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ABSTRACT

In recent years, WiFi has a very rapid growth due to its high throughput, high
efficiency, and low costs. Multiple-Input Multiple-Output (MIMO) and
Orthogonal Frequency-Division Multiplexing (OFDM) are two key technologies for
providing high throughput and efficiency for WiFi systems. MIMO-OFDM
provides Channel State Information (CSI) which represents the amplitude
attenuation and phase shift of each transmit-receiver antenna pair of each carrier
frequency. CSI helps WiFi achieve high throughput to meet the growing demands
of wireless data traffic. CSI captures how wireless signals travel through the
surrounding environment, so it can also be used for wireless sensing purposes. This
dissertation presents how to improve WiFi sensing and networking with CSI. More
specifically, this dissertation proposes deep learning models to improve the
performance and capability of WiFi sensing and presents network protocols to
reduce CSI feedback overhead for high efficiency WiFi networking.

For WiFi sensing, there are many wireless sensing applications using CSI as input
in recent years. To get a better understanding of existing WiFi sensing
technologies and future WiFi sensing trends, this dissertation presents a survey of
signal processing techniques, algorithms, applications, performance results,
challenges, and future trends of CSI-based WiFi sensing. CSI is widely used for
gesture recognition and sign language recognition. Existing methods for
WiFi-based sign language recognition have low accuracy and high costs when there
are more than 200 sign gestures. The dissertation presents SignFi for sign
language recognition using CSI and Convolutional Neural Networks (CNNs).
SignFi provides high accuracy and low costs for run-time testing for 276 sign
gestures in the lab and home environments.

For WiFi networking, although CSI provides high throughput for WiFi networks,
it also introduces high overhead. WiFi transmitters need CSI feedback for transmit
beamforming and rate adaptation. The size of CSI packets is very large and it
grows very fast with respect to the number of antennas and channel width. CSI
feedback introduces high overhead which reduces the performance and efficiency of
WiFi systems, especially mobile and hand-held WiFi devices. This dissertation
presents RoFi to reduce CSI feedback overhead based on the mobility status of
WiFi receivers. CSI feedback compression reduces overhead, but WiFi receivers
still need to send CSI feedback to the WiFi transmitter. The dissertation presents
EliMO for eliminating CSI feedback without sacrificing beamforming gains.
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Chapter 1

Introduction

WiFi1 has a very rapid growth with the increasing popularity of wireless devices.

Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency-Division Multiplex-

ing (OFDM) are two of the most important technologies for the success of WiFi. MIMO-

OFDM provides Channel State Information (CSI) which represents how wireless signals

propagate from transmit antennas to receive antennas at certain carrier frequencies. CSI

helps WiFi achieve high throughput to meet the growing demands of wireless data traffic.

CSI captures how wireless signals travel through the surrounding environment, so it can

also be used for wireless sensing purposes. This dissertation presents how to improve WiFi

sensing and networking with CSI.

In recent years, there are many wireless sensing applications using CSI as the input.

This dissertation first presents a survey on what and how to sense with CSI. The survey

gives a comprehensive review of the signal processing techniques, algorithms, applications,

and performance results of WiFi sensing. WiFi sensing applications are grouped into three

categories: detection, recognition, and estimation, depending on whether the outputs are

binary/multi-class classifications or numerical values. The dissertation then investigates

one particular WiFi sensing application in the recognition category, i.e., sign language

recognition. There are many existing papers using CSI for gesture recognition. However,

1This dissertation uses WiFi and Wi-Fi interchangeably.
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existing recognition algorithms have low accuracy and high costs when there are nearly

300 sign language gestures. To address this challenge, we propose a deep learning solution

for accurate and fast sign language recognition using CSI.

For WiFi networking, CSI enables beamforming to improve Signal-to-Noise Ratio

(SNR) and throughput. Beamforming uses CSI to control the phase and amplitude of

transmit signals for directional and/or multi-user signal transmissions. CSI can also be

used for combating multi-path and frequency-selective fading effects to accurately pre-

dict Packet Delivery Ratio (PDR) and select the best transmission strategies [50, 46].

However, CSI introduces high feedback overhead that decreases the performance and ef-

ficiency of WiFi systems. It is crucial to eliminate unnecessary CSI feedback, especially

for battery-powered devices. There are some existing methods on CSI feedback compres-

sion [57, 195, 162, 126], but they are not optimized for smart devices and still introduce

high computation and communication costs for WiFi receivers. This dissertation first

presents RoFi to reduce CSI feedback based on the mobility status of WiFi receivers.

RoFi reduces 20% CSI feedback overhead for rotating WiFi receivers. RoFi requires WiFi

receivers to measure CSI and calculate when to send CSI and how much CSI to send.

To address this issue, the dissertation presents EliMO to eliminate CSI feedback. EliMO

significantly reduces the computation and communication overhead for WiFi receivers.

This dissertation proposes deep learning models to improve the performance and capa-

bility of WiFi sensing and presents network protocols to reduce CSI feedback overhead for

high efficiency WiFi networking. In the following, the dissertation presents the problem

statements on improving WiFi sensing and networking with CSI. It also summarizes the

contributions of each project for answering the corresponding problem statements.

1.1 Problem Statements and Contributions

1.1.1 Channel State Information for WiFi Sensing

What and how to sense with Channel State Information in literatures?
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CSI represents how wireless signals propagate from the transmitter to the receiver at

certain carrier frequencies. The CSI amplitude and phase are impacted by the surrounding

environment and nearby humans, so CSI can be used for wireless sensing purposes. In

recent years, there are many papers on CSI-based sensing applications. To get a better

understanding of existing WiFi sensing applications and future WiFi sensing trends, we

need to know what and how to sense with CSI in literatures.

To answer this question, §2 gives a survey on WiFi sensing with CSI. It summaries

the signal processing techniques, algorithms, applications, challenges, and future trends

for WiFi sensing. In summary, we make the following contributions:

• We give a comprehensive review of the basic principles, performance/cost compar-

isons, and best practice guidelines of the signal processing techniques and algorithms

of WiFi sensing in three categories: detection, recognition, and estimation.

• We present the future trends, including cross-layer network stack, multi-device co-

operation, and multi-sensor fusion, for improving the performance and efficiency of

existing WiFi sensing applications and enabling new WiFi sensing opportunities.

How to recognize sign language gestures with Channel State Information?

There are many papers using CSI to recognize hand [118, 2, 100, 144, 154, 136] and

finger [79, 146, 219, 100] gestures. WiFi signals are used to recognize ASL gestures in [136,

79, 100], but they are only evaluated on simple ASL gestures: 5 hand gestures in [136],

9 finger postures in [79], and 25 hand/finger gestures in [100]. The problem is how to

recognize nearly 300 basic sign gestures that are frequently used in daily life.

§3 presents SignFi to answer this question. We first show that existing recognition

algorithms, e.g., k-Nearest Neighbor (kNN) and Dynamic Time Wrapping (DTW), have

low accuracy and high costs when there are nearly 300 sign gestures. We propose SignFi

with a 9-layer Convolutional Neural Network (CNN) to provide high accuracy and low

inference costs. In summary, we make the following contributions:
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• We propose a new signal processing technique to remove noises from raw CSI mea-

surements. The information of CSI change patterns is recovered.

• We present a 9-layer Convolutional Neural Network for accurate and fast sign gesture

recognition using WiFi signals.

• The accuracy of SignFi is 94% for 8,280 instances of 276 sign gestures from lab and

home environments and 86.66% for 7,500 instances of 150 sign gestures from 5 users.

1.1.2 Channel State Information for WiFi Networking

How to reduce Channel State Information feedback for WiFi?

CSI provides high SNR and throughput for WiFi networks, but it also introduces

high overhead, especially for mobile and handheld devices. WiFi transmitters need CSI

feedback to calculate the beamforming matrix and select the best transmission strategies.

The transmission time for data packets is dramatically sacrificed for sending CSI and

control packets. So the problem is how to reduce CSI feedback for WiFi devices.

§5 presents RoFi, rotation-aware WiFi channel feedback, to reduce CSI feedback for

WiFi receivers. RoFi recognizes the mobility status of WiFi receivers and sends CSI

feedback only when it is necessary. In summary, we make the following contributions:

• We run experiments to show that WiFi transmitters have different CSI feedback

requirements when WiFi receivers are in different mobility statuses.

• We show the failure of existing metrics in distinguishing rotation from other mobility

scenarios. We propose a new metric to detect the mobility status of WiFi receivers.

• We present rotation-aware CSI feedback to reduce CSI feedback with negligible SNR

decrease. It improves the performance and efficiency of WiFi receivers.

How to eliminate Channel State Information feedback for WiFi?

There are some existing methods on reducing CSI feedback overhead [57, 195, 162,

126], but they are not optimized for smart devices and still introduce high computation
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and communication costs for MIMO receivers. WiFi transmitters can use implicit CSI

feedback, which uses the transpose of uplink CSI as the downlink CSI, to reduce feedback

overhead [61]. But it has very low beamforming gains, since real-world MIMO channels

are not reciprocal due to baseband-to-baseband channels and interferences [61, 114]. So

the problem is how to eliminate CSI feedback without sacrificing beamforming gains.

Chapter 6 presents EliMO to address this issue. It uses two-way CSI estimation to

accurately estimate downlink CSI without explicit CSI feedback. Based on theoretical

analysis and experiment measurements, EliMO provides as low overhead as implicit CSI

feedback and as high SNR as explicit CSI feedback. It significantly reduces the com-

putation and communication overhead for MIMO receivers. In summary, we make the

following contributions.

• We present two-way channel estimation allowing the AP to accurately estimate

downlink CSI without explicit CSI feedback.

• We propose Feedback Training Field to completely eliminate CSI feedback without

sacrificing beamforming gains.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. For WiFi sensing, §2 presents a

survey on WiFi sensing in terms of signals processing techniques, algorithms, applications,

challenges, and future trends, §3 presents a sign language recognition design using WiFi

CSI and deep neural networks, and §4 presents a deep learning solution with neural net-

works and reinforcement learning for person and location independent activity recognition

with WiFi. For WiFi networking, §5 presents how to reduce CSI feedback based on the

mobility status of WiFi receivers, and §6 presents how to eliminate CSI feedback for WiFi

receivers by estimating both downlink and uplink CSI at WiFi transmitters. Finally, §7

presents future works and concludes the dissertation.
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Chapter 2

WiFi Sensing with Channel State

Information: A Survey

2.1 Introduction

WiFi has a very rapid growth with the increasing popularity of wireless devices. One

important technology for the success of WiFi is Multiple-Input Multiple-Output (MIMO),

which provides high throughput to meet the growing demands of wireless data traffic.

Along with Orthogonal Frequency-Division Multiplexing (OFDM), MIMO provides Chan-

nel State Information (CSI) for each transmit and receive antenna pair at each carrier

frequency. Recently, CSI measurements from WiFi systems are used for different sensing

purposes. WiFi sensing reuses the infrastructure that is used for wireless communication,

so it is easy to deploy and has low cost. Moreover, unlike sensor-based and video-based

solutions, WiFi sensing is not intrusive or sensitive to lighting conditions.

CSI represents how wireless signals propagate from the transmitter to the receiver

at certain carrier frequencies along multiple paths. For a WiFi system with MIMO-

OFDM, CSI is a 3D matrix of complex values representing the amplitude attenuation

and phase shift of multi-path WiFi channels. A time series of CSI measurements cap-

tures how wireless signals travel through surrounding objects and humans in time, fre-
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quency, and spatial domains, so it can be used for different wireless sensing applica-

tions. For example, CSI amplitude variations in the time domain have different patterns

for different humans, activities, gestures, etc., which can be used for human presence

detection [3, 230, 193, 229, 121, 119, 233, 184, 109, 140, 186, 39], fall detection [157,

110, 52, 214, 216], motion detection [42, 87, 38, 81, 202], activity recognition [6, 23,

27, 30, 33, 43, 158, 165, 166, 173, 170, 176, 189, 211, 25, 192, 29, 96], gesture recogni-

tion [123, 203, 213, 2, 3, 53, 118, 146, 154, 219, 228, 95, 79, 100, 136, 4, 5, 78, 80], and

human identification/authentication [16, 17, 54, 164, 198, 212, 218, 85, 86, 137, 163, 190].

CSI phase shifts in the spatial and frequency domains, i.e., transmit/receive antennas and

carrier frequencies, are related to signal transmission delay and direction, which can be

used for human localization and tracking [229, 159, 82, 120, 122, 178, 112, 58, 154, 207,

68, 72, 187, 215, 96, 164, 202, 208, 144, 216]. CSI phase shifts in the time domain may

have different dominant frequency components which can be used to estimate breathing

rate [217, 93, 1, 161, 169, 90]. Different WiFi sensing applications have their specific re-

quirements of signal processing techniques and classification/estimation algorithms. To

get a better understanding of existing WiFi sensing technologies and gain insights into

future WiFi sensing directions, this survey gives a review of the signal processing tech-

niques, algorithms, applications, performance results, challenges, and future trends of

WiFi sensing with CSI.

The overview of the survey is shown in Fig. 2.1. The background of CSI, including

mathematical models, measurement procedures, real-world WiFi models, basic processing

principles, and experiment platforms, is presented in §2.3. Raw CSI measurements are

fed to the signal processing module for noise reduction, signal transform, and/or signal

extraction, as shown in §2.4. Pre-processed CSI traces are fed to modeling-based, learning-

based, or hybrid algorithms to get the output for different WiFi sensing purposes, as

shown in §2.5. Depending on the output types, WiFi sensing can be grouped into three

categories: detection/recognition applications try to solve binary/multi-class classification

problems, and estimation applications try to get the quantity values of different tasks. §2.6
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Figure 2.1: Overview of WiFi sensing and paper organization.

summaries and compares the signal processing techniques, algorithms, output types, and

performance results of different WiFi sensing applications. With the development and

deployment of new WiFi systems, there will be more WiFi sensing opportunities. §2.7

gives the future trends and challenges for enhancing existing WiFi sensing capabilities and

enabling new WiFi sensing purposes. In summary, we make the following contributions:

• We give a comprehensive review of the basic principles, performance/cost compar-

isons, and best practice guidelines of the signal processing techniques and algorithms

of WiFi sensing in three categories: detection, recognition, and estimation.

• We present the future trends, including cross-layer network stack, multi-device co-

operation, and multi-sensor fusion, for improving the performance and efficiency of

existing WiFi sensing applications and enabling new WiFi sensing opportunities.
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2.2 Related Work

Table 2.1: Summary of related surveys on WiFi sensing.

Reference Application Scope Topic Focus

E. Wengrowski [180]

device-free localization,
pose estimation, fall detec-
tion

approaches: Line-of-Sight sen-
sors, Radio Tomographic Imag-
ing, Through-wall RF tracking

J. Xiao et al. [194]
device-free and device-based
indoor localization

models, basic principles, and data
fusion techniques

Z. Yang et al. [204]

CSI-based and RSSI-based
localization

basic principles and future trends;
differences between CSI-based
and RSSI-based solutions

S.-K. Kim [73]
motion recognition and hu-
man identification

big data analysis

D. Wu et al. [186]
human sensing pattern-based and model-based

approaches

Y. Zou et al. [238]
human behavior recognition data-driven and model-based ap-

proaches

Z. Wang et al. [174] human behavior recognition basics and applications

S. Yousefi et al. [205] human behavior recognition deep learning techniques

This survey

All the above applications
and other detection, recog-
nition, and estimation appli-
cations

signal processing techniques,
modeling-/learning-based algo-
rithms, applications, performance
results, challenges, future trends

There are some surveys on specific types of WiFi sensing applications, including local-

ization [194, 204, 180], gesture recognition [180], and activity recognition [238, 174, 180,

73, 186, 205]. In [180], the author explores device-free human localization using wireless

signal reflections; the survey also discusses device-free pose estimation and fall detection.

