deep learning: no need to restart training on new data or pre-trained models
(5) versatile for deep learning: can reuse high-accuracy pre-trained models from other tasks

Cons: (1) need a lot of efforts for training data collection and ground truth labeling
(2) need a lot of training data in different settings and easy to overfit to the training data
(3) need a lot of resources and time for training, especially for deep learning
(4) shallow learning: need feature engineering to find and select the right features
(5) instance-based learning algorithms, e.g., kNN, have high costs during the inference stage

Use Case: Mostly used for recognition applications and need very little or none signal processing.
Hybrid algorithms use both modeling-based and learning-based algorithms to address the lim-

itations of each type of algorithms. In some cases, modeling-based algorithms are used to get
coarse-grained information and then learning-based algorithms are used for fine-grained and
complex tasks. For example, WiSee [72] first extracts mobility data by Doppler phase shift and then
recognizes hand and body gestures by kNN. WiAG [89] first estimates the position and orientation
features by CFR and then uses kNN to recognize gestures. In some cases, . For estimation applica-
tions, learning-based algorithms can be first used to detect or recognize certain events, and then
modeling-based algorithms are used to estimate the quantity values of the target events.

5 APPLICATIONS OFWIFI SENSING
This section presents a summary and comparison of different WiFi sensing applications, as shown
in Table 6. The signal processing techniques, algorithms, and performance results are summarized
in Table 7, 8, and 9. For signal processing, NR represents Noise Reduction, ST represents Signal
Transform, and SE stands for Signal Extraction. Modeling-based and learning-based algorithms are
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represented by M and L, respectively. Details of which algorithms require what signal processing
techniques and are suitable for which types of WiFi sensing applications are also presented.

Table 6. Summary of Existing WiFi Sensing Applications

Output Type WiFi Sensing Applications

Detection:
binary
classification

Human Presence Detection [3, 24, 67, 73, 75, 83, 112, 114, 121, 148, 149, 152]
Human Event Detection: Fall [32, 68, 92, 135, 137], Motion [23, 27, 51, 55],
Walking [126], Posture Change [57, 58], Intrusion [51, 59], Sleeping [57, 58], Key-
stroke [5], Driving Fatigue [16, 70], Lane Change [111], School Violence [146],
Smoking [142, 143], Attack [40, 53, 54, 125], Tamper [7], Abnormal Activity [151]
Object Detection [116]; LoS/NLoS Detection [113, 150]

Recognition:
multi-class
classification

Activity Recognition: Daily Activities [6, 14, 18, 20, 22, 28, 94, 98, 99, 102,
103, 107, 117], Shopping [132], Driving [16, 78], Exercising [120], Speaking [90],
Acoustic Eavesdropping [108], Head & Mouth Activities [19], Walking [63]
Gesture Recognition: Body/Head/Arm/Hand/Leg/Finger Gestures [2, 3, 33, 49,
62, 64, 72, 77, 81, 85, 88, 89, 127, 134, 140, 147], Sign Language Recognition [49,
62, 64, 81], Keystroke Recognition [4, 5, 48, 50]
Human/User Identification [10, 11, 34, 97, 124, 133, 139];Human/User Au-
thentication [53, 54, 82, 96, 118]
Object Recognition [111, 153, 157]; Object Event Recognition [66]

Estimation:
quantity
values of size,
length, angle,
distance,
duration,
frequency,
counts, etc.

Device-Free Human Localization/Tracking: Position [36, 52, 69, 74, 76, 93,
109, 148], Orientation [89, 130], Motion [41, 43, 115, 130], Walking Direction [63,
115, 126, 136], Step/Gait [97, 126], Hand Drawing [84, 130, 131], Speed [137]
Device-Based Human Localization/Tracking [46, 87, 123, 131]
Object Localization/Tracking [60, 109, 111]; Humidity Estimation [141]
Breathing/Respiration Rate Estimation: Single Person [1, 58, 61, 95, 101,
138], Multiple Persons [95, 101]; Heart Rate Estimation [56, 80, 100]
HumanCounting: Static Humans [15, 119], MovingHumans [9, 29, 71, 91, 144],
Human Queue Length [104, 105, 111]; WiFi Imaging [35, 42, 153, 154]

5.1 Detection Applications
Table 7 shows the summary of WiFi-based detection applications, most of which are for human
presence detection and human event detection. For event detection, most papers are on motion
activities, e.g., fall andwalking direction. Modeling-based algorithms, e.g., threshold-based detection,
and very simple learning-based algorithms, e.g., one-class SVM are widely used. Among the 11
papers on WiFi-based human detection, 5 papers use SVM and 3 papers use threshold-based
detection. For the remaining 31 papers, 9 of them use one-class SVM as the classifier. Theoretical
and statistical models are usually very sensitive to noises and outliers. Noise reduction is usually
needed for modeling-based algorithms such as threshold-based detection. The Hampel filter, wavelet
filter, LOF are popular choices. Detection problems are relatively simple to solve and sometimes
have no clear borderline between signal extraction techniques and the classification algorithm.
After some signal extraction techniques such as LPFs and thresholding, the detection result can be
directly derived without further detection or classification algorithms. Several papers use PCA to
filter out redundant information. Since binary classification problems usually do not need extensive
input data, detection applications usually do not need signal compression or feature extraction.
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Table 7. Summary of WiFi Sensing: Detection Applications

Reference Signal Processing Algorithm Application Performance

Wi-Vi [3] NR: Signal Nulling M: AoA

Moving Human
Detection;
Gesture
Decoding

Human Detection: 85% to
100% (3 humans); Gesture
Decoding: 93.75% (6-7m),

75% (8m), 0 (9m)
Gong-

2016 [24] N/A M: Rician Fading,
Cross-Correlation

Human
Detection

False Negative: <5%;
False Positive: <4%

Palipana-
2016 [67]

SE: Interpolation, Kernel
PCA

M: Threshold-Based
Detection, Rician Fading

Human
Detection True Positive: 90.6%

PADS [73, 75] NR: Phase Offset, Hampel
Filter L: One-Class SVM Human

Detection True Positive Rate: >93%

PeriFi [83] NR: Phase Offsets (PDD,
STO)

M: AoA, ToF, MUSIC; L:
One-Class SVM

Human
Detection Accuracy: 96.7%

DeMan [112]

NR: Hampel Filter, Linear
Fitting, Least Median

Squares; SE: Correlation
Matrix

M: Sinusoidal Model,
Nelder-Mead Searching

Moving &
Stationary
Human
Detection

Detection Rate: 94%/92%
(moving/stationary)