Xiao et al. [194] give a survey on both device-free and device-based indoor localization

using wireless signals; the survey focuses on the models, basic principles, and data fu-

sion techniques. Yang et al. [204] present a survey on CSI-based localization with an

emphasis on the basic principles and future trends; the survey also highlights the dif-

ferences between CSI and RSSI in terms of network layering, time resolution, frequency

resolution, stability, and accessibility. In [73], the author gives a brief review on human
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motion recognition and human identification using CSI and big data analysis. Each of the

four papers [238, 174, 186, 205] gives a survey on CSI-based human behavior recognition

with their specific emphasis: basics and applications [174], deep learning techniques [205],

data-driven and model-based approaches [238], and pattern-based and model-based ap-

proaches [186].

This survey is different from existing ones in that its scope is not limited to any spe-

cific type of WiFi sensing applications, as summarized in Table 2.1. The application scope

of this survey includes but is not limited to human detection, motion detection, activity

recognition, gesture recognition, human tracking, respiration estimation, human counting,

and sleeping monitoring. The survey gives a comprehensive summary and comparison

of the signal processing techniques, algorithms, and performance results of a wide vari-

ety of WiFi sensing applications. Signals processing techniques are classified into three

groups: noise reduction, signal transform, and signal extraction. WiFi sensing algorithms

are grouped into modeling-based and learning-based algorithms with their specific ad-

vantages and limitations. It also gives a guidance of how to select the algorithms and

the corresponding signal processing techniques for different WiFi sensing applications. Fi-

nally, the survey presents future trends and challenges for enhancing existing WiFi sensing

capabilities and enabling new WiFi sensing opportunities.

2.3 Background

CSI characterizes how wireless signals propagate from the transmitter to the receiver

at certain carrier frequencies. CSI amplitude and phase are impacted by multi-path effects

including amplitude attenuation and phase shift. Each CSI entry represents the Channel

Frequency Response (CFR)

H(f ; t) =
∑N

n
an(t)e−j2πfτn(t), (2.1)
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where ai(t) is the amplitude attenuation factor, τi(t) is the propagation delay, and f is

the carrier frequency [148]. The CSI amplitude |H| and phase ∠H are impacted by the

displacements and movements of the transmitter, receiver, and surrounding objects and

humans. In other words, CSI captures the wireless characteristics of the nearby envi-

ronment. These characteristics, assisted by mathematical modeling or machine learning

algorithms, can be used for different sensing applications. This is the rationale for why

CSI can be used for WiFi sensing.

A WiFi channel with MIMO is divided into multiple subcarriers by OFDM. To measure

CSI, the WiFi transmitter sends Long Training Symbols (LTFs), which contain pre-defined

symbols for each subcarrier, in the packet preamble. When LTFs are received, the WiFi

receiver estimates the CSI matrix using the received signals and the original LTFs. For

each subcarrier, the WiFi channel is modeled by y = Hx+n, where y is the received signal,

x is the transmitted signal, H is the CSI matrix, and n is the noise vector. The receiver

estimates the CSI matrix H using the pre-defined signal x and received signal y after

receive processing such as removing cyclic prefix, demapping, and OFDM demodulation.

The estimated CSI is a three dimensional matrix of complex values.

In real-world WiFi systems, the measured CSI is impacted by multi-path channels,

transmit/receive processing, and hardware/software errors. The measured baseband-to-

baseband CSI is

Hi,j,k =

(∑N

n
ane
−j2πdi,j,nfk/c

)
︸ ︷︷ ︸

Multi-Path Channel

e−j2πτifk︸ ︷︷ ︸
Cyclic Shift

Diversity

e−j2πρfk︸ ︷︷ ︸
Sampling

Time Offset

e−j2πη(f ′k/fk−1)fk︸ ︷︷ ︸
Sampling

Frequency Offset

qi,je
−j2πζi,j ,︸ ︷︷ ︸

Beamforming

(2.2)

where di,j,n is the path length from the i-th transmit antenna to the j-th receive antenna

of the n-th path, fk is the carrier frequency, τi is the time delay from Cyclic Shift Di-

versity (CSD) of the i-th transmit antenna, ρ is the Sampling Time Offset (STO), η is

the Sampling Frequency Offset (SFO), and qi,j and ζi,j are the amplitude attenuation
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and phase shift of the beamforming matrix. WiFi sensing applications need to extract

the multi-path channel that contains the information of how the surrounding environment

changes. Therefore, signal processing techniques are needed to remove the impact of CSD,

STO, SFO, and beamforming, which is introduced in §2.4.

Figure 2.2: The 4D CSI tensor is a time series of CSI matrices of MIMO-OFDM chan-
nels. It captures multi-path channel variations, including amplitude attenuation and phase
shifts, in spatial, frequency, and time domains.

A time series of CSI matrices characterizes MIMO channel variations in time, fre-

quency, and spatial domains, as shown in Fig. 2.2. For a MIMO-OFDM channel with

M transmit antennas, N receive antennas, and K subcarriers, the CSI matrix is a 3D

matrix H ∈ CN×M×K representing amplitude attenuation and phase shift of multi-path

channels. CSI provides more information than Received Signal Strength Indicator (RSSI).

The 3D CSI matrix is similar to a digital image with spatial resolution of N ×M and K

color channels, so CSI-based WiFi sensing can reuse the signal processing techniques and

algorithms designed for computer vision tasks. The 4D CSI tensor provides additional

information in the time domain. CSI can be processed, modeled, and trained in different

domains for different WiFi sensing purposes, e.g., detection, recognition, and estimation.

Although CSI is included in WiFi since IEEE 802.11n, it is not reported by all off-

the-shelf WiFi cards. The 802.11n CSI Tool [51] is the most widely used tool for CSI

measurements. It uses Intel 5300 WiFi cards to report compressed CSIs by 802.11n-

compatible WiFi networks. It provides C scripts and MATLAB source code for CSI

measurements and processing. OpenRF [76] is a similar tool modified based on the 802.11n

13



CSI Tool. The Atheros CSI Tool [196] gives uncompressed CSIs using Qualcomm Atheros

WiFi cards. For a 20MHz WiFi channel, the number of CSI subcarriers is 52 for the

Atheros CSI Tool and 30 for the 802.11n CSI Tool. Both 802.11n CSI Tool and Atheros

CSI Tool can operate at 2.4GHz and 5GHz. Software Defined Radio (SDR) platforms, such

as Universal Software Radio Peripheral (USRP) [149] and Wireless Open Access Research

Platform (WARP) [129], provide CSI measurements at 2.4GHz, 5GHz, and 60GHz.

2.4 Signal Processing of WiFi Sensing

This section presents signal processing techniques, including noise reduction, signal

transform, and signal extraction, for WiFi sensing.

2.4.1 Noise Reduction

Raw CSI measurements contain noises and outliers that could reduce WiFi sensing

performance. Table 2.2 gives a summary of noise reduction techniques for WiFi sensing.

Table 2.2: Noise reduction techniques for WiFi sensing.

Phase
Offsets
Removal

Removing phase offsets, e.g., Sampling Time/Frequency Offset,
Carrier Frequency Offset, Cross-Device Synchronization Errors,
Packet Detection Delay, etc., by phase difference [87, 81, 188, 192,
169, 168, 44] and (multiple) linear regression [75, 95].

Outliers
Removal

Removing outliers and noises by Moving Average [193, 52, 7, 113,
43, 219, 79, 16, 207, 88, 93, 156], Median Filter [216, 227, 158, 192,
136, 17, 135], Low Pass Filter [4, 5, 183, 170, 29, 192, 96, 79, 100,
136, 135, 17], Wavelet Filter [89, 90, 161, 233, 110, 189, 203, 2, 53,
146], Hampel Filter [121, 119, 184, 233, 89, 90, 113, 222, 223, 66, 79,
16, 88, 93, 156, 168, 169], Local Outlier Factor [52, 113, 173, 203, 53],
Signal Nulling [3, 32, 188, 68, 55], etc.

Phase Offsets Removal. In real-world WiFi systems, raw CSI measurements contain

phase offsets due to hardware and software errors. For example, Sampling Time/Frequency

Offsets (STO/SFO) are due to unsynchronized sampling clocks/frequencies of the receiver
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and transmitter. Some detection and recognition applications are not very sensitive to

phase offsets. It is more important to get CSI change patterns. A simple solution is to use

CSI phase differences of adjacent time samples or subcarriers. It cancels CSI phase offsets

with the assumption that phase offsets are the same across packets and subcarriers. It

does not give accurate phases but can recover phase change patterns which can be fed to

classification algorithms.

Many estimation applications require accurate phase shifts. Phase offsets introduce

estimation errors for Angle-of-Arrival (AoA) and Time-of-Flight (ToF), which are used

to track and localize humans and objects. SpotFi [75] removes STO/SFO by linear re-

gression, but it does not consider different phase shifts of different transmit antennas due

to CSD. This is addressed by multiple linear regression proposed in SignFi [95]. From

equation (2.2), the measured CSI phase is

Θi,j,k = Φi,j,k + 2πfδk
(
τi + ρ+ η

(
f ′k/fk − 1

))
+ 2πζi,j , (2.3)

where Φi,j,k is the CSI phase caused by multi-path effects, τi, ρ, η, and ζi,j are the phase

offsets caused by CSD, STO, SFO, and beamforming, respectively, and fδ is the frequency

spacing of two consecutive subcarriers. The phase offsets are estimated by minimizing the

fitting errors across K subcarriers, N transmit antennas, and M receive antennas

τ̂ , ω̂, β̂ = arg min
τ,ω,β

∑
i,j,k

(Θi,j,k + 2πfδk (iτ + ω) + β)2 , (2.4)

where η, ω and β are the curve fitting variables [95]. As shown in Fig. 2.3a, the unwrapped

CSI phases of each transmit antenna have different slopes caused by CSD. Pre-processed

CSI phases Φ̂i,j,k are obtained by removing the estimated phase offsets, τ̂ , ω̂, β̂, from the

measured CSI phases Θi,j,k.

Phase offset removal also improves performance for binary and multi-class classification

applications. It recovers CSI phase patterns over subcarriers and sampling time. The
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Figure 2.3: Raw CSI measurements do not capture how CSI phases change over subcar-
riers and sampling time.

raw measured CSI phases give redundant information about how CSI phases change.

Phase offset removal unwraps CSI phases and recovers the lost information. As shown

in Fig. 2.3a, raw CSI phases change periodically from −π to π, while pre-processed CSI

phases change nearly linearly in a wider range. CSI phase variations over time are also

corrected. As shown in Fig. 2.3b, raw CSI phases of the first and second transmitting

antenna change similarly, but they have very different patterns after pre-processing.

Outliers Removal. Moving Average and Median Filters are simple and widely used

methods to remove high frequency noises. Each data point is replaced by the average or

median of neighboring data points. Usually a sliding window and multiplying factors are

used to give different weights, e.g., Weighted Moving Average (WMA) and Exponentially

Weighted Moving Average (EWMA). Low Pass Filters (LPF) can also remove high fre-

quency noises assisted by signal transform methods, e.g., Fast Fourier Transform (FFT).

Wavelet Filter is similar to LPFs; the major difference is that it uses Discrete Wavelet

Transform (DWT) instead of FFT. Details of signal transform methods and frequency-

domain filters are introduced in §2.4.2 and 2.4.3.

The Hampel Filter computes the median mi and standard deviation σi of a window

of nearby data points. If |xi −mi|/σi is larger than a given threshold, the current point
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xi is identified as an outlier and replaced with the median mi. Sometimes the outliers

are dropped rather than being replaced by the medians. Local Outlier Factor (LOF) is

widely used in anomaly detection. It measures the local density of a given data point with

respect to its neighbors. The local density is calculated by the reachability distance from

a certain point to its neighbors. The data points with a significantly lower local density

than their neighbors are marked as outliers. Signal Nulling is a special method for WiFi

sensing to remove outliers. WiFi devices can used hardware, e.g., directional antennas,

and software, e.g., transmit beamforming, algorithms for canceling noise signals.

2.4.2 Signal Transform

Signal transform methods are used for time-frequency analysis of a time series of

CSI measurements. Note that the signal transform output in this scope represents the

frequency of CSI change patterns rather than the carrier frequency. The summary of

signal transform methods is shown in Table 2.3.

Table 2.3: Signal transform techniques for WiFi sensing.

Fast Fourier
Transform

X[k] =
∑N

n=1 x[n]e−j2πkn/N ; k: frequency index. [202, 66,
158, 192, 2, 118, 219, 136, 16, 212, 137, 187, 1, 27, 88, 168,
44, 55]

Short Time
Fourier Trans-
form

X(t, k) =
∑∞

n=−∞ x[n]w[n− t]e−jkn; t: time index, k: fre-
quency index, w: window function. [110, 157, 227, 203, 123,
153, 16, 164, 122, 120, 208]

Discrete Hilbert
Transform

H[ω] = X[ω] · (−j · sgn(ω)); ω: frequency index, X[·]: Fast
Fourier Transform, sgn(·): sign function. [227, 207]

Discrete
Wavelet
Transform

approximation coefficients: y1,low[n] =↓Q[
∑∞

k=−∞ x[k]g[n−
k]], detail coefficients: y1,high[n] =↓Q[

∑∞
k=−∞ x[k]h[n−k]];

↓Q[·]: downsampling filter, g[n]: low pass filter, h[n]: high
pass filter. [233, 110, 202, 90, 4, 5, 165, 166, 189, 203, 155,
2, 146, 154, 79, 78, 80, 198, 202, 1, 89, 161, 168]

FFT is widely used to find the distinct dominant frequencies and can be combined

with a LPF to remove high frequency noises. It can also get the target signals in certain
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frequencies with Band Pass Filters (BPF). For example, a time series of CSIs has different

dominant frequencies when a nearby person is static or moving. FFT and BPFs can be

used for human motion detection and breathing estimation, as shown in §2.4.3. Short-

Time Fourier Transform (STFT) divides the input into shorter segments of equal length

and computes the FFT coefficients separately on each segment, as shown in Table 2.3.

STFT can identify the change of dominant frequencies over time by representing the time

series data in both time and frequency domains. DHT adds an additional phase shift of

π/2 to the negative frequency components of FFT, as shown in Table 2.3. It converts

a time series of real-valued data to its analytic representation, i.e., a complex helical

sequence. DHT is useful for analyzing the instantaneous attributes of a time series of CSI

measurements.

STFT has no guarantee of good frequency resolution and time resolution simultane-

ously. A long window length gives good frequency resolution but poor time resolution.

The frequency components can be easily identified but the time of frequency changes can-

not be located. On the other hand, a short window length allows to detect when the

signals change but cannot precisely identify the frequencies of the input signals. Wavelet

Transform gives both good frequency resolution for low-frequency signals and good time

resolution for high-frequency signals. The output of DWT can be fed to a wavelet filter

to remove noises. DWT preserves mobility information in different scenarios and is more

robust than Doppler phase shift [165, 166].

2.4.3 Signal Extraction

Signal extraction is for extracting target signals from raw or pre-processed CSI mea-

surements. Sometimes it needs thresholding, filtering, or signal compression to remove

unrelated or redundant signals. In some cases, it requires composition of multiple signal

sources and data interpolation to get more information. Table 2.4 shows signal extraction

methods widely used for WiFi sensing.

Filtering and Thresholding. High, low, and band pass filters are widely used
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Table 2.4: Signal extraction techniques for WiFi sensing.

Thresholding
and
Filtering

Excluding signals with certain frequencies, power levels, etc., by
filtering [214, 42, 30, 6, 27, 43, 158, 78, 80, 16, 164, 198, 44, 157,
81, 202, 227, 211, 123, 177, 118, 228, 137, 122, 120, 1, 88, 135] or
thresholding [110, 157, 216, 42, 7, 85, 86, 222, 223, 30, 185, 231,
27, 43, 66, 165, 166, 170, 192, 123, 2, 153, 154, 219, 78, 80, 16,
164, 198, 159, 82, 68, 207, 187, 144, 178, 1, 88, 135, 156, 161, 168,
169, 172, 171, 235]; separating signals into different domains,
e.g., direct/reflected paths and LoS/NLoS paths [82, 178].

Signal
Compression

Removing unrelated/redundant signals by dimension reduction
such as PCA [109, 229, 233, 110, 202, 4, 5, 32, 113, 227, 232,
27, 165, 166, 29, 192, 123, 146, 153, 154, 79, 78, 80, 164, 198,
229, 122, 120, 207], ICA [108, 54], SVD [89, 90, 32, 190], etc., or
metrics such as self/cross correlation [39, 222, 223, 66, 190, 187,
184, 144], Euclidean distance [24, 42, 7, 67, 188], distribution
function [27], etc.

Signal
Composition

Composition of signals from multiple devices [75, 89, 90, 170,
211, 203, 136, 144, 92, 161, 191, 55], carrier frequencies [215,
150, 196], etc.

to extract signals with certain dominant frequencies. For example, the average resting

respiration rates of adults are from 12 to 18 breaths per minute. WiFi-based respiration

monitoring can use a BPF to capture the impact of chest movements caused by inhalation

and exhalation. It can also filter out high-frequency components caused by motions. The

input signals for filtering are usually from FFT, DHT, or STFT. Butterworth pass filters

are widely used due to its monotonic amplitude response in both passband and stopband

and quick roll-off around the cutoff frequency. High Pass Filters (HPFs) can be used to

filter out signals from static objects that have relatively stable signal reflections. WiFi-

based gesture recognition can use HPF to extract the target signals reflected by human

movements, as shown in Fig. 2.4. Combined with DWT, wavelet filters are also used for

outliers removal.

In the time domain, thresholding can be used to extract signals with certain power

levels, AoAs, ToFs, etc. As shown in equation (2.1), CSI is impacted by wireless signals
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Figure 2.5: Thresholding of RSS and CSI amplitudes for extracting gesture signals. The
user makes three sign language gestures during time 1 to 4 seconds.

from multi-path channels. Device-free human tracking can exclude signals of the direct

path by cutting off signals with the shortest ToF. The ToFs of different paths can be

calculated by Power Delay Profile (PDP), which is shown in §2.5.1. WiFi-based gesture

recognition can use thresholding to exclude signals when the user is not making gestures.

As shown in Fig. 2.5a, when the user is making gestures, the RSS of TX3 are higher than

that when the user is static. The CSI amplitudes are also in different ranges when the

user is making gestures, as shown in Fig. 2.5b. Thresholding of other metrics, e.g., CSI

cross correlation, can be used for signal compression.
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Signal Compression. Processing raw CSI measurements sometimes requires exten-

sive computation resources. For example, size(H) = 3×3×52×100×32/8 = 187200 bytes

for a 20MHz WiFi channel with 3TX/3RX, 52 subcarriers, and 100 CSI samples with each

value represented by 32 bits. Raw CSIs can be compressed by dimension reduction tech-

niques such as Principal/Independent Component Analysis (PCA/ICA), Singular Value

Decomposition (SVD), etc., or metrics such as self/cross correlation, Euclidean distance,

distribution function, etc. Signal compression can also remove redundant and unrelated

information from raw CSI measurements in different domains.

PCA and ICA are widely used for feature extraction and blind signal separation. PCA

uses an orthogonal transformation to convert a matrix to a set of principal components.

The input is assumed to be a set of possibly correlated variables and the principal compo-

nents are a set of linearly uncorrelated variables. PCA can be done by SVD or eigenvalue

decomposition of the covariance or correlation matrix of the input. ICA assumes that the

input signal is a mix of non-Gaussian components that are statistically independent. It

maximizes the statistical independence by minimizing mutual information or maximizing

non-Gaussianity, i.e., Kurtosis. Many PCA/ICA components can be discarded. For a

time series of CSI matrices, redundant measurements can be removed if adjacent samples

are highly correlated.

Signal Composition. Some WiFi sensing applications need CSIs from multiple de-

vices, carrier frequency bands, data packets, etc. For example, SpotFi [75] requires CSIs

from multiple WiFi devices and multiple data packets to accurately estimate AoAs and

ToFs for decimeter-level localization. Chronos [150] requires multiple frequency bands for

decimeter-level localization using a single WiFi AP. WiFi sensing algorithms using signal

composition are presented in §2.5.1.
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2.5 Algorithms of WiFi Sensing

This section presents modeling-based and learning-based algorithms for WiFi sensing.

A brief summary and some examples of WiFi sensing algorithms are shown in Table 2.5.

Table 2.5: Summary of WiFi sensing algorithms.

Model: Y = f(X), X: CSI measurements, Y : detection, recognition, or
estimation results

Algorithm: to find the mapping function f(·) to detect, recognize, or esti-
mate Y given X

Algorithm Type Examples

Modeling-based:
(1) modeling X by theoretical
models based on physical theo-
ries or statistical models based
on empirical measurements;
(2) inferring f(·) by the model
of X;
(3) predicting Y by the mod-
eled function f(·) and measure-
ments of X, sometimes assisted
by optimization algorithms.

Theoretical Models: Fresnel Zone Model,
Angle of Arrival/Departure, Time of Flight,
Amplitude Attenuation, Phase Shift, Doppler
Spread, Power Delay Profile, Multi-Path Fad-
ing, Radio Propagation: Reflection, Re-
fraction, Diffraction, Absorption, Polariza-
tion, Scattering; Statistical Models: Ri-
cian Fading, Power Spectral Density, Coher-
ence Time/Frequency, Self/Cross Correlation;
Algorithms: MUSIC, Thresholding, Peak/-
Valley Detection, Minimization/Maximization

Learning-based:
(1) Training: learning f(·) by
training samples of X ′ and Y ′;
(2) Inference: predicting Y by
the learned function f(·) and
measurements of X.

Learning Algorithms: Decision Tree, Naive
Bayes, Dynamic Time Wrapping, k Near-
est Neighbor, Support Vector Machine, Self-
Organizing Map, Hidden Markov Models, Con-
volutional/Recurrent Neural Network, Long
Short-Term Memory

Hybrid:
(1) modeling the problem by
Y = f(g(X));
(2) getting f(·) and g(·) by
modeling-based or learning-
based algorithms;
(3) predicting Y by the mod-
eled or learned function f(g(·))
and measurements of X.

g(·) by modeling-based algorithms → f(·)
by learning-based algorithms:
e.g., (1) extracting mobility data by Doppler
Spread → recognizing gestures by k Nearest
Neighbor [118];
e.g., (2) estimating position and orienta-
tion features by Channel Frequency Response
→ recognizing gestures by k Nearest Neigh-
bor [154]
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2.5.1 Modeling-Based Algorithms

Modeling-based algorithms are based on physical theories like the Fresnel Zone model,

or statistical models like the Rician fading model.

Theoretical Models. As shown in equation (2.1) in §2.3, CSI is a matrix of complex

values representing the CFR of multi-path MIMO channels. CSI amplitude attenuation

and phase shift are impacted by the distance between the transmitter and receiver and

the multi-path effects including radio reflection, refraction, diffraction, absorption, polar-

ization, and scattering. The amplitude attenuation of Free Space Propagation is

Pr/Pt = DtDr (λ/4πd)2 , d� λ, (2.5)

where Dt and Dr are the antenna directivity of the transmitter and receiver, respectively,

λ is the carrier wavelength, and d is the distance between the transmitter and receiver.

It models wireless signals traveling through free space by the LoS path. In real-world

scenarios, there are other objects and humans. According to equation (2.1), the phase

shift is impacted by the time delay of each path. Phase shift is also impacted by the

Doppler effect when either the transmitter or receiver moves with a speed lower than the

velocity of radio waves in the medium. The observed frequency is f = f0(c+ vr)/(c+ vt),

where vr and vt are the velocity of the receiver and transmitter, respectively, with respect

to the medium, c is the velocity of radio waves, and f0 is the original carrier frequency.

Doppler phase shift is an effective model for motion detection and speed estimation.

CSI amplitude and phase are impacted by radio waves from multiple paths rather

than a single path. The Fresnel Zone model divides the space between and around the

transmitter and receiver into concentric prolate ellipsoidal regions, or Fresnel zones. The

radius of the n-th Fresnel Zone is calculated as shown in Fig. 2.6. It shows how radio

signals propagate and deflect off objects within the Fresnel zone regions. The deflected

signals travel through multiple paths to the receiver. Depending on the path length and the

resulting amplitude attenuation and phase shift, the deflected signals lead to constructive
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Figure 2.7: Estimation of Angle-of-Arrival and Time-of-Flight by CSI.

AoAs and ToFs are two popular models for CSI-based tracking and localization. They

characterize the amplitude attenuation and phase shift of multi-path channels in terms of

directions and distances. AoAs and ToFs are estimated by the phase shift or time delay

from CSI measurements of an antenna array. The Multiple Signal Classification (MUSIC)

algorithm is widely used for estimating AoAs. It computes the Eigen value decomposition

of the covariance matrix from CSI [75]. AoAs are calculated based on the steering vectors

orthogonal to the Eigen vectors. Fig. 2.7a shows an example of MUSIC spectrum of

different AoAs. ToFs can be estimated by Power Delay Profile (PDP) which represents

the signal strength of multiple paths with different time delays. PDP is calculated by the

Inverse Fast Fourier Transform (IFFT) of CSI. The corresponding PDP of CSI H(f) is

h(t) =
∑N

n=1 αnδ(t− τn), where N is the number of paths, αn and τn are the attenuation
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and delay of the n-th path, respectively, and δ(·) is the impulse function. The norm of

h(t) is the signal strength of each path along which the signal arrives at the receiver with

time delay t, as shown in Fig. 2.7b.

Statistical Models. Statistical models rely on empirical measurements or probability

functions to characterize wireless channels. Rician fading is a stochastic model used by

some WiFi sensing applications. It is a simple model for multi-path channels with a

dominant path that is stronger than others. The received signal amplitude of a Rician

fading channel follows a Rice distribution with ν2 = KΩ/(1 +K) and σ2 = 2Ω/(1 +K),

where K is the ratio between the power in the direct path and the power in the other

scattered paths, and Ω is the total power, i.e., Ω = ν2 + 2σ2. CSI similarity is a widely

used metric for motion-related WiFi sensing applications. It is calculated by the cross

correlation of two CSI matrices [47]. Empirical measurements show that CSI similarity

is a good indicator of whether the WiFi device and surrounding objects are static or

moving [47]. Coherence time and coherence bandwidth, which represent the time duration

or bandwidth during which the CIR is coherent, can also be used to detect the mobility

status of WiFi devices.

Algorithms for Theoretical and Statistical Models. Threshold-based methods,

peak/valley detection, and clustering are widely used modeling-based algorithms for WiFi

sensing. Threshold-based methods are simple and effective for amplitude attenuation,

cross correlation and distance metrics, especially for detection applications. As shown

in Fig. 2.5, RSS and CSI amplitude are in different ranges when the user is making

gestures and when the user is static. Different CSI similarity thresholds can also be used

to determine the mobility status: if CSI similarity is less than 0.9, the WiFi device is

moving; if it is no less than 0.9 but less than 0.99, it is environmental mobility; otherwise,

it is static [47]. Threshold-based methods can also be used with other statistical metrics

such as variance, Mean Absolute Deviation (MAD), Power Spectral Density (PSD), etc.,

and distance metrics such as Dynamic Time Wrapping (DTW), Euclidean distance, Earth

Mover’s Distance (EMD), etc. Peak/valley detection is widely used for phase shift and
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Doppler Spread for WiFi-based respiration and moving speed estimation. In these cases,

CSI phases have periodic patterns, which can be detected by peak/valley detection or

frequency-domain analysis.
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Figure 2.8: Localization by CSIs from multiple WiFi devices and frequency bands. Real-
world applications need more than three WiFi devices, assisted by clustering or majority
vote, to mitigate noises and estimation errors.

For WiFi sensing using AoAs and ToFs, it usually requires CSI measurements from

multiple devices, frequency bands or data packets. SpotFi [75] uses AoAs and ToFs from

multiple WiFi APs to localize the target, as shown in Fig. 2.8a and 2.8b. It also measures

CSIs by multiple data packets to mitigate the impact of noises and estimation errors.

Gaussian mean clustering is used to identify AoAs and ToFs from the same path but

different packets. The assumption is that the direct path has the smallest ToF, so a large

ToF means a low likelihood to be the direct path. SpotFi selects the path with the highest

likelihood as the direct path. Chronos [150] achieves decimeter-level localization with a

single WiFi AP. It estimates ToFs from multiple frequency bands such that it does not

require multiple WiFi devices. As shown in Fig. 2.8c, a single frequency band gives a

set of potential ToFs. The true ToF is identified by the Least Common Multiple (LCM)

algorithm.

2.5.2 Learning-Based Algorithms

Binary and multi-class classification applications usually use learning-based algorithms.

These algorithms try to learn the mapping function using training samples of CSI mea-
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surements and the corresponding ground truth labels.

Shallow Learning Algorithms. Similar to threshold-based methods, Decision Tree

(DT) learning tries to find a branching rule to predict the target classes. The difference is

that the branching rule of DT is learned from training data instead of hand-crafted. Naive

Bayes is another technique for constructing simple and lightweight classifiers based on the

Bayes’ theorem. A Bayesian network is a probabilistic graphical model that represents the

instances and their conditional dependencies b a Directed Acyclic Graph (DAG). Another

widely used statistical algorithm is Hidden Markov Model (HMM) which can be regraded

as the simplest dynamic Bayesian network. HMM represents the classification problem as

a Markov process wherein the true states are hidden.

Instance-based learning algorithms, such as k Nearest Neighbor (kNN), Support Vec-

tor Machine (SVM), and Self-Organizing Map (SOM), are widely used for detection and

recognition applications. These algorithms compute the distance between each testing

sample and every training samples. For kNN, the testing sample is classified by the ma-

jority vote of the ground truth labels of its k nearest neighbors. SVM separates data points

by a set of hyperplanes in a high dimensional space to maximize the functional margin,

i.e., the distance to the nearest training data points of any class. SOM represents training

samples in a low dimensional space. It is a type of neural networks using competitive

learning instead of backpropagation with gradient descent as the optimization algorithm.

A distance metric, such as Euclidean and Hamming distance, is needed for instance-based

learning algorithms. Dynamic Time Wrapping (DTW) and data interpolation are widely

used when the input is a time series of CSIs with different time durations or number of

samples.

The input for shallow learning algorithms could be raw CSIs, pre-processed CSIs, or

feature vectors. Since raw CSIs are usually too large and noisy, they rarely serve as the

input. Pre-processed CSIs could be the filtered components of CSIs after signal transform

techniques such as FFT, STFT, DWT, etc. The output of thresholding and subcarrier

selection could also be the input of learning algorithms. Pre-processing helps remove
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noises and reduce the input size. Sometimes pre-processed CSIs are still too large and

noisy for shallow learning algorithms. Feature engineering helps extract meaningful and

compressed information, e.g., domain knowledge, from raw or pre-processed CSIs. It is

widely used for shallow learning algorithms such as kNN and SVM. Statistical metrics

are commonly used features, and dimension reduction techniques such as PCA, ICA, and

SVD can also be used to extract feature vectors. Feature extraction and selection usually

have a great impact on the performance of shallow learning algorithms.

Deep Learning Algorithms. For shallow learning algorithms, it is hard to extract

and select the right features effectively and efficiently. Deep Neural Networks (DNN)

address this problem by learning features automatically. DNNs require very little or none

signal processing, feature engineering, and parameter tuning. DNNs are very powerful

for multi-class classification applications. A DNN is organized into multiple layers. The

output of the i-th layer is represented by

y(i) = g(i)
(
W (i)x(i) + b(i)

)
, (2.6)

where x(i) is the input, W (i) is the weight matrix, b(i) is the bias vector, and g(i) is the

activation function [40]. The output of the previous layer is the input of the current layer,

i.e., x(i) = y(i−1). The first layer x(1) is the original input, i.e., raw or pre-processed CSI

measurements. The last layer y(n) is the final output, i.e., binary or multi-class labels.