Xiao-
2015 [121] NR: WMA M: Threshold-Based

Detection
Human
Detection N/A

Zhou-
2017 [148]

NR: Density-Based Spatial
Clustering; SE: PCA

L: SVM Classification &
Regression

Human
Detection &
Localization

Detection Accuracy:
>97%, Localization Error:

1.22m/1.39m
(lab/meeting room)

Zhou-
2014 [149] SE: Feature Extraction

M: EMD, Fingerprinting,
Threshold-Based

Detection

Human
Detection

Average FPR/FNR: 8%/7%
(fingerprinting), ∼10%

(threshold)

R-
TTWD [152]

NR: Hampel Filter,
Wavelet Filter; ST: DWT;
SE: PCA, Interpolation,
Feature Extraction

L: Majority Vote,
One-Class SVM

Moving Human
Detection

True Positive/True
Negative: >99%

WiFall [32] NR: WMA, LOF L: kNN, One-Class SVM Fall Detection Detection Precision: 87%

FallDeFi [68]

NR: Wavelet Filter; ST:
DWT, STFT; SE: PCA,

Interpolation, Subcarrier
Selection, Thresholding

M: Power Burst Curve; L:
One-Class SVM Fall Detection

Accuracy: 93%/80%
(same/different testing

environments)

RT-Fall [92]
ST: STFT; SE: BPF,

Interpolation, Feature
Extraction, Thresholding

M: Amplitude
Attenuation, Phase Shift;

L: One-Class SVM
Fall Detection True Positive Rate: 91%,

True Negative Rate: 92%

Anti-
Fall [135]

SE: Interpolation, LPF,
Threshold-Based Sliding

Window

M: Amplitude
Attenuation, Phase Shift;

L: One-Class SVM
Fall Detection Precision: 89%, False

Alarm Rate: 13%

WiSpeed [137] NR: Median Filter; SE: ℓ1
Trend Filter, Thresholding

M: Multi-Path Scattering,
Statistical Modeling,

Peak Detection

Fall Detection &
Speed

Estimation

Fall Detection: 95%,
Mean Error: 4.85%/4.62%
(device-free/-based)

MoSense [27] SE: LPF, Euclidean
Distance, Thresholding

M: CFR; L: Binary
Classification

Motion
Detection

Accuracy: 97.38%/93.33%
(LoS/NLoS, 5 activities)

Liu-2017 [55]
NR: Phase Difference; SE:

Signal Isolation by
Skewness

M: CIR; L: One-Class
SVM

Motion
Detection

Motion Detection Rate:
90.89%

FRID [23] N/A M: CFR, Coefficients of
CSI Phase Variation

Motion
Detection Precision: 90%

AR-
Alarm [51]

SE: Interpolation, BPF,
Duration-Based Filter

M: Phase Difference; L:
Binary Classification

Motion &
Intrusion
Detection

True Positive Rate:
98.1%/97.7%

SEID [59] SE: Signal Compression by
CSI Amplitude Variance M: CFR; L: HMM Intrusion

Detection Precision: 98%

(Continued)
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Table 7 Continued

Reference Signal Processing Algorithm Application Performance

WiStep [126]

NR: Long Delay Removal;
ST: FFT, IFFT, DWT; SE:
Butterworth BPF, PCA,
Subcarrier Selection

M: Multi-Path Fading, CIR,
Short-Time Energy, Peak
Detection, Threshold-Based

Detection

Walking
Detection &
Step Counting

Walking Detection:
96.41%/1.38%

(TPR/FPR); Step
Counting: 90.2%/87.59%
(laboratory/classroom)

Wi-Sleep [57, 58]

NR: Hampel Filter, Wavelet
Filter; ST: DWT; SE:

Interpolation, Subcarrier
Selection by Periodicity &
SVD, Multiple TX-RX Pairs

M: CFR

Respiration
Rate & Apnea
Estimation;

Posture Change
Detection

Respiration Rate
Estimation: 85%;
Posture Change

Detection: 83.3%; Apnea
Estimation: 89.8%

WiKey [4, 5] NR: LPF, PCA; ST: DWT L: kNN+DTW
Keystroke
Detection &
Recognition

Detection: 97.5%;
Recognition: 96.4% (37

keys)

LiveTag [21] NR: Signal Nulling; SE:
PCA

M: AoA, MUSIC, SSP, SVD,
Maximum Likelihood

Touch
Detection

Missed Detection Rate:
<3% to 28% (LoS), <3%

to 14% (NLoS)

Bagci-2015 [7]
NR: MA; SE: Euclidean/
Mahalanobis Distance,
EMD, Thresholding

M: Received Signal
Strength

Tamper
Detection True Positive Rate: 53%

Liu-2018 [53, 54]

NR: Temporal Bias,
De-Correlation Filter,
Frequency/Temporal

Smoothing; SE:
Thresholding, k Means

M: Coherence Time; L:
One-Class SVM

Attack
Detection, User
Authentication

Average Attack
Detection Ratio: 92%;

Authentication
Accuracy: 91% (static),
70.6% to 93.6% (mobile)

CSITE [40] SE: Merging Adjacent
Samples

M: Euclidean Distance,
Mean Standard Variance,

Threshold-Based Detection

Spoofing Attack
Detection

False Positive Rate: <4%,
False Negative Rate:

<4.5%

SecureArray [125] NR: Random Phase
Perturbation

M: AoA, Coherence Time,
Threshold-Based Detection

Spoofing Attack
Detection

Detection Rate: 100%,
False Alarm Rate: 0.6%

WiFind [70] NR: Hampel Filter, LOF,
MA; SE: PCA L: One-Class SVM Driver Fatigue

Detection Detection Rate: 82.1%

WiTraffic [111] NR: Butterworth LPF L: Threshold-Based
Detection, SVM, EMD

Traffic
Monitoring

Lane Detection: 95%;
Vehicle Recognition:

96%; Speed Error: 5mph

Smokey [142,
143]

NR: Hampel Filter; SE:
Interpolation, Antenna
Selection, Thresholding

M: Temporal/Frequency
Correlation, Peak Detection

Smoking
Detection

True Positive Rate:
92.8%, False Alarm Rate:

2.3%

Wi-Dog [146]