DNNs learn the weights W and biases b, using an optimization algorithm, to minimize the

cost function. For example, Stochastic Gradient Descent with Momentum (SGDM) is a

widely used optimization algorithm that takes small steps in the direction of the negative

gradient of the loss function. To prevent overfitting, L2 regularization is usually used to

add a regularization term for the weights to the loss function.

A Convolutional Neural Network (CNN) is a DNN with at least one of its layers

involving convolution operations. CNNs are effective for learning local features. CNNs

are relatively fast to run during training and inference due to shared kernels. CNNs are

28



proven to have very good performance and are seen in almost all modern neural network

architectures. For a sequence or a temporal series of data samples, it is usually better

to use 1D CNNs or Recurrent Neural Networks (RNNs). 1D CNNs use one dimensional

instead of two dimensional convolution, so they have low computational cost and good

performance for simple classification problems. A major characteristic of CNNs is the

lack of memory for a sequence or a time series of data points. A RNN has internal

connections by iterating through the time series of input elements. Simple RNNs have the

vanishing gradient problem that the network becomes untrainable as new layers added

to the network [19]. Long Short-Term Memory (LSTM) is an effective and widely used

architecture to address this problem. It saves the state information for later units so it

prevents previous states from gradually vanishing during training. RNNs with LSTM are

usually the right choice for processing a sequence or a time series of data points where

temporal ordering matters. The major drawback of RNNs and LSTM is that they have

very high computation cost.

A 3D CSI matrix with size(H) = N ×M ×K is similar to a digital image with spatial

resolution of N×M and K color channels, so WiFi sensing can reuse DNNs that have high

performance for computer vision tasks. Besides, CSI data have some unique properties

that are different from images and videos. For example, CSI has much smaller spatial

resolutions and more frequency channels than images. Another challenge is that CSI is

impacted by multi-path effects and interferences from all directions, so it contains a lot of

noises and is very sensitive to environmental changes. Therefore, WiFi sensing may need

new DNN architectures specifically designed for CSI data.

2.5.3 Hybrid Algorithms

Modeling-based and learning-based algorithms have their own advantages and limita-

tions. For example, one of the major limitations of learning-based algorithms is overfit-

ting, since the training process usually can only find the patterns and information that

are present in the training data. Different algorithms have different requirements of signal
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Table 2.6: Pros and Cons of modeling-based and learning-based algorithms.

modeling-based algorithms

Pros

need very little or none training data collection, model training, and
ground truth labeling

need only simple algorithms, e.g., thresholding, peak/valley detection,
clustering, etc.

usually have low costs and run fast for both off-line analysis and real-
time running

Cons

need efforts for building the suitable models and finding the right model
parameters

need very accurate measurements and estimations, along with a lot of
signal processing

usually not reusable, versatile, or scalable for new tasks, scenarios, en-
vironments, etc.

Use
Cases

Mostly used for estimation applications which require accurate estima-
tions of numerical values. Noise removal is crucial for modeling-based
algorithms and estimation applications.

learning-based algorithms

Pros

need very little or none signal processing

evolvable: could improve when there are more training data, especially
for deep learning

automatic for deep learning: no need of feature engineering or learning
parameter tuning

reusable for deep learning: no need to restart training on new data or
pre-trained models

versatile for deep learning: can reuse high-accuracy pre-trained models
from other tasks

Cons

need a lot of efforts for training data collection and ground truth labeling

need a lot of training data in different settings and easy to overfit to the
training data

need a lot of resources and time for training, especially for deep learning

shallow learning: need feature engineering to find and select the right
features

instance-based learning algorithms, e.g., kNN, have high costs during
the inference stage

Use
Cases

Mostly used for recognition applications and need very little or none
signal processing.
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processing techniques and are suitable for different WiFi sensing applications. Modeling-

based algorithms are more suitable for estimation applications, and learning-based algo-

rithms are better choices for recognition applications. For detection applications, either

modeling-based or shallow learning algorithms can be the right choice. The pros and cons

of modeling-based and learning-based WiFi sensing algorithms are listed in Table 2.6.

Hybrid algorithms use both modeling-based and learning-based algorithms to address

the limitations of each type of algorithms. In some cases, modeling-based algorithms are

used to get coarse-grained information and then learning-based algorithms are used for

fine-grained and complex tasks. For example, WiSee [118] first extracts mobility data by

Doppler phase shift and then recognizes hand and body gestures by kNN. WiAG [154] first

estimates the position and orientation features by CFR and then uses kNN to recognize

gestures. In some cases, . For estimation applications, learning-based algorithms can be

first used to detect or recognize certain events, and then modeling-based algorithms are

used to estimate the quantity values of the target events.

2.6 Applications of WiFi Sensing

This section presents a summary and comparison of different WiFi sensing applications,

as shown in Table 2.7. The signal processing techniques, algorithms, and performance

results are summarized in Table 2.8, 2.9, and 2.10. For signal processing, NR represents

Noise Reduction, ST represents Signal Transform, and SE stands for Signal Extraction.

Modeling-based and learning-based algorithms are represented by M and L, respectively.

Details of which algorithms require what signal processing techniques and are suitable for

which types of WiFi sensing applications are also presented.

2.6.1 Detection Applications

Table 2.8 shows the summary of WiFi-based detection applications, most of which

are for human presence detection and human event detection. For event detection, most
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Table 2.7: Summary of existing WiFi sensing applications.

Output Type WiFi Sensing Applications

Detection:
binary
classification

Human Presence Detection [3, 230, 193, 229, 121, 119, 233,
184, 109, 140, 186, 39]

Human Event Detection: Fall [157, 110, 52, 214, 216], Mo-
tion [42, 87, 38, 81], Walking [202], Posture Change [89, 90],
Intrusion [81, 91], Sleeping [89, 90], Keystroke [5], Driving Fa-
tigue [113, 25], Lane Change [183], School Violence [227], Smok-
ing [223, 222], Attack [85, 86, 199, 67], Tamper [7], Abnormal
Activity [232]

Object Detection [188]; LoS/NLoS Detection [185, 231]

Recognition:
multi-class
classification

Activity Recognition: Daily Activities [6, 23, 27, 30, 33,
43, 158, 165, 166, 173, 170, 176, 189], Shopping [211], Driv-
ing [25, 125], Exercising [192], Speaking [155], Acoustic Eaves-
dropping [177], Head & Mouth Activities [29], Walking [96]

Gesture Recognition: Body/Head/Arm/Hand/Leg/Finger
Gestures [153, 123, 203, 213, 2, 3, 53, 118, 146, 154, 219, 228,
95, 79, 100, 136], Sign Language Recognition [79, 95, 100, 136],
Keystroke Recognition [4, 5, 78, 80]

Human/User Identification [16, 17, 54, 164, 198, 212, 218];
Human/User Authentication [85, 86, 137, 163, 190]

Object Recognition [234, 239, 183]; Object Event Recog-
nition [108]

Estimation:
quantity
values of size,
length, angle,
distance,
duration,
frequency,
counts, etc.

Device-Free Human Localization/Tracking: Position [229,
159, 82, 120, 122, 178, 112, 58], Orientation [154, 207], Mo-
tion [68, 72, 187, 207], Walking Direction [187, 202, 215, 96],
Step/Gait [164, 202], Hand Drawing [207, 208, 144], Speed [216]

Device-Based Human Localization/Tracking [75, 150, 196,
208]

Object Localization/Tracking [92, 178, 183]; Humidity Es-
timation [220]

Breathing/Respiration Rate Estimation: Single Per-
son [217, 93, 1, 161, 169, 90], Multiple Persons [161, 169]; Heart
Rate Estimation [88, 135, 168]

Human Counting: Static Humans [24, 191], Moving Hu-
mans [225, 117, 9, 156, 44], Human Queue Length [172, 171, 183];
WiFi Imaging [70, 55, 235, 234]
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Table 2.8: Summary of WiFi sensing: detection applications.

Reference Signal Processing Algorithm Application Performance

Wi-Vi [3] NR: Signal Nulling M: AoA

Moving
Human

Detection;
Gesture

Decoding

Human Detection: 85%
to 100% (3 humans);
Gesture Decoding:

93.75% (6-7m), 75%
(8m), 0 (9m)

Gong-
2016 [39]

N/A
M: Rician Fading,
Cross-Correlation

Human
Detection

False Negative: <5%;
False Positive: <4%

Palipana-
2016 [109]

SE: Interpolation,
Kernel PCA

M: Threshold-Based
Detection, Rician

Fading

Human
Detection

True Positive: 90.6%

PADS [121,
119]

NR: Phase Offset,
Hampel Filter

L: One-Class SVM
Human

Detection
True Positive Rate:

>93%

PeriFi [140]
NR: Phase Offsets

(PDD, STO)

M: AoA, ToF,
MUSIC; L:

One-Class SVM

Human
Detection

Accuracy: 96.7%

DeMan [184]

NR: Hampel Filter,
Linear Fitting, Least
Median Squares; SE:
Correlation Matrix

M: Sinusoidal
Model,

Nelder-Mead
Searching

Moving &
Stationary

Human
Detection

Detection Rate:
94%/92%

(moving/stationary)

Xiao-
2015 [193]

NR: WMA
M: Threshold-Based

Detection
Human

Detection
N/A

Zhou-
2017 [229]

NR: Density-Based
Spatial Clustering;

SE: PCA

L: SVM
Classification &

Regression

Human
Detection
& Local-
ization

Detection Accuracy:
>97%, Localization
Error: 1.22m/1.39m
(lab/meeting room)

Zhou-
2014 [230]

SE: Feature
Extraction

M: EMD,
Fingerprinting,

Threshold-Based
Detection

Human
Detection

Average FPR/FNR:
8%/7%

(fingerprinting), ∼10%
(threshold)

R-
TTWD [233]

NR: Hampel &
Wavelet Filter; ST:
DWT; SE: Feature

Extraction,
Interpolation, PCA

L: Majority Vote,
One-Class SVM

Moving
Human

Detection

True Positive/True
Negative: >99%

WiFall [52] NR: WMA, LOF
L: kNN, One-Class

SVM
Fall

Detection
Detection Precision:

87%

FallDeFi [110]

NR: Wavelet Filter;
ST: DWT, STFT; SE:
PCA, Interpolation,
Subcarrier Selection,

Thresholding

M: Power Burst
Curve; L: One-Class

SVM

Fall
Detection

Accuracy: 93%/80%
(same/different testing

environments)

Continued on next page.
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Table 2.8 Continued 1. Summary of WiFi sensing: detection applications.

Reference Signal Processing Algorithm Application Performance

RT-Fall [157]

ST: STFT; SE: BPF,
Interpolation, Feature

Extraction,
Thresholding

M: Amplitude
Attenuation, Phase
Shift; L: One-Class

SVM

Fall
Detection

True Positive Rate:
91%, True Negative

Rate: 92%

Anti-
Fall [214]

SE: Interpolation,
LPF, Threshold-Based

Sliding Window

M: Amplitude
Attenuation, Phase
Shift; L: One-Class

SVM

Fall
Detection

Precision: 89%, False
Alarm Rate: 13%

WiSpeed [216]
NR: Median Filter;
SE: `1 Trend Filter,

Thresholding

M: Multi-Path
Scattering,

Statistical Modeling,
Peak Detection

Fall
Detection &

Speed
Estimation

Fall Detection: 95%,
Mean Error:
4.85%/4.62%

(device-free/-based)

MoSense [42]
SE: LPF, Euclidean

Distance,
Thresholding

M: CFR; L: Binary
Classification

Motion
Detection

Accuracy:
97.38%/93.33%
(LoS/NLoS, 5

activities)

Liu-2017 [87]
NR: Phase Difference;
SE: Signal Isolation

by Skewness

M: CIR; L:
One-Class SVM

Motion
Detection

Motion Detection
Rate: 90.89%

FRID [38] N/A
M: CFR, Coefficients

of CSI Phase
Variation

Motion
Detection

Precision: 90%

AR-
Alarm [81]

SE: Interpolation,
BPF, Duration-Based

Filter

M: Phase Difference;
L: Binary

Classification

Motion &
Intrusion
Detection

True Positive Rate:
98.1%/97.7%

SEID [91]
SE: Signal

Compression by CSI
Amplitude Variance

M: CFR; L: HMM
Intrusion
Detection

Precision: 98%

WiStep [202]

NR: Long Delay
Removal; ST: FFT,
IFFT, DWT; SE:
Butterworth BPF,
PCA, Subcarrier

Selection

M: Multi-Path
Fading, CIR,

Short-Time Energy,
Peak Detection,
Threshold-Based

Detection

Walking
Detection &

Step
Counting

Walking Detection:
96.41%/1.38%

(TPR/FPR); Step
Counting:

90.2%/87.59% (labo-
ratory/classroom)

Wi-
Sleep [89, 90]

NR: Hampel Filter,
Wavelet Filter; ST:

DWT; SE:
Interpolation,

Subcarrier Selection
by Periodicity & SVD,
Multiple TX-RX Pairs

M: CFR

Respiration
Rate &
Apnea

Estimation;
Posture
Change

Detection

Respiration Rate
Estimation: 85%;
Posture Change

Detection: 83.3%;
Apnea Estimation:

89.8%

WiKey [4, 5]
NR: LPF, PCA; ST:

DWT
L: kNN+DTW

Keystroke
Detection &
Recognition

Detection: 97.5%;
Recognition: 96.4%

(37 keys)

Continued on next page.
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Reference Signal Processing Algorithm Application Performance

LiveTag [32]
NR: Signal Nulling;

SE: PCA

M: AoA, MUSIC, SSP,
SVD, Maximum

Likelihood

Touch
Detection

Missed Detection
Rate: <3% to 28%
(LoS), <3% to 14%

(NLoS)

Bagci-2015 [7]

NR: MA; SE:
Euclidean/

Mahalanobis Distance,
EMD, Thresholding

M: Received Signal
Strength

Tamper
Detection

True Positive Rate:
53%

Liu-2018 [85, 86]

NR: Temporal Bias,
De-Correlation Filter,
Frequency/Temporal

Smoothing; SE:
Thresholding, k Means

M: Coherence Time; L:
One-Class SVM

Attack
Detection,
User Au-

thentication

Average Attack
Detection Ratio:

92%;
Authentication
Accuracy: 91%

(static), 70.6% to
93.6% (mobile)

CSITE [67]
SE: Merging Adjacent

Samples

M: Euclidean
Distance, Mean

Standard Variance,
Threshold-Based

Detection

Spoofing
Attack

Detection

False Positive Rate:
<4%, False

Negative Rate:
<4.5%

SecureArray [199]
NR: Random Phase

Perturbation

M: AoA, Coherence
Time,

Threshold-Based
Detection

Spoofing
Attack

Detection

Detection Rate:
100%, False Alarm

Rate: 0.6%

WiFind [113]
NR: Hampel Filter,
LOF, MA; SE: PCA

L: One-Class SVM
Driver
Fatigue

Detection

Detection Rate:
82.1%

WiTraffic [183] NR: Butterworth LPF
L: Threshold-Based

Detection, SVM, EMD
Traffic

Monitoring

Lane Detection:
95%; Vehicle

Recognition: 96%;
Speed Error: 5mph

Smokey [222,
223]

NR: Hampel Filter;
SE: Interpolation,
Antenna Selection,

Thresholding

M:
Temporal/Frequency

Correlation, Peak
Detection

Smoking
Detection

True Positive Rate:
92.8%, False Alarm

Rate: 2.3%

Wi-Dog [227]

ST: DHT, STFT; SE:
Antenna/Subcarrier

Selection, PCA,
Butterworth BPF

M: Doppler Shift,
Wavelet Entropy,

Median Filter,
Thresholding; L:
One-Class SVM

School
Violence
Detection

TPR: 85%/94%,
FPR: 11%/10%

(classroom/corri-
dor)

MAIS [30]

ST: Linear Transform;
SE: LPF, Outlier

Filter, Thresholding,
Eigen Values

L: kNN

Human
Counting,
Activity

Detection &
Recognition

Anomaly Detection:
98.04%, Human

Counting: 97.21%,
Activity

Recognition:
93.12%

Continued on next page.
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Reference Signal Processing Algorithm Application Performance

NotiFi [232] SE: PCA

L: Nonparametric
Bayesian Model,

Dynamic Hierarchical
Dirichlet Process

Abnormal
Activity

Detection

Average Accuracy:
89.2%/85.6%/75.3%
(LoS/NLoS/through-

wall)

PhaseU [185]
NR: Linear Fitting;
SE: Thresholding,
Antenna Selection

M: Multi-Path
Reflections, Diffractions

and Refractions

LoS/NLoS
Detection

Detection Rate:
>94%/80%

(static/mobile)

LiFi [231]
NR: CFO; ST: IFFT;
SE: Normalization,

Thresholding

M: CIR, Rician Fading,
PDP, Skewness

LoS/NLoS
Detection

Accuracy: 90.4%;
False Alarm Rate:

9.34%

Wi-Metal [188]
NR: Interference
Nulling by Phase

Difference

M: Radio Reflection; L:
k Means, Euclidean

Distance

Metal
Detection

Accuracy: 90%;
False Alarm Rate:

10%

are on motion activities, e.g., fall detection. Modeling-based algorithms, e.g., threshold-

based detection, and simple learning-based algorithms, e.g., one-class SVM, are widely

used. Among the 11 papers on WiFi-based human detection, 5 papers use SVM and 3

papers use threshold-based detection. For the remaining 31 papers, 9 of them use one-class

SVM. Theoretical and statistical models are usually sensitive to noises and outliers. Noise

reduction is usually needed for modeling-based algorithms. The Hampel filter, wavelet

filter, LOF are popular choices. Detection problems are relatively simple to solve and

sometimes have no clear borderline between signal extraction and the classifier. After

signal extraction such as LPFs and thresholding, the detection results can be directly

derived without further detection or classification algorithms. Several papers use PCA to

filter out redundant information. Since binary classification problems usually do not need

extensive input data, detection applications usually do not need signal compression or

feature extraction. Computation overhead is not a major issue for detection applications

due to low input data volume and low complexity for the detection algorithms.

2.6.2 Recognition Applications

Table 2.9 shows the summary of WiFi sensing for multi-class classification tasks. Most

of the recognition applications are on activity recognition, gesture recognition, and hu-

36



Table 2.9: Summary of WiFi sensing: recognition applications.

Reference Signal Processing Algorithm Application Performance

Wi-Chase [6]
SE: LPF,

Modulation Filter
M: Path Loss, PDP;

L: kNN, SVM
Activity

Recognition

Recognition
Accuracy: 97% (3

activities)

WIBECAM [23] N/A
M: PDP,

Autoregressive
Model, PSD

Activity
Recognition

Recognition
Accuracy: 73% to
100% (4 activities)

BodyScan [27]
ST: FFT; SE:

Butterworth LPF,
PCA, Thresholding

M: PSD, Statistical
Distribution; L:

SVM

Activity
Recognition,

Breathing
Monitoring

Activity Recognition
Accuracy: 72.3% (5

activities), Breathing
Rate Accuracy:

97.4%

MAIS [30]

ST: Linear
Transform; SE: LPF,

Outlier Filter,
Thresholding, Eigen

Values

L: kNN

Human
Counting,
Activity

Detection &
Recognition

Anomaly Detection:
98.04%, Human

Counting: 97.21%,
Activity Recognition:

93.12%

DFLAR [33] N/A
L: Sparse

Auto-Encoder
Neural Network

Activity
Recognition

Recognition
Accuracy: 90% (8

activities)

HuAc [43]

NR: Outlier Filter,
WMA; SE: LPF,
Thresholding, k

Means

L: SVM
Activity

Recognition

Recognition
Accuracy: 93% (16

activities)

EI [66]
NR: Hampel Filter;

ST: FFT; SE:
Thresholding

L: Correlation,
CNN

Activity
Recognition

Accuracy: <75% (10
users, 6 activities, 3

rooms)

Wang-
2018 [158]

NR: Median Filter,
Linear Fitting; ST:

FFT; SE: LPF,
Feature Extraction

M: Coherence
Histogram; L:
SOM, Softmax

Regression

Activity
Recognition

Recognition
Accuracy: >85%

CARM [165,
166]

NR: CFO; ST:
DWT; SE:

Thresholding, PCA,
Feature Extraction

L: HMM
Activity

Recognition

Recognition
Accuracy: >96% (8

activities)

Wang-
2015 [173]

NR: Gaussian Filter,
LOF; SE: k Means,
Feature Selection

M: Free Space
Propagation Model;

L: DTW, SVM

Activity
Recognition &
Fall Detection

Activity Recognition:
80% (13 activities);

Fall Detection: 95.2%

E-eyes [170]

NR: LPF, MCS
Filter; SE: EMD,

Thresholding,
Clustering, Multiple

Links

L:
Multi-Dimensional

DTW, Pattern
Matching

Activity
Recognition

Average Recognition
Accuracy: 90%/95%

(single
device/multiple

devices, 13 activities)

Wei-2015 [176]
NR: Exponential

Smoothing
L: Sparse

Representation
Activity

Recognition

Recognition
Accuracy: ¡90% (8

activities)

Continued on next page.
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Table 2.9 Continued 1. Summary of WiFi sensing: recognition applications.

Reference Signal Processing Algorithm Application Performance

ARM [189]
NR: CFO, Wavelet
Filter; ST: DWT

L: DTW, HMM
Activity

Recognition
Average Accuracy:
>75% (6 activities)

Zeng-
2015 [211]

SE: BPF, Feature
Extraction, Multiple

APs

M: CFR; L: DT,
Simple Logistic

Regression

Shopper
Activity

Recognition

Average Accuracy:
89.6%/94.75

(entrance/in store, 4
activities)

WiDriver [25]

SE: Signal
Compression by

Back Propagation
Neural Network

M: Fresnel Zone
Model; L: Finite

Automata

Driver
Activity

Recognition

Recognition
Accuracy: 96.8% (11
postures), 90.76% (7

activities)

HeadScan [29]
SE: Butterworth

LPF, PCA

L: Sparse
Representation, `1

Minimization

Head &
Mouth

Activity
Recognition

Recognition
Accuracy: 86.3% (5

activities)

SEARE [192]

NR: LPF, Median
Filter, PCA Filter;

ST: FFT; SE:
Thresholding

L: First-Order
Difference, DTW

Exercise
Activity

Recognition

Average Accuracy:
97.8%/91.2%
(LoS/NLoS, 4

activities)

WiSome [203]

NR: LOF, Wavelet
Filter; ST: DWT,

STFT; SE: Locally
Linear Embedding,

Multiple TXs

M: Doppler Shift,
Thresholding; L:

kNN, SVM

Motion
Direction

Recognition

Average Accuracy:
95.4%/95.9%/95.5%
(thresholding/kN-

N/SVM)

APsense [213]
SE: Feature
Extraction

L: Naive Bayes, DT
Motion

Recognition

Average TPR: 74.8%
(decision tree), 56.8%

(naive bayes)

WiDance [123]

ST: STFT; SE:
Antenna Selection,
Butterworth BPF,
PCA, Thresholding

M: Doppler Shift,
Rule-Based

Classification

Motion
Direction

Recognition

Accuracy: 92% (9
motion directions)

Maheshwari-
2015 [96]

NR: LPF; SE:
Cumulative MSD

L: DT
Gait Rate

Classification

Accuracy: <60% (3
speeds), >90% (2

speeds)

WiHear [155]
NR: Butterworth
BPF; ST: IFFT,

DWT

M: Multi-Path
Reflection, PDP; L:

DTW, Pattern
Matching

Speaking
Recognition

Accuracy: 91%/74%
(1 person/3 persons,

<6 words)

ART [177]
NR: Averaging; SE:

BPF
M: Wireless
Vibrometry

Acoustic
Eavesdrop-

ping

Recognition
Accuracy: 80%
(distance<4m)

WiGest [2]
NR: Wavelet Filter;
ST: FFT, DWT; SE:

Thresholding

L: Pattern
Matching

Gesture
Recognition

Recognition
Accuracy:

87.5%/96% (1 AP/3
APs, 7 gestures)

Continued on next page.
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Wi-Vi [3] NR: Signal Nulling M: AoA

Moving
Human

Detection;
Gesture

Decoding

Moving Human
Detection: 85% to
100% (3 humans);
Gesture Decoding:

93.75% (6-7m), 75%
(8m), 0 (9m)

WiG [53]
NR: Birge-Massart

Filter, Wavelet
Filter, LOF

L: SVM
Gesture

Recognition

Recognition Accuracy:
92% (LoS), 88%

(NLoS)

WiSee [118]
NR: CFO; ST: FFT;

SE: BPF,
Interpolation

M: Doppler
Shift; L: Pattern

Matching

Gesture
Recognition

Average Accuracy:
94% (9 gestures)

WiFinger [146]

NR: Wavelet Filter,
Butterworth BPF;
ST: IFFT, DWT;

SE: PCA, Subcarrier
Selection

L: Pattern
Matching, Multi-

Dimensional
DTW

Finger
Gesture

Recognition

Accuracy: 93% (8
finger gestures)

WiMU [153]
ST: STFT; SE:

PCA, Thresholding

M: Pattern
Matching,

Threshold-Based
Detection

Multi-User
Gesture

Recognition

Accuracy: 95.0%,
94.6%, 93.6%, 92.6%,
90.9% (2, 3, 4, 5, 6

concurrent gestures)

WiAG [154]

NR: Butterworth
Filter; ST: DWT;

SE: PCA,
Thresholding,
Extrapolation

M: CFR; L: kNN
Gesture

Recognition
Accuracy: 91.4% (6

gestures)

Mudra [219]

NR: MA, Finite
Impulse Response
Filter; ST: FFT,

IFFT; SE:
Thresholding

L: DTW
Finger

Gesture
Recognition

Average Accuracy:
96% (9 finger gestures)

DeNum [228]
SE: BPF Feature

Extraction

M:
Threshold-Based
Sliding Window;

L: NN, SVM

Gesture
Recognition

Average Accuracy:
94% (10 finger

postures)

WiFinger [79]
NR: Hampel Filter,
LPF, WMA; ST:

DWT

M: CFR, PCA;
L: kNN+DTW

Sign
Language

Recognition

Recognition Accuracy:
90.4% (9 hand

postures)

SignFi [95]
NR: STO/SFO,
Multiple Linear

Regression
L: CNN

Sign
Language

Recognition

Accuracy: 94.8% (276
signs, 1 user,

lab+home), 86.6% (150
signs, 5 users, lab)

Continued on next page.
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Melgarejo-
2014 [100]

NR: LPF; SE:
Subcarrier Selection

by Similarity
L: kNN+DTW

Sign
Language

Recognition

Accuracy: 84% (14
signs, car), 92% (25
signs, wheelchair)

WiSign [136]

NR: Median Filter,
LPF; ST: FFT; SE:
Subcarrier Selection,

Multiple RXs

L: SVM,
Majority Vote

Sign
Language

Recognition

Mean Accuracy: 93.8%
(5 sign gestures)

WiKey [4, 5]
NR: LPF, PCA; ST:

DWT
L: kNN+DTW

Keystroke
Detection &
Recognition

Detection: 97.5%;
Recognition: 96.4% (37

keys)

ClickLeak [78]
ST: DWT; SE: LPF,
PCA, Thresholding,

k Means
L: kNN+DTW

Keystroke
Recognition

Recognition Accuracy:
83% (10 keys)

WindTalker [80]
SE: LPF, PCA,

Thresholding; ST:
DWT

M: CFR; L:
DTW

Keystroke
Recognition

Accuracy:
81.8%/73.2%/64% (Xi-
aomi/Nexus/Samsung,

10 numbers)

Rapid [16]

NR: CFO, Hampel
Filter, MA; ST:
FFT, STFT; SE:

Butterworth LPF,
Thresholding

M: CFR; L:
SVM

Human
Identifica-

tion

Identification
Accuracy: 82% to 92%

(2 to 6 people)

NiFi [17]

NR: Butterworth
LPF, Median Filter;

SE: Sequence
Similarity

L: Pattern
Matching,

HMM

User Identi-
fication

True Positive Rate:
90.83% (4 devices)

WFID [54]
NR:

Threshold-Based
Filter; SE: PCA

M: Doppler
Shift, Radio

Scattering; L:
SVM

Human
Identifica-

tion

Identification
Accuracy: 93.1% (6
subjects), 91.9% (9

subjects)

WifiU [164]

NR: CFO; ST:
STFT; SE: Gaussian
LPF, Thresholding,

PCA

L: SVM,
One-vs-All
Classifiers

Human
Recognition

Recognition Accuracy:
79.28%/89.52%/93.05%

(top-1/-2/-3, 50
subjects)

FreeSense [198]

ST: DWT; SE: PCA,
Butterworth LPF,

Feature Extraction,
Thresholding

L: Mean
Absolute

Deviation,
DTW, kNN

Human
Identifica-

tion

94.5% to 88.9% (2 to 6
users)

WiWho [212]

NR: Distant
Multi-path Removal;

ST: FFT; SE:
Feature Extraction

M: CFR, CIR,
Peak-Valley

Detection; L:
DTW, DT

Human
Identifica-

tion

92% to 80% (2 to 6
users)

Continued on next page.
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WiFi-
ID [218]

NR: Silence
Removal; SE:

Feature Extraction

L: Sparse
Representation

Human
Identifica-

tion
N/A

Liu-
2018 [85, 86]

NR: Temporal Bias,
De-correlation

Filter, Frequen-
cy/Temporal

Smoothing; SE: k
Means,

Thresholding

M: Coherence
Time; L: SVM

Attack
Detection,
User Au-

thentication

Average Attack
Detection Ratio:

92%; Authentication
Accuracy: 91%

(static), 70.6% to
93.6% (mobile)

Shi-
2017 [137]

ST: FFT; SE: BPF,
Subcarrier Selection

L: SVM, Neural
Network with
Auto-Encoder

User Au-
thentication

Accuracy: 94%/91%
(walking/stationary,

11 subjects)

PriLA [163] N/A M: CFO, DTW
User Au-

thentication
Average Accuracy:

93.2%

TDS [190]
SE: Feature

Extraction by SVD

L: Pearson
Correlation,

Max-Weighted
Bipartite
Matching

User Au-
thentication

Error Rate: <7%
(authenticate

distance=5cm)

WiTraffic [183]
NR: Butterworth

LPF

L:
Threshold-Based
Detection, SVM,

EMD

Traffic
Monitoring

Lane Detection: 95%;
Vehicle Recognition:
96%; Speed Error:

5mph

Ulysses [234] NR: Majority Vote

M: Specular
Reflection, AoA,

AoD,
Threshold-Based

Detection

Object
Recognition

& WiFi
Imaging

Top-3 Accuracy:
100% (11 objects);

imaging error:
¡8cm/1 degree

(width/orientation)

TagFree [239]
SE: Feature
Extraction

M: Spectral
Regression

Discriminant
Analysis, Random
Subspace Method,

LDA

Object
Recognition

Average Accuracy:
96%/75%/57%

(1/2/3 objects, same
location, 6 objects)

Ohara-
2017 [108]

SE: Signal
Separation by ICA

M: CNN, RNN,
HMM, LSTM

Object
Event

Recognition

Average Precision:
81.7%, Recall: 92.5%,

F-score: 85.8%
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man/user identification and authentication. The number of classes of most recognition

applications is about 10. Almost all the recognition applications use learning-based al-

gorithms as the classifier. SVM is still one of the most used algorithms as the classifier.