ST: DHT, STFT; SE: PCA,
Butterworth BPF,

Antenna/Subcarrier
Selection

M: Doppler Shift, Wavelet
Entropy, Median Filter,

Thresholding; L: One-Class
SVM

School Violence
Detection

TPR: 85%/94%, FPR:
11%/10%

(classroom/corridor)

MAIS [20]
ST: Linear Transform; SE:

LPF, Outlier Filter,
Thresholding, Eigen Values

L: kNN

Human
Counting,
Activity

Detection &
Recognition

Anomaly Detection:
98.04%, Human
Counting: 97.21%,

Activity Recognition:
93.12%

NotiFi [151] SE: PCA

L: Nonparametric Bayesian
Model, Dynamic

Hierarchical Dirichlet
Process

Abnormal
Activity
Detection

Average Accuracy:
89.2%/ 85.6%/75.3%
(LoS/NLoS/through-

wall)

PhaseU [113]
NR: Linear Fitting; SE:
Thresholding, Antenna

Selection

M: Multi-Path Reflections,
Diffractions and
Refractions

LoS/NLoS
Detection

Detection Rate:
>94%/80%

(static/mobile)

LiFi [150]
NR: CFO; ST: IFFT; SE:

Normalization,
Thresholding

M: CIR, Rician Fading, PDP,
Skewness

LoS/NLoS
Detection

Accuracy: 90.4%; False
Alarm Rate: 9.34%

Wi-Metal [116] NR: Interference Nulling by
Phase Difference

M: Radio Reflection; L: k
Means, Euclidean Distance Metal Detection Accuracy: 90%; False

Alarm Rate: 10%
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Table 8. Summary of WiFi Sensing: Recognition Applications

Reference Signal Processing Algorithm Application Performance

Wi-Chase [6] SE: LPF, Modulation
Filter

M: Path Loss, PDP; L:
kNN, SVM

Activity
Recognition

Recognition Accuracy:
97% (3 activities)

WIBECAM [14] N/A M: PDP, Autoregressive
Model, PSD

Activity
Recognition

Recognition Accuracy:
73% to 100% (4 activities)

BodyScan [18] ST: FFT; SE: Butterworth
LPF, PCA, Thresholding

M: PSD, Statistical
Distribution; L: SVM

Activity
Recognition,
Breathing
Monitoring

Activity Recognition
Accuracy: 72.3% (5
activities), Breathing
Rate Accuracy: 97.4%

MAIS [20]

ST: Linear Transform; SE:
LPF, Outlier Filter,
Thresholding, Eigen

Values

L: kNN

Human Counting,
Activity

Detection &
Recognition

Anomaly Detection:
98.04%, Human Counting:

97.21%, Activity
Recognition: 93.12%

DFLAR [22] N/A L: Sparse Auto-Encoder
Neural Network

Activity
Recognition

Recognition Accuracy:
90% (8 activities)

HuAc [28]
NR: Outlier Filter, WMA;
SE: LPF, Thresholding, k

Means
L: SVM Activity

Recognition
Recognition Accuracy:
93% (16 activities)

EI [39] NR: Hampel Filter; ST:
FFT; SE: Thresholding L: Correlation, CNN Activity

Recognition
Accuracy: <75% (10 users,
6 activities, 3 rooms)

Wang-
2018 [94]

NR: Median Filter, Linear
Fitting; ST: FFT; SE: LPF,

Feature Extraction

M: Coherence
Histogram; L: SOM,
Softmax Regression

Activity
Recognition

Recognition Accuracy:
>85%

CARM [98, 99]
NR: CFO; ST: DWT; SE:
Thresholding, PCA,
Feature Extraction

L: HMM Activity
Recognition

Recognition Accuracy:
>96% (8 activities)

Wang-
2015 [102]

NR: Gaussian Filter, LOF;
SE: k Means, Feature

Selection

M: Free Space
Propagation Model; L:

DTW, SVM

Activity
Recognition &
Fall Detection

Activity Recognition:
80% (13 activities); Fall

Detection: 95.2%

E-eyes [103]

NR: LPF, MCS Filter; SE:
EMD, Thresholding,
Clustering, Multiple

Links

L: Multi-Dimensional
DTW, Pattern Matching

Activity
Recognition

Average Recognition
Accuracy: 90%/95%

(single device/multiple
devices, 13 activities)

Wei-2015 [107] NR: Exponential
Smoothing

L: Sparse
Representation

Activity
Recognition

Recognition Accuracy:
<90% (8 activities)

ARM [117] NR: CFO, Wavelet Filter;
ST: DWT L: DTW, HMM Activity

Recognition
Average Accuracy: >75%

(6 activities)

Zeng-
2015 [132]

SE: BPF, Feature
Extraction, Multiple APs

M: CFR; L: DT, Simple
Logistic Regression

Shopper Activity
Recognition

Average Accuracy:
89.6%/94.75 (entrance/in

store, 4 activities)

WiDriver [16]
SE: Signal Compression
by Back Propagation
Neural Network

M: Fresnel Zone Model;
L: Finite Automata

Driver Activity
Recognition

Recognition Accuracy:
96.8% (11 postures),
90.76% (7 activities)

HeadScan [19] SE: Butterworth LPF,
PCA

L: Sparse
Representation, ℓ1
Minimization

Head & Mouth
Activity

Recognition

Recognition Accuracy:
86.3% (5 activities)

SEARE [120]
NR: LPF, Median Filter,
PCA Filter; ST: FFT; SE:

Thresholding

L: First-Order
Difference, DTW

Exercise Activity
Recognition

Average Accuracy:
97.8%/91.2% (LoS/NLoS, 4

activities)

WiSome [127]

NR: LOF, Wavelet Filter;
ST: DWT, STFT; SE:

Locally Linear
Embedding, Multiple TXs

M: Doppler Shift,
Thresholding; L: kNN,

SVM

Motion Direction
Recognition

Average Accuracy:
95.4%/95.9%/95.5%

(threshold-
ing/kNN/SVM)

APsense [134] SE: Feature Extraction L: Naive Bayes, DT Motion
Recognition

Average TPR: 74.8%
(decision tree), 56.8%

(naive bayes)
(Continued)
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Table 8 Continued

Reference Signal Processing Algorithm Application Performance

WiDance [77]
ST: STFT; SE: Antenna
Selection, Butterworth
BPF, PCA, Thresholding

M: Doppler Shift,
Rule-Based
Classification

Motion
Direction

Recognition

Accuracy: 92% (9 motion
directions)

Maheshwari-
2015 [63]