Recognition applications use multi-class SVM instead of one-class SVM for detection ap-

plications. Another two widely used classifiers are kNN and DTW. DTW is usually used

for kNN as the distance metric. Among the 39 papers on activity and gesture recognition,

8 use SVM, 9 use kNN, and 12 use DTW as the classifier. SVM is the classifier of 6 papers

among the 12 papers on human/user identification and authentication. There are several

recognition applications using HMM or CNN as the classifier. Many recognition applica-

tions use hybrid algorithms which usually first extract information using modeling-based

algorithms and then recognize the targets using learning-based algorithms.

Learning-based algorithms are usually not so sensitive to noises and outliers as modeling-

based algorithms. Many recognition applications use no or very simple noise reduction

methods such as averaging and median filter, instead of complex algorithms such as the

Hampel filter and LOF. Noise reduction is used for hybrid algorithms wherein modeling-

based algorithms could be sensitive to noises. SVM and kNN are instance-based learning

algorithm which need to calculate the distance from the testing instance to all the training

instances. This could introduce expensive overhead when there are multiple classes and

each class instance has many CSI data points. Many recognition applications, especially

those using SVM, kNN, and/or DTW as the classifier, usually employ feature extraction,

subcarrier selection, or dimension reduction to reduce the input size.

2.6.3 Estimation Applications

The summary of WiFi-based estimation applications is presented in Table 2.10. For es-

timation applications, most papers are on human/object localization and tracking. There

are also many papers on the estimation of breathing rate, heart rate, and human counts.

There are four papers using WiFi for wireless imaging. Different from detection/recogni-

tion applications aiming for binary/multi-class classification problems, estimation appli-
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Table 2.10: Summary of WiFi sensing: estimation applications.

Reference Signal Processing Algorithm Application Performance

LiFS [159] SE: Thresholding

M: Fresnel Zone
Model, DTW,

Gradient Descent,
Genetic Algorithm

Device-Free
Human Lo-
calization

Median Accuracy:
0.5m (LoS), 1.1m

(NLoS)

Zhou-
2017 [229]

NR: Density-Based
Spatial Clustering;

SE: PCA

L: SVM Classifica-
tion/Regression

Presence
Detection

& Localiza-
tion

Presence Accuracy:
>97%, Localization

Error: 1.22m/ 1.39m
(lab/meeting room)

IndoTrack [82]

NR: Phase Offset
Removal; SE:

Isolating Direct Path
Signals, Thresholding

M: Doppler Shift,
AoA, MUSIC

Human
Tracking

Median Tracking
Error: 35cm

Widar [122,
120]

ST: STFT; SE:
Butterworth BPF,

PCA

M: Doppler Shift,
Path Length Change
Rate, Searching with
Least Fitting Error

Human
Tracking

Median Location
Error: 25cm/38cm

(with/without initial
positions); Median

Velocity Error: 13%

WiDeo [68]
NR: Thresholding,

Full Duplex
Interference Nulling

M: AoA, ToF;
Kalman Filter,

Compressive Sensing

Motion
Tracking

Median Error: <7cm
for 5 humans

QGesture [207]

NR: CFO, SFO, PBD,
MA; ST: DHT; SE:

Interpolation, Linear
Regression, PCA,

Thresholding

M: Multi-Path
Propagation, CIR

1D & 2D
Motion

Tracking

Average Distance
Accuracy: 3cm/3.7cm

(1D/2D); Average
Direction Error:
5%/15 degrees

(1D/2D)

WiDir [187]

NR: Cross-Correlation
Denoising, Polynomial
Smoothing Filter; ST:

FFT; SE:
Thresholding

M: Fresnel Zone
Model, Phase Shift,
Radio Reflection/D-

iffraction

Moving
Direction

Estimation

Median Error: <10
degrees

WiStep [202]

NR: Long Delay
Removal; ST: FFT,
IFFT, DWT; SE:
Butterworth BPF,
PCA, Subcarrier

Selection

M: CIR, Short-Time
Energy, Peak

Detection,
Threshold-Based

Detection

Walking
Detection

& Step
Counting

Walking Detection:
96.41%/1.38%

(TPR/FPR); Step
Counting: 90.2%

(lab), 87.59%
(classroom)

Zhang-
2017 [215]

SE: Multiple Carrier
Frequencies

M: Fresnel Zone
Model

Walking
Direction

Estimation

Median Error: 10
degrees

WiDraw [144]

SE: Thresholding,
Multiple TXs,

Transmitter Selection
by CSI Correlation

M: AoA, MUSIC
Hand

Tracking

Hand Tracking Error:
<5cm; Handwriting

Accuracy: 91%

Continued on next page.
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Table 2.10 Continued 1. Summary of WiFi sensing: estimation applications.

Reference Signal Processing Algorithm Application Performance

WiSpeed [216]
NR: Median Filter;
SE: `1 Trend Filter,

Thresholding

M: Multi-Path
Scattering,

Statistical Modeling,
Peak Detection

Speed
Estimation

& Fall
Detection

Mean Error:
4.85%/4.62%

(device-free/-based),
Fall Detection: 95%

SpotFi [75]

NR: Sampling Time
Offset; SE: Signal
Isolation, Multiple

Packets and
Transmitters

M: AoA, ToF,
MUSIC, CSI
Smoothing,

Gaussian Mean
Clustering

Device-
Based

Localiza-
tion

Median Localization
Accuracy: 40cm

Chronos [150]

NR: Phase Offsets,
PDD; SE: Multi-Path
Separation, Multiple

Frequency Bands

M: PDP, ToF, Least
Common Multiple,

Quadratic
Optimization

Device-
Based

Localiza-
tion

Median Distance
Error: 14.1cm/20.7cm

(LoS/NLoS)

Splicer [196]
ST: IFFT; SE:

Multiple Carrier
Frequencies

M: PDP, MUSIC

Device-
Based

Localiza-
tion

Median Error: 0.95m

AAMouse [208]

NR: Maximal Ratio
Combining; ST:

STFT; SE: Kalman
Filter

M: Doppler Shift
Device-
Based

Tracking

Median Error: 1.4cm
(2 speakers), 2.5cm (1

speaker+WiFi)

BikeLoc [92] SE: Multiple TXs M: AoA
Bike Lo-
calization

Median Error: 45cm
(2 APs); 18.1cm (8

APs)

mTrack [178]
SE: Direct Component
Filter, Thresholding

M: Phase Shift,
Radio

Reflection/Diffusion

Object
Tracking

Median Tracking
Error: 6.5mm

WiTraffic [183] NR: Butterworth LPF
L: Threshold-Based

Detection, SVM,
EMD

Traffic
Monitoring

Lane Detection: 95%;
Vehicle Recognition:
96%; Speed Error:

5mph

WiHumidity [220] N/A

M: Radio
Absorption,
Amplitude

Attenuation; L:
SVM

Humidity
Estimation

Average Accuracy:
79%

UbiBreathe [1]

NR: Local Mean
Removal, α-Trimmed

Mean Filter; ST:
FFT, DWT; SE: BPF,

Thresholding

M: dominant
periodic component
due to inhaling and

exhaling

Breathing
Rate &
Apnea

Estimation

breath rate error:
1bpm; breath apnea

accuracy: 96%

BodyScan [27]
ST: FFT; SE:

Butterworth LPF,
PCA, Thresholding

M: PSD, Statistical
Distribution; L:

SVM

Activity
Recogni-

tion,
Breathing
Monitoring

Recognition Accuracy:
72.3% (5 activities),

Breathing Rate
Accuracy: 97.4%

Continued on next page.
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Table 2.10 Continued 2. Summary of WiFi sensing: estimation applications.

Reference Signal Processing Algorithm Application Performance

Liu-2015 [88]

NR: Hampel Filter,
MA; ST: FFT; SE:

BPF, Subcarrier
Selection by CSI

Amplitude Variance,
Thresholding

M: Radio
Scattering, Fading,
and PDP, k Means

by PSD

Breathing
& Heart

Rate
Estimation

Breathing Rate
Error: <1.1bpm (1
person), <1.2bpm
(2 persons); Heart

Rate Error: <5bpm
(1 person)

Wi-
Sleep [89, 90]

NR: Hampel Filter,
Wavelet Filter; ST:

DWT; SE:
Interpolation,

Subcarrier Selection by
Periodicity and SVD,
Multiple TX-RX Pairs

M: CFR

Respiration
Rate &
Apnea

Estimation;
Posture
Change

Detection

Respiration Rate
Estimation: 85%;
Posture Change

Detection: 83.3%;
Apnea Estimation:

89.8%

Ma-2016 [93]
NR: Hampel Filter,

MA
M: Fresnel Zone

Model
Respiration
Estimation

N/A

WiHealth [135]

NR: Median Filter,
LPF; SE: BPF,

Polynomial Filter,
Thresholding

M: Multi-Path
Fading, Small Scale

Fading

Breathing
& Heart

Rate
Estimation

Estimation Error:
0.6bpm (breathing
rate), 6bpm (heart

rate)

Wang-
2016 [156]

NR: Hampel Filter,
MA; SE: Thresholding,
Subcarrier Selection,

Signal Separation

M: Fresnel Zone
Model, PSD

Breathing
Rate

Estimation
N/A

TinySense [161]

ST: IFFT; DWT; SE:
Thresholding, Mean

Filter, Wavelet Filter,
Multiple TX-RX Pairs

M: Fresnel Zone
Model, ToF

Multi-
Person

Breathing
Estimation

Accuracy: >88% (2
persons)

PhaseBeat [168]

NR: Hampel Filter,
PBD, SFO, CFO; ST:

FFT, DWT; SE:
Subcarrier Selection,

Thresholding

M: CFR, Phase
Difference, MUSIC

Breathing
& Heart

Rate
Estimation

Estimation Error:
<0.85bpm

(breathing rate),
<10bpm (heart

rate)

TensorBeat [169]
NR: Hampel Filter,

PBD, SFO, CFO; SE:
Thresholding

M: Phase
Difference; L:

Canonical Polyadic
Decomposition,
DTW, Dynamic
Programming

Multi-
Person

Breathing
Estimation

Estimation Error:
<0.9bpm/1.9bpm

(1 person/5
persons)

Zhang-
2018 [217]

N/A
M: Fresnel Zone

Model, Radio
Diffraction

Respiration
Estimation

Estimation
Accuracy: 61.5% to

98.8%

Domenico-
2016 [24]

SE: Euclidean
Distance

L: Linear
Discriminant

Classifier

Human
Counting

Recognition
Accuracy: 52% to
74% (7 persons)

Continued on next page.
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Table 2.10 Continued 3. Summary of WiFi sensing: estimation applications.

Reference Signal Processing Algorithm Application Performance

MAIS [30]

ST: Linear
Transform; SE:
LPF, Outlier

Filter,
Thresholding,
Eigen Values

L: kNN

Human
Counting,
Activity

Detection
&

Recognition

Anomaly Detection:
98.04%, Human

Counting: 97.21%,
Activity

Recognition:
93.12%

FCC [191] SE: Multiple RXs

M: Rician Fading,
Grey Verhulst Model,

Percentage of Zero
Elements

Human
Counting

Error: <3/5
persons

(indoor/outdoor, 15
total persons)

Mohammad-
moradi-

2017 [102]

SE: Signal
Compression by

Averaging

M: Threshold-Based
Hierarchy, Signal to

Noise Ratio

Room
Occupancy
Estimation

Accuracy: 89% (up
to 3 persons)

Guo-2017 [44]

NR: ; ST: FFT;
SE: LPF,
Subcarrier
Selection

M: Phase Difference,
CSI Variance, EMD,

Total Harmonic
Distortion

Human
Dynamics

Monitoring

Accuracy: >90%
(number, density,

speed, and
direction)

Wang-
2014 [172, 171]

NR: Dynamic
Exponential

Smoothing Filter;
SE: Interpolation,

Thresholding

L: Linear Regression,
Feature-Driven

Estimation, Bayesian
Network, Directed

Acyclic Graph

Human
Queue

Estimation

Estimation Error:
<10 seconds (up to
180 seconds queue

length)

Wision [55]

ST: FFT; SE:
Interference

Nulling, Multiple
TXs

M: AoA,
Diffuse/Specular

Radio Reflections,
Diffraction

WiFi
Imaging

Median
Localization

Accuracy: 26cm
(static human);
15cm (metallic

objects)

Karanam-
2017 [70]

N/A

M: Markov Random
Field Modeling, Loopy

Belief Propagation,
Sparse Representation

WiFi
Imaging

Distance Error:
1.35% to 3.7%

Ulysses [234]
NR: Majority

Vote

M: Specular
Reflection, AoA, AoD,

Threshold-Based
Detection

Object
Recogni-

tion; WiFi
Imaging

Top-3 Accuracy:
100% (11 objects);

imaging error:
<8cm/1 degree

(width/orientation)

Zhu-2015 [235] SE: Thresholding

M: AoA, Radio
Reflection, Absorption

& Scattering,
Majority Vote

WiFi
Imaging

Estimation Error:
<4.5cm/1 degree

(width/orientation)
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cations try to calculate the quantity values of size, length, angle, distance, duration, etc.

Almost all the estimation applications use modeling-based algorithms, such as AoA, ToF,

Fresnel Zone Model, Doppler Spread, MUSIC, etc. For all the 19 papers on human/ob-

ject localization and tracking, 5 use AoA, 6 use Doppler/Phase Shift, 3 use Fresnel Zone

Model. Among 12 papers on breathing/heart rate estimation, 4 use Fresnel Zone Model.

Only 6 papers of estimation applications, including 1 on human localization [229], 1 on

vehicle speed estimation [183], and 4 on human counting [24, 30, 172, 171], employ only

the learning-based algorithms but no modeling-based algorithms. Since modeling-based

algorithms are sensitive to noises, estimation applications usually require many efforts

on removing noises, especially phase offsets. Many estimation applications employ signal

composition techniques, e.g., multiple WiFi devices, frequency bands and data packets, to

improve the estimation accuracy.

2.7 Challenges and Future Trends of WiFi Sensing

Existing WiFi sensing mostly focuses on humans. Future WiFi sensing could be in

other domains, such as detecting, recognizing, and estimating the surrounding environ-

ments, animals, and objects. This section presents the challenges and future trends for

both existing and future WiFi sensing. New opportunities for signal processing techniques

and algorithms of WiFi sensing are also presented.

2.7.1 Challenges for WiFi Sensing

Robustness and Generalization. WiFi signals are very sensitive to many different

factors such as network settings, environments, objects, humans, geometry and mobility

situations, etc. It is crucial and also challenging for WiFi sensing to be robust in different

real-world scenarios and settings. For example, the distance between the person and the

WiFi transmitter/receiver could be different. The direction and orientation of the person

with respect to the WiFi transmitter/receiver could also change. There could be multiple
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persons or other moving objects around. The person or other objects could block the

direct path between the transmitter and receiver. It is more challenging for WiFi sensing

algorithms, both modeling-based and learning-based, to have the generalization ability of

properly and automatically adapting to new and previously unseen data. For example,

WiFi-based activity recognition should also work when WiFi devices are placed in a new

environment at unknown locations/orientations and for new persons whose data are not

seen before. Learning-based algorithms also have under-fitting issues when there are not

enough training data. To guarantee the robustness and generalization of WiFi sensing,

it requires effective and efficient ways to find the right data collection methods, signal

processing techniques, theoretical/statistical models, and machine learning algorithms.

Privacy and Security. One of the advantages of WiFi sensing is that it is non-

intrusive and non-obtrusive. But this introduces many privacy and security issues. As

shown in §2.6, there are already many WiFi sensing applications that can infer both coarse-

grained and fine-grained information such as daily activities, gestures, and keystrokes.

These information can be easily leaked to malicious hackers and attackers. Moreover, the

victim user may be unaware of the information leakage since it is non-obtrusive and WiFi

signals can travel through walls. Unlike images and videos, WiFi signals are not limited to

lighting conditions, so WiFi sensing is very easy to be used for malicious purposes. This

could be in conflict with the purpose of robustness and generalization of WiFi sensing:

the former one needs to make it harder to leak information while the latter requires more

information to be easily inferred in different scenarios. Therefore, new protocols, policies,

architectures, and algorithms are needed for the privacy and security of WiFi sensing.

Coexistence of WiFi Sensing and Networking. WiFi is designed for wireless

communications but not for sensing applications. When a WiFi device is used for sensing,

it could influence the network performance and also be impacted by network settings.

Some WiFi sensing applications require high CSI measurement frequency to get high

performance. This could introduce overhead for WiFi networks and result in reduced

network performance and efficiency. Moreover, sending unnecessary CSI measurement
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packets influences not only the measurement device but also other nearby WiFi devices,

since it occupies WiFi resources and influences the scheduling process in time and spectrum

domains. On the other hand, WiFi sensing is impacted by WiFi network settings. For

example, WiFi transmitters may use beamforming which changes the amplitude and phase

of CSI measurements, as shown in equation (2.2). This completely changes CSI patterns

and is very hard to process if the beamforming matrix is not available at the receiver.

2.7.2 Future WiFi Sensing Trends

This section presents future WiFi sensing trends for addressing the above-mentioned

challenges for both existing and future WiFi sensing, as shown in Fig. 2.9.

Figure 2.9: Future trends of WiFi sensing. CSI from WiFi can be used to sense the
surrounding environments, humans, animals, and objects using cross-layer information,
multiple devices, and fusion of different sensors.

Cross-Layer WiFi Sensing. This survey only focuses on WiFi sensing with the

physical layer information, i.e., CSI. CSI can be integrated with upper layer information

for cross-layer WiFi sensing. This could help develop new sensing applications or enhance
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existing WiFi sensing applications. Upper layer WiFi information, such as Medium Access

Control (MAC), Transmission Control Protocol (TCP), and Internet Protocol (IP), can

also be used for sensing purposes. For example, MAC and IP packet headers from WiFi

probing requests can be used to predict smartphone screen on/off [64], human flow [225,

117, 9, 226], urban mobility [20], and social relationship [74, 9]. Combining CSI with MAC

and IP layer information could help enhance the capability of WiFi sensing. Cross-layer

WiFi sensing provides additional information from other domains, which can improve the

robustness and generalization of WiFi sensing. Cross-layer WiFi sensing can also be used

for improving security and privacy. There are already many papers on CSI-based user

identification/authentication [16, 17, 54, 164, 198, 212, 218, 85, 86, 137, 163, 190] and

other security and privacy purposes [8, 80, 199]. These applications can be improved

by incorporating CSI with upper layers such as Transport Layer Security (TLS), Secure

Sockets Layer (SSL), application layer, and user interface. Upper WiFi layers can also

be re-designed to guarantee WiFi sensing is not misused for malicious purposes. Finally,

cross-layer WiFi information can help WiFi sensing and networking be aware of each, so

it helps address the coexistence of WiFi sensing and networking.

Cross-Device WiFi Sensing. Some WiFi-based localization and tracking applica-

tions use CSIs from multiple WiFi devices. Other WiFi sensing applications can also

combine multi-device CSIs for higher performance and efficiency. In addition to WiFi

APs, many other WiFi-enabled devices, e.g., cameras, speakers, drones, robots, Internet

of Things (IoT) devices, etc., can be used. Due to the rapid development and high de-

mand of wireless data, there will be more WiFi devices in different scenarios, such as

home, office, school, outdoor, stadium, shopping malls, etc. These WiFi devices have

time and location dependence which could provide more information for WiFi sensing.

Moreover, CSI measurements can be collected by emerging MIMO technologies such as

distributed, cooperative, massive, 3D, and full dimension MIMO [236]. Current WiFi sens-

ing applications only use CSIs measured by traditional MIMO systems. CSIs of emerging

MIMO technologies could open new opportunities for WiFi sensing in terms of signal pro-
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cessing techniques, channel models, learning algorithms, application types. Platforms for

measuring CSIs of these emerging MIMO technologies are also needed for WiFi sensing

purposes. Cross-device WiFi sensing provides more information in different domains, e.g.,

time, space, frequency, user, etc. It also gives cross-correlation and dependence informa-

tion among multiple devices. The cross-device information is useful for improving the

robustness and generalization of WiFi sensing.

Cross-Sensor WiFi Sensing. Some sensing applications use the fusion of CSIs with

other signals, such as videos and audios, as the input [102, 16, 65]. CSIs can be combined

with other sensor sources, e.g., Bluetooth, 5G, ZigBee, GPS, microphones, image/video

cameras, motion sensors, etc., for cross-sensor WiFi sensing. For example, video cameras

and CSIs can be combined together for higher performance and less human efforts of

training machine learning algorithms. When the light condition is good, video cameras

can be used for ground truth labeling for the machine learning algorithms that use CSIs

as the input. The CSI-based learning algorithms can be activated when video cameras

are not reliable due to poor light conditions. The fusion of video cameras and CSIs can

provide a better time coverage than they are used separately. Moreover, the human efforts

of data collection, ground truth labeling, and model training can be significantly reduced.

There are many pre-trained neural networks that use videos as the input. These video-

based neural networks can provide near human-level performance which can be used to

automatically label CSI measurements. This could save a lot of time and computation

resources for training the machine learning algorithms. The fusion of WiFi and other

sensors also helps improve the robustness and generalization of WiFi sensing by integrating

information from other domains.

Finally, all these WiFi sensing trends can be integrated to provide multi-domain knowl-

edge. For example, wireless drones and robots have the whole WiFi network stack, multiple

cooperative devices, and different sensors. They can combine cross-layer network informa-

tion, multi-device cooperation, and fusion of different sensors for improving existing WiFi

sensing applications and enabling new WiFi sensing opportunities.
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2.7.3 Future Opportunities for Signal Processing and Algorithms of

WiFi Sensing

Future WiFi sensing trends also bring new opportunities and challenges for signal

processing techniques and classification/estimation algorithms. Existing noise reduction

techniques mostly focus on removing noises, interferences, and unintended signals for

a single device. New noise reduction techniques and hardware designs are needed to

deal with noise signals from multiple devices and other domains. Since there are multi-

domain signals from upper network layers, multiple devices, and sensor fusions, new signal

compression techniques are needed to remove redundant and unrelated components for

more efficient processing. Existing signal composition techniques of WiFi sensing are

mostly for combining only CSI from multiple devices. New schemes are needed to integrate

CSI with signals and information from other domains. It is also important to balance signal

compression and composition for efficient and effective WiFi sensing.

New WiFi sensing algorithms are also required to take full advantage of multi-domain

information with time, spatial, and user dependence. New coordination algorithms are

necessary for extracting useful information from different domains. Since CSI has some

unique properties such as low spatial resolution and sensitive to environmental changes,

it is crucial for WiFi sensing algorithms to be robust in different scenarios. Most existing

deep learning solutions of WiFi sensing reuse DNNs for images and videos. It is nec-

essary to find suitable DNN types and develop new DNNs specifically designed for CSI

data. For cross-sensor WiFi sensing, pre-trained DNNs for other sensors can be used for

automatic labeling of CSI data. Transfer learning, teacher-student network training, and

reinforcement learning can also be used to reduce network training efforts. WiFi sensing

is very easy to be used for malicious purposes, since WiFi signals can be passively trans-

mitted through walls and are not limited to lighting conditions. Generative Adversarial

Networks (GANs) [41, 40] can be used to generate fake WiFi signal patterns to prevent

from malicious WiFi sensing.
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2.8 Chapter Summary

This chapter gives a survey of signal processing techniques, algorithms, applications,

and performance results of WiFi sensing with CSI. It presents the basic concepts, ad-

vantages, limitations and use cases of the signal processing techniques and algorithms for

different WiFi sensing applications. The survey highlights three WiFi sensing challenges:

robustness and generalization, privacy and security, and coexistence of WiFi sensing and

networking. Finally, the survey presents three future trends: integrating cross-layer net-

work stack, multi-device cooperation, and fusion of different sensors, for improving existing

WiFi sensing applications and enabling new sensing opportunities.
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Chapter 3

SignFi: Sign Language

Recognition Using WiFi

3.1 Introduction

According to the World Federation of the Deaf (WFD), there are 70 million deaf people

using sign language as their first language; many hearing people also use sign language

as their first or second language1. In the U.S. alone, there are one half to two million

people using American Sign Language (ASL) in the 1990s [77]. Many colleges accept

ASL as a foreign language credit, and more people are learning and using ASL. Modern

Language Association conducted a survey of course enrollments in languages other than

English from 2,696 institutions in the U.S. [37]. According to the survey, the number of

ASL enrollments is consistently increasing from year 2002 to 2013. There are 109,577 ASL

enrollments at 2013, making ASL the language with the third most enrollments.

There is a huge barrier between the Deaf community and people that do not understand

or know little about sign language. A sign language recognition system would help break

this barrier. There are some sign language recognition systems using cameras [138] or

Kinect [210, 142, 116, 56], but they are subject to lighting conditions. Some systems use

1https://wfdeaf.org
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Leap Motion [26, 104, 124, 21, 105, 31, 97, 142, 210], but they can recognize only finger

gestures and are very sensitive to the distance and displacement of the Leap Motion sensor

and the human. Some systems use gloves and motion sensors, like SignAloud [107], but

they are intrusive and require sensors to be attached on fingers.

Many papers have shown that Channel State Information (CSI) can be used to rec-

ognize hand [118, 2, 100, 144, 154, 136] and finger [79, 146, 219, 100] gestures in a non-

intrusive way. WiFi signals are used to recognize ASL gestures in [136, 79, 100]. These

are the most relevant papers to our work. But they are only evaluated on simple ASL

gestures: 5 hand gestures in [136], 9 finger postures in [79], and 25 hand/finger gestures

in [100]. Our object is to recognize nearly 300 basic sign gestures [141] that are frequently

used in daily life. The recognition algorithm should have high accuracy and low cost during

testing.

Classification algorithms of existing sign language recognition technologies have very

low recognition accuracy when the number of sign gestures increases to nearly 300. Both

papers [79, 100] use k-Nearest Neighbor (kNN) with Dynamic Time Wrapping (DTW)

as the classification algorithm. We test it in a lab environment using CSI traces of 276

sign gestures. The average recognition accuracy of kNN with DTW is only 68% for 276

sign gestures. Moreover, kNN with DTW takes extremely long time in the testing stage

when there are 276 classes. Thus, new classification algorithms are needed for sign gesture

recognition using WiFi.

We propose SignFi to accurately recognize sign gestures using a 9-layer Convolutional

Neural Network (CNN). It collects CSI measurements to capture wireless signal char-

acteristics of sign gestures. After removing noises, SignFi feeds the pre-processed CSI

measurements to a 9-layer CNN for sign gesture classification. We collect CSI traces for

276 sign gestures, each with 20 instances for the lab environment and 10 instances for the

home environment. The average recognition accuracy of SignFi is 98.01%, 98.91%, and

94.81% for the lab, home, and lab+home environment, respectively. Fig. 3.1 compares

SignFi with existing sign language recognition technologies. Most of the existing technolo-

55



0 50 100 150 200 250 300

Number of Sign Gestures

0

0.2

0.4

0.6

0.8

1

R
e

c
o

g
n

it
io

n
 A

c
c
u

ra
c
y

WiFinger*

Melgarejo2014-wheelchair

Melgarejo2014-car

Quesada2015

Chuan2014-kNN

Chuan2014-SVM

Naglot2016

Funasaka2015

Mapari2016

Sun2015

Zafrulla2011-seated

Zafrulla2011-standing

WiSign

DeepASL

SignFi (our design)

Figure 3.1: Comparison of different sign language recognition technologies. More details
are shown in Table 3.1.

gies are tested on simple ASL gestures, such as 9 digital numbers and 26 alphabet letters.

SignFi is the only one that is able to recognize 276 sign gestures with 94.81% accuracy.

In summary, we make the following contributions:

• We propose a new signal processing technique to remove noises from raw CSI mea-

surements. The information about how CSI changes over sub-carriers and sampling

time is recovered.

• We present a 9-layer Convolutional Neural Network for accurate sign gesture recog-

nition using WiFi signals.

• Our design has above 94% accuracy for 8,280 instances of 276 sign gestures from lab

and home environments. We also run tests on 7,500 instances of 150 sign gestures

from 5 different users and get 86.66% accuracy.
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The rest of the chapter is organized as follows. §3.2 summaries existing sign recognition

technologies and compares them with SignFi. §3.3 gives the motivation of sign language

recognition using WiFi signals. The SignFi design, including signal processing and a 9-

layer CNN, is presented in §3.4. §3.5 shows experiment setup and evaluation results. §3.6

summaries the chapter.

3.2 Related Work

There are many sign language recognition systems using different signals. We give a

comparison of different sign language recognition technologies in Table 3.1. Since sign

language recognition needs gesture recognition, we give a summary of gesture recognition

technologies in Table 3.2.

3.2.1 Sign Language Recognition

A brief summary of sign language recognition technologies is given in Table 3.1. There

are many vision-based sign language recognition systems using cameras [138] or the Kinect

sensor [210, 142, 116, 56]. For example, the SignAll prototype [138] uses three cameras

and one depth sensor to track hand gestures. A Kinect sensor, along with color gloves and

accelerometers, are used to recognize 26 alphabet letters in [210]. Only the Kinect sensor

is used in [142, 116, 56] to recognize sign gestures. Paper [142] is able to recognize 73 basic

signs with 86.0% accuracy. These vision-based systems are subject to lighting conditions.

Recently, many papers use the Leap Motion sensor for sign language recognition [104,

124, 21, 105, 31, 97, 142, 210]. As shown in Table 3.1, these systems are tested on signs

for numbers and alphabet letters. These signs only involve simple finger postures. Leap

Motion-based systems can only recognize finger gestures, and the hands must be in a

very small region near the sensor. Some sign recognition systems use sensors, like motion

sensors in SignAloud [107] and surface Electromyography (sEMG) sensors in [132], but

they are intrusive and require sensors to be attached on fingers.
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Table 3.1: Comparison of sign language recognition technologies.

Comparison
Technologies

Device
Used

Intrusive? Granularity
Gesture

Type
Recognition
Algorithma

Number of Sign
Gestures

Recognition
Accuracy

Zafrulla2011 [210]
Kinect,

gloves and
sensors

Yes Hand/Finger Static HMM 26
51.5% (seated);

76.12% (standing)

Sun2015 [142]

Kinect No Hand/Finger Dynamic

SVM 73 86.0%

Pigou2015 [116] CNN 20 91.7%

Huang2015 [56] CNN 25 94.2%

Chuan2014 [21]

Leap Motion No Finger Static

kNN; SVM 26
72.78% (kNN);
79.83% (SVM)

Quesada2015 [124] SVM 10 79.17%

Funasaka2015 [31] SVM 26 82.71%

Mapari2016 [97] MLP 26 90%

Naglot2016 [105] MLP+BP 26 96.15%

DeepASL [26]
Leap

Motion
No Hand/Finger Dynamic RNN 56 94.5%

Savur2015 [132]
sEMG
Sensor

Yes Finger Static SVM 26
91% (offline);

82.3% (real-time)

WiSign [136]

WiFi
(2.4/5 GHz) No

Hand Dynamic SVM 5 93.8%

WiFinger* [79] Finger Static kNN+DTW 9 90.4%

Melgarejo2014 [100] Hand/Finger Dynamic kNN+DTW
25 (wheelchair);

14 (car)
92% (wheelchair);

84% (car)

SignFi (Our
design)

WiFi (5
GHz)

No
Head/Arm/
Hand/Finger

Dynamic CNN 276
98% (lab); 98%

(home); 94%
(lab+home)

a HMM: Hidden Markov Model; SVM: Support Vector Machine; CNN: Convolutional Neural Network; kNN: k Nearest Neighbor;
MLP: Multi-Layer Perceptron; BP: Back-Propagation; RNN: Recurrent Neural Network; DTW: Dynamic Time Warping
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WiFi signals are used to recognize sign gestures in a non-intrusive way in [136, 79, 100].