NR: LPF; SE: Cumulative
MSD L: DT Gait Rate

Classification
Accuracy: <60% (3 speeds),

>90% (2 speeds)

WiHear [90] NR: Butterworth BPF; ST:
IFFT, DWT

M: PDP, Multi-Path
Reflection; L: DTW,
Pattern Matching

Speaking
Recognition

Accuracy: 91%/74% (1
person/3 persons, <6 words)

ART [108] NR: Averaging; SE: BPF M: Wireless
Vibrometry

Acoustic
Eavesdropping

Recognition Accuracy: 80%
(distance<4m)

WiGest [2]
NR: Wavelet Filter; ST:

FFT, DWT; SE:
Thresholding

L: Pattern Matching Gesture
Recognition

Recognition Accuracy:
87.5%/96% (1 AP/3 APs, 7

gestures)

Wi-Vi [3] NR: Signal Nulling M: AoA

Moving Human
Detection;
Gesture
Decoding

Moving Human Detection:
85% to 100% (3 humans);
Gesture Decoding: 93.75%
(6-7m), 75% (8m), 0 (9m)

WiG [33] NR: Birge-Massart Filter,
Wavelet Filter, LOF L: SVM Gesture

Recognition
Recognition Accuracy: 92%

(LoS), 88% (NLoS)

WiSee [72] NR: CFO; ST: FFT; SE:
BPF, Interpolation

M: Doppler Shift; L:
Pattern Matching

Gesture
Recognition

Average Accuracy: 94% (9
gestures)

WiFinger [85]

NR: Wavelet Filter,
Butterworth BPF; ST:
IFFT, DWT; SE: PCA,
Subcarrier Selection

L: Pattern Matching,
Multi-Dimensional

DTW

Finger Gesture
Recognition

Accuracy: 93% (8 finger
gestures)

WiMU [88] ST: STFT; SE: PCA,
Thresholding

M: Threshold-Based
Detection, Pattern

Matching

Multi-User
Gesture

Recognition

Accuracy: 95.0%, 94.6%,
93.6%, 92.6%, 90.9% (2, 3, 4, 5,

6 concurrent gestures)

WiAG [89]

NR: Butterworth Filter;
ST: DWT; SE: PCA,

Thresholding,
Extrapolation

M: CFR; L: kNN Gesture
Recognition Accuracy: 91.4% (6 gestures)

Mudra [140]
NR: MA, Finite Impulse
Response Filter; ST: FFT,
IFFT; SE: Thresholding

L: DTW Finger Gesture
Recognition

Average Accuracy: 96% (9
finger gestures)

DeNum [147] SE: BPF Feature
Extraction

M: Threshold-Based
Sliding Window; L:

NN, SVM

Gesture
Recognition

Average Accuracy: 94% (10
finger postures)

WiFinger [49] NR: Hampel Filter, LPF,
WMA; ST: DWT

M: CFR, PCA; L:
kNN+DTW

Sign Language
Recognition

Recognition Accuracy:
90.4% (9 hand postures)

SignFi [62] NR: STO/SFO, Multiple
Linear Regression L: CNN Sign Language

Recognition

Accuracy: 94.8% (276 signs,
1 user, lab+home), 86.6%
(150 signs, 5 users, lab)

Melgarejo-
2014 [64]

NR: LPF; SE: Subcarrier
Selection by Similarity L: kNN+DTW Sign Language

Recognition

Accuracy: 84% (14 signs,
car), 92% (25 signs,

wheelchair)

WiSign [81]
NR: Median Filter, LPF;
ST: FFT; SE: Subcarrier
Selection, Multiple RXs

L: SVM, Majority
Vote

Sign Language
Recognition

Mean Accuracy: 93.8% (5
sign gestures)

WiKey [4, 5] NR: LPF, PCA; ST: DWT L: kNN+DTW
Keystroke
Detection &
Recognition

Detection: 97.5%;
Recognition: 96.4% (37 keys)

ClickLeak [48] ST: DWT; SE: LPF, PCA,
Thresholding, k Means L: kNN+DTW Keystroke

Recognition
Recognition Accuracy: 83%

(10 keys)
(Continued)
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Table 8 Continued

Reference Signal Processing Algorithm Application Performance

WindTalker [50]
SE: LPF, PCA,

Thresholding; ST:
DWT

M: CFR; L: DTW Keystroke
Recognition

Accuracy: 81.8%/73.2%/
64% (Xiaomi/Nexus/

Samsung, 10 numbers)

Rapid [10]

NR: CFO, Hampel
Filter, MA; ST: FFT,

STFT; SE: Butterworth
LPF, Thresholding

M: CFR; L: SVM Human
Identification

Identification Accuracy:
82% to 92% (2 to 6 people)

NiFi [11]
NR: Butterworth LPF,
Median Filter; SE:
Sequence Similarity

L: Pattern Matching,
HMM

User
Identification

True Positive Rate: 90.83%
(4 devices)

WFID [34] NR: Threshold-Based
Filter; SE: PCA

M: Doppler Shift,
Radio Scattering; L:

SVM

Human
Identification

Identification Accuracy:
93.1% (6 subjects), 91.9%

(9 subjects)

WifiU [97]
NR: CFO; ST: STFT;
SE: Gaussian LPF,
Thresholding, PCA

L: SVM, One-vs-All
Classifiers

Human
Recognition

Recognition Accuracy:
79.28%/89.52%/93.05%

(top-1/-2/-3, 50 subjects)

FreeSense [124]

ST: DWT; SE: PCA,
Butterworth LPF,
Feature Extraction,

Thresholding

L: Mean Absolute
Deviation, DTW, kNN

Human
Identification

94.5% to 88.9% (2 to 6
users)

WiWho [133]

NR: Distant
Multi-path Removal;
ST: FFT; SE: Feature

Extraction

M: CFR, CIR,
Peak-Valley Detection;

L: DTW, DT

Human
Identification 92% to 80% (2 to 6 users)

WiFi-ID [139] NR: Silence Removal;
SE: Feature Extraction

L: Sparse
Representation

Human
Identification N/A

Liu-
2018 [53, 54]

NR: Temporal Bias,
De-correlation Filter,
Frequency/Temporal
Smoothing; SE: k

Means, Thresholding

M: Coherence Time; L:
SVM

Attack
Detection, User
Authentication

Average Attack Detection
Ratio: 92%;

Authentication Accuracy:
91% (static), 70.6% to

93.6% (mobile)

Shi-2017 [82] ST: FFT; SE: BPF,
Subcarrier Selection

L: Neural Network
with Auto-Encoder,

SVM

User
Authentication

Accuracy: 94%/91%
(walking/stationary, 11

subjects)

PriLA [96] N/A M: CFO, DTW User
Authentication Average Accuracy: 93.2%

TDS [118] SE: Feature Extraction
by SVD

L: Pearson Correlation,
Max-Weighted

Bipartite Matching

User
Authentication

Error Rate: <7%
(authenticate
distance=5cm)

WiTraffic [111] NR: Butterworth LPF L: Threshold-Based
Detection, SVM, EMD

Traffic
Monitoring

Lane Detection: 95%;
Vehicle Recognition: 96%;

Speed Error: 5mph

Ulysses [153] NR: Majority Vote

M: Specular Reflection,
AoA, AoD,

Threshold-Based
Detection

Object
Recognition &
WiFi Imaging

Top-3 Accuracy: 100% (11
objects); imaging error:

<8cm/1 degree
(width/orientation)

TagFree [157] SE: Feature Extraction

M: Spectral Regression
Discriminant Analysis,
Random Subspace
Method, LDA

Object
Recognition

Average Accuracy:
96%/75%/57% (1/2/3

objects, same location, 6
objects)

Ohara-2017 [66] SE: Signal Separation
by ICA

M: CNN, RNN, HMM,
LSTM

Object Event
Recognition

Average Precision: 81.7%,
Recall: 92.5%, F-score:

85.8%
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Table 9. Summary of WiFi Sensing: Estimation Applications

Reference Signal Processing Algorithm Application Performance

LiFS [93] SE: Thresholding
M: Fresnel Zone Model,
DTW, Gradient Descent,

Genetic Algorithm

Device-Free
Human

Localization

Median Accuracy: 0.5m
(LoS), 1.1m (NLoS)

Zhou-
2017 [148]

NR: Density-Based Spatial
Clustering; SE: PCA

L: SVM Classifica-
tion/Regression

Presence
Detection &
Localization

Presence Accuracy: >97%,
Localization Error: 1.22m/
1.39m (lab/meeting room)

IndoTrack [52]

NR: Removing Random
Phase Offset by Conjugate

Multiplication; SE:
Isolating Direct Path
Signals, Thresholding

M: Doppler Shift, AoA,
MUSIC

Human
Tracking

Median Tracking Error:
35cm

Widar [74, 76] ST: STFT; SE: Butterworth
BPF, PCA

M: Doppler Shift, Path
Length Change Rate,
Searching with Least

Fitting Error

Human
Tracking

Median Location Error:
25cm/38cm (with/without
initial positions); Median

Velocity Error: 13%

WiDeo [41]
NR: Distance-Based

Thresholding, Full Duplex
Interference Nulling

M: AoA, ToF, Amplitude;
Kalman Filter,

Compressive Sensing

Motion
Tracking

Median Error: <7cm for 5
humans

QGesture [130]

NR: CFO, SFO, PBD, MA;
ST: DHT; SE:

Interpolation, Linear
Regression, PCA,
Thresholding

M: Multi-Path
Propagation, CIR

1D & 2D
Motion
Tracking

Average Distance
Accuracy: 3cm/3.7cm
(1D/2D); Average

Direction Error: 5%/15
degrees (1D/2D)

WiDir [115]

NR: Cross-Correlation
Denoising, Polynomial

Smoothing Filter; ST: FFT;
SE: Thresholding

M: Fresnel Zone Model,
Phase Shift, Radio

Reflection/Diffraction

Moving
Direction
Estimation

Median Error: <10 degrees

WiStep [126]

NR: Long Delay Removal;
ST: FFT, IFFT, DWT; SE:
Butterworth BPF, PCA,
Subcarrier Selection

M: CIR, Short-Time
Energy, Peak Detection,

Threshold-Based
Detection

Walking
Detection &

Step
Counting

Walking Detection:
96.41%/1.38% (TPR/FPR);
Step Counting: 90.2%

(lab), 87.59% (classroom)

Zhang-
2017 [136]

SE: Multiple Carrier
Frequencies M: Fresnel Zone Model

Walking
Direction
Estimation

Median Error: 10 degrees

WiDraw [84]
SE: Thresholding, Multiple
TXs, Transmitter Selection

by CSI Correlation
M: AoA, MUSIC Hand

Tracking

Hand Tracking Error:
<5cm; Handwriting

Accuracy: 91%

WiSpeed [137] NR: Median Filter; SE: ℓ1
Trend Filter, Thresholding

M: Multi-Path
Scattering, Statistical

Modeling, Peak
Detection

Speed
Estimation &

Fall
Detection

Mean Error: 4.85%/4.62%
(device-free/-based), Fall

Detection: 95%

SpotFi [46]

NR: Sampling Time Offset;
SE: Signal Isolation,
Multiple Packets and

Transmitters

M: AoA, ToF, MUSIC,
CSI Smoothing,
Gaussian Mean
Clustering

Device-
Based

Localization

Median Localization
Accuracy: 40cm

Chronos [87]
NR: Phase Offsets, PDD;
SE: Multi-Path Separation,
Multiple Frequency Bands

M: PDP, ToF, Least
Common Multiple,

Quadratic Optimization

Device-
Based

Localization

Median Distance Error:
14.1cm/20.7cm
(LoS/NLoS)

Splicer [123] ST: IFFT; SE: Multiple
Carrier Frequencies M: PDP, MUSIC

Device-
Based

Localization
Median Error: 0.95m

AAMouse [131]
NR: Maximal Ratio

Combining; ST: STFT; SE:
Kalman Filter

M: Doppler Shift
Device-
Based

Tracking

Median Error: 1.4cm (2
speakers), 2.5cm (1
speaker+WiFi)

(Continued)
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Table 9 Continued

Reference Signal Processing Algorithm Application Performance

BikeLoc [60] SE: Multiple TXs M: AoA Bike
Localization

Median Error: 45cm (2
APs); 18.1cm (8 APs)

mTrack [109] SE: Direct Component
Filter, Thresholding

M: Phase Shift, Radio
Reflection/Diffusion

Object
Tracking

Median Tracking Error:
6.5mm

WiTraffic [111] NR: Butterworth LPF L: Threshold-Based
Detection, SVM, EMD

Traffic
Monitoring

Lane Detection: 95%;
Vehicle Recognition:

96%; Speed Error: 5mph

WiHumidity [141] N/A
M: Radio Absorption,

Amplitude Attenuation;
L: SVM

Humidity
Estimation Average Accuracy: 79%

UbiBreathe [1]

NR: Local Mean Removal,
𝛼-Trimmed Mean Filter;
ST: FFT, DWT; SE: BPF,

Thresholding

M: dominant periodic
component due to

inhaling and exhaling

Breathing
Rate & Apnea
Estimation

breath rate error: 1bpm;
breath apnea accuracy:

96%

BodyScan [18] ST: FFT; SE: Butterworth
LPF, PCA, Thresholding

M: PSD, Statistical
Distribution; L: SVM

Activity
Recognition,
Breathing
Monitoring

Recognition Accuracy:
72.3% (5 activities),
Breathing Rate
Accuracy: 97.4%

Liu-2015 [56]

NR: Hampel Filter, MA;
ST: FFT; SE: BPF,

Subcarrier Selection by
CSI Amplitude Variance,

Thresholding

M: Radio Scattering,
Fading, and PDP, k
Means by PSD

Breathing &
Heart Rate
Estimation

Breathing Rate Error:
<1.1bpm (1 person),
<1.2bpm (2 persons);
Heart Rate Error:
<5bpm (1 person)

Wi-Sleep [57, 58]

NR: Hampel Filter,
Wavelet Filter; ST: DWT;

SE: Interpolation,
Subcarrier Selection by
Periodicity and SVD,
Multiple TX-RX Pairs

M: CFR

Respiration
Rate & Apnea
Estimation;
Posture
Change
Detection

Respiration Rate
Estimation: 85%;
Posture Change

Detection: 83.3%; Apnea
Estimation: 89.8%

Ma-2016 [61] NR: Hampel Filter, MA M: Fresnel Zone Model Respiration
Estimation N/A

WiHealth [80]
NR: Median Filter, LPF;
SE: BPF, Polynomial
Filter, Thresholding

M: Multi-Path Fading,
Small Scale Fading

Breathing &
Heart Rate
Estimation

Estimation Error:
0.6bpm (breathing rate),

6bpm (heart rate)

Wang-2016 [91]

NR: Hampel Filter, MA;
SE: Subcarrier Selection,
Thresholding, Signal

Separation

M: Fresnel Zone Model,
PSD

Breathing
Rate

Estimation
N/A

TinySense [95]

ST: IFFT; DWT; SE:
Thresholding, Mean
Filter, Wavelet Filter,
Multiple TX-RX Pairs

M: Fresnel Zone Model,
ToF

Multi-Person
Breathing
Estimation

Accuracy: >88% (2
persons)

PhaseBeat [100]

NR: Hampel Filter, PBD,
SFO, CFO; ST: FFT, DWT;
SE: Subcarrier Selection,

Thresholding

M: CFR, Phase
Difference, MUSIC

Breathing &
Heart Rate
Estimation

Estimation Error:
<0.85bpm (breathing
rate), <10bpm (heart

rate)

TensorBeat [101]
NR: Hampel Filter, PBD,

SFO, CFO; SE:
Thresholding

M: Phase Difference; L:
Canonical Polyadic

Decomposition, DTW,
Dynamic Programming

Multi-Person
Breathing
Estimation

Estimation Error:
<0.9bpm/1.9bpm (1
person/5 persons)

Zhang-2018 [138] N/A M: Fresnel Zone Model,
Radio Diffraction

Respiration
Estimation

Estimation Accuracy:
61.5% to 98.8%

Domenico-
2016 [15] SE: Euclidean Distance L: Linear Discriminant

Classifier
Human
Counting

Recognition Accuracy:
52% to 74% (7 persons)

(Continued)
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Table 9 Continued

Reference Signal Processing Algorithm Application Performance

MAIS [20]

ST: Linear
Transform; SE:

LPF, Outlier Filter,
Thresholding,
Eigen Values

L: kNN

Human
Counting,
Activity

Detection &
Recognition

Anomaly Detection:
98.04%, Human
Counting: 97.21%,

Activity Recognition:
93.12%

FCC [119] SE: Multiple RXs
M: Rician Fading, Grey

Verhulst Model, Percentage
of Zero Elements

Human
Counting

Error: <3/5 persons
(indoor/outdoor, 15

total persons)

Mohammad-
moradi-2017 [65]

SE: Signal
Compression by

Averaging

M: Threshold-Based
Hierarchy, Signal to Noise

Ratio

Room
Occupancy
Estimation

Accuracy: 89% (up to 3
persons)

Guo-2017 [29]
NR: ; ST: FFT; SE:
LPF, Subcarrier

Selection

M: Phase Difference, CSI
Variance, EMD, Total
Harmonic Distortion

Human
Dynamics
Monitoring

Accuracy: >90%
(number, density, speed,

and direction)

Wang-
2014 [104, 105]

NR: Dynamic
Exponential

Smoothing Filter;
SE: Interpolation,
Thresholding

L: Linear Regression,
Feature-Driven Estimation,

Bayesian Network,
Directed Acyclic Graph

Human
Queue

Estimation

Estimation Error: <10
seconds (up to 180

seconds queue length)

Wision [35]

ST: FFT; SE:
Interference

Nulling, Multiple
TXs

M: AoA, Diffuse/Specular
Radio Reflections,

Diffraction
WiFi Imaging

Median Localization
Accuracy: 26cm (static
human); 15cm (metallic

objects)

Karanam-
2017 [42] N/A

M: Markov Random Field
Modeling, Loopy Belief
Propagation, Sparse
Representation

WiFi Imaging Distance Error: 1.35% to
3.7%

Ulysses [153] NR: Majority Vote
M: Specular Reflection,

AoA, AoD,
Threshold-Based Detection

Object
Recognition;
WiFi Imaging

Top-3 Accuracy: 100%
(11 objects); imaging
error: <8cm/1 degree
(width/orientation)

Zhu-2015 [154] SE: Thresholding
M: AoA, Radio Reflection,
Absorption & Scattering,

Majority Vote
WiFi Imaging

Estimation Error:
<4.5cm/1 degree

(width/orientation)

Computation overhead is not a major issue for detection applications due to low input data volume
and low complexity for the detection algorithms.

5.2 Recognition Applications
Table 8 shows the summary of WiFi sensing for multi-class classification tasks. Most of the recog-
nition applications are on activity recognition, gesture recognition, and human/user identification
and authentication. The number of classes of most recognition applications is about 10. Almost
all the recognition applications use learning-based algorithms as the classifier. SVM is still one of
the most used algorithms as the classifier. Recognition applications use multi-class SVM instead of
one-class SVM for detection applications. Another two widely used classifiers are kNN and DTW.
DTW is usually used for kNN as the distance metric. Among the 39 papers on activity and gesture
recognition, 8 use SVM, 9 use kNN, and 12 use DTW as the classifier. SVM is the classifier of 6
papers among the 12 papers on human/user identification and authentication. There are several
recognition applications using HMM or CNN as the classifier. Many recognition applications use
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hybrid algorithms which usually first extract information using modeling-based algorithms and
then recognize the targets using learning-based algorithms.

Learning-based algorithms are usually not so sensitive to noises and outliers as modeling-based
algorithms. Many recognition applications use no or very simple noise reduction methods such as
averaging and median filter, instead of complex algorithms such as the Hampel filter and LOF. Noise
reduction is used for hybrid algorithms wherein modeling-based algorithms could be sensitive to
noises. SVM and kNN are instance-based learning algorithm which need to calculate the distance
from the testing instance to all the training instances. This could introduce expensive overhead
when there are multiple classes and each class instance has many CSI data points. Many recognition
applications, especially those using SVM, kNN, and/or DTW as the classifier, usually employ feature
extraction, subcarrier selection, or dimension reduction to reduce the input size.

5.3 Estimation Applications
The summary of WiFi-based estimation applications is presented in Table 9. For estimation applica-
tions, most papers are on human/object localization and tracking. There are also many papers on
the estimation of breathing rate, heart rate, and human counts. There are four papers using WiFi for
wireless imaging. Different from detection/recognition applications aiming for binary/multi-class
classification problems, estimation applications try to calculate the quantity values of size, length,
angle, distance, duration, etc. Almost all the estimation applications use modeling-based algorithms,
such as AoA, ToF, Fresnel Zone Model, Doppler Spread, MUSIC, etc. For all the 19 papers on
human/object localization and tracking, 5 use AoA, 6 use Doppler/Phase Shift, 3 use Fresnel Zone
Model. Among 12 papers on breathing/heart rate estimation, 4 use Fresnel Zone Model. Only 6
papers of estimation applications, including 1 on human localization [148], 1 on vehicle speed
estimation [111], and 4 on human counting [15, 20, 104, 105], employ only the learning-based
algorithms but no modeling-based algorithms. Since modeling-based algorithms are sensitive to
noises, estimation applications usually require many efforts on removing noises, especially phase
offsets. Many estimation applications employ signal composition techniques, e.g., multiple WiFi
devices, frequency bands and data packets, to improve the estimation accuracy.

6 CHALLENGES AND FUTURE TRENDS OFWIFI SENSING
Existing WiFi sensing mostly focuses on humans. Future WiFi sensing could be in other domains,
such as detecting, recognizing, and estimating the surrounding environments, animals, and objects.
This section presents the challenges and future trends for both existing and futureWiFi sensing. New
opportunities for signal processing techniques and algorithms of WiFi sensing are also presented.

6.1 WiFi Sensing Challenges
6.1.1 Robustness and Generalization. WiFi signals are very sensitive to many different factors such
as network settings, environments, objects, humans, geometry and mobility situations, etc. It is
crucial and also challenging for WiFi sensing to be robust in different real-world scenarios and
settings. For example, the distance between the person and the WiFi transmitter/receiver could be
different. The direction and orientation of the person with respect to the WiFi transmitter/receiver
could also change. There could be multiple persons or other moving objects around. The person
or other objects could block the direct path between the transmitter and receiver. It is more
challenging for WiFi sensing algorithms, both modeling-based and learning-based, to have the
generalization ability of properly and automatically adapting to new and previously unseen data.
For example, WiFi-based activity recognition should also work when WiFi devices are placed
in a new environment at unknown locations/orientations and for new persons whose data are
not seen before. Learning-based algorithms also have under-fitting issues when there are not
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enough training data. To guarantee the robustness and generalization of WiFi sensing, it requires
effective and efficient ways to find the right data collection methods, signal processing techniques,
theoretical/statistical models, and machine learning algorithms.

6.1.2 Privacy and Security. One of the advantages of WiFi sensing is that it is non-intrusive and
non-obtrusive. But this introduces many privacy and security issues. As shown in Section 5, there
are already many WiFi sensing applications that can infer both coarse-grained and fine-grained
information such as daily activities, gestures, and keystrokes. These information can be easily leaked
to malicious hackers and attackers. Moreover, the victim user may be unaware of the information
leakage since it is non-obtrusive and WiFi signals can travel through walls. Unlike images and
videos, WiFi signals are not limited to lighting conditions, so WiFi sensing is very easy to be used
for malicious purposes. This could be in conflict with the purpose of robustness and generalization
of WiFi sensing: the former one needs to make it harder to leak information while the latter requires
more information to be easily inferred in different scenarios. Therefore, new protocols, policies,
architectures, and algorithms are needed for the privacy and security of WiFi sensing.

6.1.3 Coexistence of WiFi Sensing and Networking. WiFi is designed for wireless communications
but not for sensing applications. When a WiFi device is used for sensing, it could influence the
network performance and also be impacted by network settings. Some WiFi sensing applications
require high CSI measurement frequency to get high performance results. This could introduce
overhead for WiFi communications and result in reduced network performance and efficiency.
Moreover, sending unnecessary CSI measurement packets influences not only the measurement
device but also other nearby WiFi devices, since it occupies WiFi resources and influences the
scheduling process in the time and spectrum domains. On the other hand, WiFi sensing is impacted
by WiFi network settings. For example, WiFi transmitters may use beamforming which changes
the amplitude and phase of CSI measurements, as shown in equation (2). This completely changes
CSI patterns and is very hard to process if the beamforming matrix is not available at the receiver.

6.2 Future WiFi Sensing Trends
This section presents future WiFi sensing trends for addressing the above-mentioned challenges
for both existing and future WiFi sensing, as shown in Fig. 9.

6.2.1 Cross-Layer WiFi Sensing. This survey only focuses on WiFi sensing with the physical
layer information, i.e., CSI. CSI can be integrated with upper layer information for cross-layer
WiFi sensing. This could help develop new sensing applications or enhance existing WiFi sensing
applications. Upper layer WiFi information, such as Medium Access Control (MAC), Transmission
Control Protocol (TCP), and Internet Protocol (IP), can also be used for sensing purposes. For
example, MAC and IP packet headers fromWiFi probing requests can be used to predict smartphone
screen on/off [37], human flow [9, 71, 144, 145], urban mobility [13], and social relationship [9, 45].
Combining CSI with MAC and IP layer information could help enhance the capability of WiFi
sensing. Cross-layer WiFi sensing provides additional information from other domains, which
can improve the robustness and generalization of WiFi sensing. Cross-layer WiFi sensing can also
be used for improving security and privacy. There are already many papers on CSI-based user
identification/authentication [10, 11, 34, 53, 54, 82, 96, 97, 118, 124, 133, 139] and other security
and privacy purposes [8, 50, 125]. These applications can be improved by incorporating CSI with
upper layers such as Transport Layer Security (TLS), Secure Sockets Layer (SSL), application layer,
and user interface. Upper WiFi layers can also be re-designed to guarantee WiFi sensing is not
misused for malicious purposes. Finally, cross-layer WiFi information can help WiFi sensing and
networking be aware of each, so it helps address the coexistence of WiFi sensing and networking.
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Fig. 9. Future trends of WiFi sensing. CSI from WiFi can be used to sense the surrounding environments,
humans, animals, and objects using cross-layer information, multiple devices, and fusion of different sensors.

6.2.2 Cross-Device WiFi Sensing. Some WiFi-based localization and tracking applications use CSIs
from multiple WiFi devices. Other WiFi sensing applications can also combine multi-device CSIs
for higher performance and efficiency. In addition to WiFi APs, many other WiFi-enabled devices,
e.g., cameras, speakers, drones, robots, Internet of Things (IoT) devices, etc., can be used. Due
to the rapid development and high demand of wireless data, there will be more WiFi devices in
different scenarios, such as home, office, school, outdoor, stadium, shopping malls, etc. These WiFi
devices have time and location dependence which could provide more information for WiFi sensing.
Moreover, CSI measurements can be collected by emerging MIMO technologies such as distributed,
cooperative, massive, 3D, and full dimension MIMO [155]. Current WiFi sensing applications only
use CSIs measured by traditional MIMO systems. CSIs of emerging MIMO technologies could
open new opportunities for WiFi sensing in terms of signal processing techniques, channel models,
learning algorithms, application types. Platforms for measuring CSIs of these emerging MIMO
technologies are also needed for WiFi sensing purposes. Cross-device WiFi sensing provides more
information in different domains, e.g., time, space, frequency, user, etc. It also gives cross-correlation
and dependence information among multiple devices. The cross-device information is useful for
improving the robustness and generalization of WiFi sensing.

6.2.3 Cross-Sensor WiFi Sensing. Some sensing applications use the fusion of CSIs with other
signals, such as videos and audios, as the input [10, 38, 65]. CSIs can be combined with other sensor
sources, e.g., Bluetooth, 5G, ZigBee, GPS, microphones, image/video cameras, motion sensors, etc.,
for cross-sensor WiFi sensing. For example, video cameras and CSIs can be combined together
for higher performance and less human efforts of training machine learning algorithms. When
the light condition is good, video cameras can be used for ground truth labeling for the machine
learning algorithms that use CSIs as the input. The CSI-based learning algorithms can be activated
when video cameras are not reliable due to poor light conditions. The fusion of video cameras
and CSIs can provide a better time coverage than they are used separately. Moreover, the human
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efforts of data collection, ground truth labeling, and model training can be significantly reduced.
There are many pre-trained neural networks that use videos as the input. These video-based neural
networks can provide near human-level performance which can be used to automatically label CSI
measurements. This could save a lot of time and computation resources for training the machine
learning algorithms. The fusion of WiFi and other sensors also helps improve the robustness and
generalization of WiFi sensing by integrating information from other domains.

All these WiFi sensing trends can be integrated to provide multi-domain knowledge. For example,
wireless drones and robots have the whole WiFi network stack, multiple cooperative devices, and
different sensors. They can combine cross-layer network information, multi-device cooperation,
and fusion of different sensors for more effective WiFi sensing.

6.3 Future Opportunities for Signal Processing and Algorithms of WiFi Sensing
Future WiFi sensing trends also bring new opportunities and challenges for signal processing
techniques and classification/estimation algorithms. Existing noise reduction techniques mostly
focus on removing noises, interferences, and unintended signals for a single device. New noise
reduction techniques and hardware designs are needed to deal with noise signals from multiple
devices and other domains. Since there are multi-domain signals from upper network layers,
multiple devices, and sensor fusions, new signal compression techniques are needed to remove
redundant and unrelated components for more efficient processing. Existing signal composition
techniques of WiFi sensing are mostly for combining only CSI from multiple devices. New schemes
are needed to integrate CSI with signals and information from other domains. It is also important
to balance signal compression and composition for efficient and effective WiFi sensing.

NewWiFi sensing algorithms are also required to take full advantage of multi-domain information
with time, spatial, and user dependence. New coordination algorithms are necessary for extracting
useful information from different domains. Since CSI has some unique properties such as low spatial
resolution and sensitive to environmental changes, it is crucial for WiFi sensing algorithms to be
robust in different scenarios. Most existing deep learning solutions of WiFi sensing reuse DNNs for
images and videos. It is necessary to find suitable DNN types and develop new DNNs specifically
designed for CSI data. For cross-sensor WiFi sensing, pre-trained DNNs for other sensors can be
used for automatic labeling of CSI data. Transfer learning, teacher-student network training, and
reinforcement learning can also be used to reduce network training efforts. WiFi sensing is very
easy to be used for malicious purposes, since WiFi signals can be passively transmitted through
walls and are not limited to lighting conditions. Generative Adversarial Networks (GANs) [25, 26]
can be used to generate fake WiFi signal patterns to prevent from malicious WiFi sensing.

7 CONCLUSION
This paper gives a survey of signal processing techniques, algorithms, applications, and performance
results of WiFi sensing with CSI. It presents the basic concepts, advantages, limitations and use
cases of the signal processing techniques and algorithms for different WiFi sensing applications.
The survey highlights three WiFi sensing challenges: robustness and generalization, privacy and
security, and coexistence of WiFi sensing and networking. Finally, the survey presents three future
trends: integrating cross-layer network stack, multi-device cooperation, and fusion of different
sensors, for improving existing WiFi sensing applications and enabling new sensing opportunities.
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