But they can only recognize simple ASL gestures: 5 hand gestures in [136], 9 digits finger

postures in [79], and 25 hand/finger gestures in [100]. SignFi also uses WiFi signals,

and it is able to recognize 276 very complex sign gestures with 97.03% accuracy. For all

the existing systems in Table 3.1, only [142] is evaluated on a relatively large number of

complex sign gestures. It is able to recognize 73 sign gestures with 86.0% accuracy. These

73 sign gestures do not include signs that look similar in vision. SignFi is able to distinguish

more complex sign gestures that have very similar hand/arm/finger movements, and with

higher accuracy than the Kinect-based solution in [142].

3.2.2 Gesture Recognition

One import part of sign language recognition is gesture recognition. Table 3.2 gives

a comparison of gesture recognition technologies using different signals. Motion sensors,

like accelerometers used in [111, 175], are widely used for hand gesture recognition. Some

papers use accelerometers and gyroscopes to recognize finger gestures [179, 201]. A smart-

watch with accelerometers and gyroscopes is able to measure tendons movements and

identify 37 (13 finger, 14 hand and 10 arm) gestures with 98% accuracy [201]. However,

finger gestures must have the wrist and arm affixed to the chair arm while hand gestures

must have the arm affixed. So finger gestures involve only finger movements, and hand

gestures involve only wrist movements. This is not realistic for sign gesture recognition

wherein a sign gesture may contain all hand, arm and finger movements. Magnetic sensors

are used in [13, 14, 15] and sEMG sensors are used in [132] to recognize finger gestures, but

these methods require sensors attached to the fingers of the signer. Sensor-based gesture

recognition systems are intrusive.

Many gesture recognition systems use audio or wireless signals as the input. Sound-

Wave [45] and AudioGest [130] use audio signals to recognize simple hand gestures with

up to 95% accuracy. Audio signals are used in [106, 209, 167] to track 2-D finger move-

ments with tracking accuracy of 8mm, 1cm, and 4.6mm, respectively. For audio-based
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Table 3.2: Comparison of gesture recognition technologies.

Comparison
Technologies

Signal/Device
Used

Intrusive? Granularity
Number of
Gesturesa Recognition Accuracy

E-Gesture [111]

Motion Sensor Yes

Hand 8 94.6%

Watanabe2016 [175] Hand 15 79%

Serendipity [179] Finger 5 87%

Xu2015 [201] Arm/Hand/Finger 37 98%

FingerPad [13]

Magnetic Sensor Yes Finger N/A N/A (finger tracking)uTrack [14]

Finexus [15]

Savur2015 [132] sEMG Sensor Yes Finger 26
91% (offline); 82.3%

(real-time)

SoundWave [45]

Audio
(18-22 KHz) No

Hand 5 94.7% (home); 94.3% (cafe)

AudioGest [130] Hand 6 94.15%

FingerIO [106] Finger N/A N/A (finger tracking)

Strata [209] Finger N/A N/A (finger tracking)

LLAP [167] Hand/Finger N/A N/A (hand/finger tracking)

SlideSwipe [221] GSM (850 MHz) No Hand 14 87.2%

AllSee [71]
TV (725 MHz);

RFID (915 MHz)
No Hand/Finger 8 94.4% (TV); 97% (RFID)

RF-IDraw[160] RFID (922 MHz) Yes Finger N/A N/A (finger tracking)

WiSee [118]

WiFi (2.4/5 GHz) No

Body/Hand/Leg 9 94%

WiDraw [144] Hand N/A N/A (hand tracking)

WiGest [2] Hand 7 87.5% (1 AP); 96% (3 APs)

WiAG [154] Hand 6 91.4%

WiSign [136] Hand 5 93.8%

WiFinger** [146] Finger 8 93%

Mudra [219] Finger 9 96%

WiFinger* [79] Finger 9 90.4%

Melgarejo2014 [100] Hand/Finger
25 (wheelchair);

14 (car)

92% (wheelchair);

84% (car)

Molchanov2015 [103] FMCW (24 GHz) No Finger 10 94.1%

Soli [83]
Millimeter Wave

(60 GHz)
No Finger 4 92.1%

SignFi (Our
design)

WiFi (5 GHz) No
Head/Arm/
Hand/Finger

276
98% (lab); 98% (home);

94% (lab+home)

a Only WiSign [136], WiFinger* [79], Melgarejo2014 [100], and SignFi (our design) evaluate on sign language gestures.
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gesture recognition, the distance between the device and the hand/finger must be very

short (usually less than 20cm). There are many gesture recognition systems using wireless

signals, including Global System for Mobile communications (GSM) [221], TV [71], Radio-

Frequency Identification (RFID) [71, 160], WiFi [118, 2, 136, 154, 100, 79, 146, 219, 144],

Frequency Modulated Continuous Wave (FMCW) [103], and millimeter wave [83]. Sign

language recognition needs to distinguish finger-level gestures/postures, which are not

tested by SlideSwipe [221], WiSee [118], WiDraw [144], WiGest [2], or WiAG [154]. Al-

though other wireless-based gesture recognition systems can detect finger-level gestures,

none of them are tested on more than 25 gestures. SignFi is able to recognize 276 sign

gestures with above 94% accuracy using WiFi signals.

3.3 Motivation

Our object is to recognize nearly 300 basic ASL gestures that are frequently used in

daily life using CSI. The classification algorithm should have high recognition accuracy and

low computational cost during testing. K-Nearest Neighbor (kNN) with Dynamic Time

Wrapping (DTW) is used in both [79] and [100] to recognize simple sign language gestures.

The question is whether kNN with DTW still works when the number of sign gestures

increases by one order of magnitude.

In terms of computational cost of testing, kNN with DTW is not efficient when there

are nearly 300 possible classes. Although kNN with DTW takes no time to train, it has

extremely high overhead at testing time. For each testing sample, kNN with DTW needs to

compare it with every single training sample. This requires a lot of computation resources

during testing when there are 276 possible classes and each training/testing sample has

3,600 data points. Even for only 25 sign gestures, kNN with DTW needs more than 5

seconds per sign gesture during testing, which is shown later in §3.5.2.

In terms of recognition accuracy, there are three challenges for recognizing nearly 300

sign gestures: (1) the number of sign gestures is large; (2) many different sign gestures
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(a) Sign for ”Father” (b) Sign for ”Mother”

Figure 3.2: Sign words ”Father” and ”Mother” have the same hand gesture and finger
posture, but they need the dominate hand in different locations.

have similar arm, hand, or finger movements; (3) many sign gestures involve complex and

diverse movements. First, no more than 25 sign gestures are tested in [136, 79, 100]. There

are nearly 300 basic sign words that are frequently used in daily life [141]. Second, since

many sign words have similar gestures or postures, it is very hard to distinguish them from

each other. For example, sign words ”Father” and ”Mother” have the same hand gesture

and finger posture, but they require the dominant hand in different locations, as shown

in Fig. 3.2. Finally, many sign gestures involve head, arm, hand, and finger movements.

The dominant hand is not constrained in a small area; it can be near different parts of

the human body.

For the 276 sign gestures used in our experiments, we check their movement types using

the ASL-LEX database [12]. The database gives sign types, path movement types, general

locations, specific locations, and moving/foregrounded fingers of the dominant hand for

nearly 1,000 sign gestures. We manually add the labels for gestures that are not included

in ASL-LEX. Fig. 3.3 shows the number of sign gestures in each category. Many of the 25

sign gestures are evenly distributed in 3 or 4 categories, which makes them different from

each other. For the 276 sign gestures, there are much more gestures in the same category,

which makes them harder to be distinguished. For specific hand location, the 276 sign

gestures have 12 categories that are not covered by the 25 sign gestures. Therefore, it is

much harder to recognize the 276 sign gestures.
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(b) Path Movement Types
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t: thumb finger

i: index finger

m: middle finger

r: ring finger

p: pinky finger

(c) Moving/Foregrounded Fingers
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(d) General Hand Locations
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(e) Specific Hand Locations

Figure 3.3: Moving/foregrounded fingers, general and specific locations of the dominant
hand of the 276 sign gestures used in our experiments. They involve more complex and
diverse movements than the 25 sign gestures.
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Figure 3.4: The average recognition accuracy of kNN with DTW decreases from 96% to
68% when the number of sign gestures increases from 25 to 276.

Can kNN with DTW still work for the 276 sign gestures? To answer this question, we

collect CSI measurements and evaluate kNN with DTW in a lab environment. Fig. 3.4

shows the recognition accuracy of kNN with DTW for 25 and 276 sign gestures. For the

25 sign gestures, kNN with DTW has above 96% accuracy, which is in consistent with

[79, 100]. However, the average accuracy drops to 68% for the 276 sign gestures. Thus, new

algorithms are needed to improve recognition accuracy and reduce cost during testing for

sign language recognition using WiFi signals. For this purpose, we propose SignFi using

a 9-layer CNN as the classification algorithm. It has high recognition accuracy and low

cost during testing.

3.4 SignFi Design

Sign Word
Multiple Linear Regression:
Sampling Time/Frequency 

Offset Removal

Input Signal Processing Convolutional Neural Network Output

Channel State 
Information csi_raw score

csi_abs
csi_ang

pkt

WiFi 

Packets
Raw CSI Pre-processed CSI

Classification Score 

for each Sign Word

w

b

+
w

b

+

WiFi Preamble Unwrapped CSI Phases

Figure 3.5: Overview of SignFi.

The SignFi overview is shown in Fig. 3.5. SignFi collects CSI measurements by WiFi
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preambles. Raw CSI measurements are pre-processed to remove noises. Both amplitude

and phase of the pre-processed CSI are fed to a 9-layer CNN for sign classification. In this

paper, we mainly focus on the classification algorithm. CSI measurements are manually

segmented for each sign gesture. We use the manually segmented CSI traces for both the

proposed and existing classification algorithms for fair comparison. We leave automatic

time segmentation to future work.

3.4.1 SignFi Signal Processing

We need to remove noises before feeding raw CSI measurements to the classification

algorithm. In real-world WiFi systems, the sampling clocks and carrier frequencies of the

transmitter and receiver are not synchronized. This leads to Sampling Time Offset (STO)

and Sampling Frequency Offset (SFO) which introduce random phase shifts.

In our experiments, we use a linear antenna array with 3 transmit antennas. In this

case, the CSI of the ith antenna is

hi = he−j2π(i−1)∆ cosψ =

(
N∑
n

ane
−j2πdn/λ+jφn

)
e−j2π(i−1)∆ cosψ, (3.1)

where h is the multi-path CSI in equation (3.1), ∆ is the transmit antenna separation

normalized to the unit of carrier wavelength, and ψ is the angle of departure with respect

to the transmit antenna array [148]. CSI hi captures the impact of multi-path channel

propagation and the arrangement of transmit antenna array. The transmit antenna array

adds the term (i − 1)∆ cosψ to the CSI phase of the ith transmit antenna. We can re-

write the phase of hi as ∠hi = Φi − 2π(i − 1)∆ cosψ, where Φi is the CSI phase caused

by multi-path channel propagation. Our interest is to get the CSI phase ∠hi for each

sub-carrier.

The measured CSI phase of the kth sub-carrier of the ith transmit antenna is

Θi,k = ∠hi,k − 2πfδ(k − 1)ξ = Φi,k − 2π(i− 1)∆ cosψ − 2πfδ(k − 1)ξ, (3.2)
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Figure 3.6: Raw CSI measurements do not capture how CSI phases change over sub-
carriers and sampling time.

where Φi,k is the CSI phase caused by multi-path channel propagation, fδ is the frequency

spacing between two consecutive sub-carriers, and ξ is the phase offset caused by STO

and SFO. As shown in Fig. 3.6a, the unwrapped CSI phases of each transmit antenna

have different slopes caused by the term (i − 1)∆ cosψ in equation (3.1). We estimate ξ

by minimizing the linear fitting error across K sub-carriers and N transmit antennas

ξ̂ = arg min
ω

∑
i,k

(Θi,k + 2π(i− 1)η + 2πfδ(k − 1)ω + β)2, (3.3)

where η, ω and β are the fitting variables of multiple linear regression. The pre-processed

CSI phase after removing random phase shifts is

∠̂hi,k = Θi,k + 2πfδ(k − 1)ξ̂. (3.4)

Since the measured CSI phases are wrapped in the range of [−π, π], raw CSI mea-

surements give wrong information about how CSI phases change over sub-carriers and

sampling time. As shown in Fig. 3.6b, raw CSI phases change periodically from −π to

π, while pre-processed CSI phases change nearly linearly in a wider range. Similarly,

CSI phase variations over time are also corrected after CSI pre-processing. As shown in
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Fig. 3.6c, raw CSI phases of the first and second transmitting antenna change similarly,

but they have very different changing patterns for pre-processed CSI phases. Raw CSI

phases give redundant information, and the pre-processed CSI phases recover the informa-

tion about how CSI phases change over sub-carriers and sampling time. The pre-processed

CSI phases can be used by other CSI-based sensing applications.

3.4.2 Gesture Recognition Algorithm

Input Convolution + 

Batch Normalization +

Rectified Linear Unit

Average Pooling +

Dropout

SoftmaxFully 

Connected

Output

… …

Finish

Go

Help

Like

Continue

…

size: 200x60x3

kernelSize: 3x3
numKernels: 3

Stride: [1,1]
Padding: [1,1]

poolSize: 3x3
Stride: [3,3]

Padding: [0,0]
dropoutProb: 0.6

outputSize: 276

…

…

…

Figure 3.7: Neural architecture and parameter settings of the 9-layer CNN of SignFi.

SignFi uses a 9-layer CNN as the classification algorithm. CNNs are able to auto-

matically learn parameters and features to find effective solutions for complex problems.

Besides, CNNs are very fast to run in the inference stage even when the number of classes

is very large. A neural network can be organized into multiple layers. The ith layer of a

n-layer neural network is given by

y(i) = g(i)
(
W (i)x(i) + b(i)

)
, (3.5)

where y(i) is the output, x(i) is the input, W (i) is the weight matrix, b(i) is the bias vector,

and g(i) is the activation function [40]. The output of the previous layer is the input of
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the current layer, i.e., x(i) = y(i−1). For the first layer, x(1) = x is the original input. For

the last layer, y(n) = y is the final output. For classification problems, y contains labels

in corresponding to the input x. A CNN is simply a neural network with at least one of

its layers involving convolution operations. Fig. 3.7 shows the architecture and parameter

settings of the 9-layer CNN used in SignFi.

Neural networks learn the weights W and biases b, using an optimization algorithm,

at each layer to minimize the cost function. SignFi uses Stochastic Gradient Descent with

Momentum (SGDM) to update the weights and biases. It takes small steps in the direction

of the negative gradient of the loss function:

θl+1 = θl − α∇E(θl) + γ(θl+1 − θl), (3.6)

where θ is the parameter vector, l is the iteration index, α is the learning rate, E(θ) is

the loss function, and γ is the momentum term [40]. The momentum term γ controls

the contribution of the previous gradient step to the current iteration. SignFi uses a

momentum term of 0.9 and a learning rate of 0.01. To prevent overfitting, SignFi uses L2

regularization to add a regularization term for the weights to the loss function E(θ). The

regularized loss function is

ER(θ) = E(θ) + λΩ(W ), (3.7)

where λ is the regularization factor, and Ω(W ) = W TW /2 is the regularization function.

The regularization factor of SignFi is 0.01.

Input Layer. The input layer converts pre-processed CSIs of each sign gesture into

a multi-dimensional tensor, which is the input format required by the CNN. This layer

does not learn any parameters; it just prepares data input for the following layers. For

SignFi, the size of each CSI matrix is size(csi) = (1, 3, 30). There are 200 CSI samples

for each sign gesture, so the size of CSI trace for each sign gesture is (3, 30, 200). The CSI

amplitude and phase, each with size of (3, 30, 200), of each sign gesture are combined and

reshaped to a tensor of size (200, 60, 3) by the input layer.
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Convolutional Layer. The convolutional layer replaces matrix multiplications with

convolution operations. SignFi uses two-dimensional convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (3.8)

where I is the input, andK is the kernel [40]. Fig. 3.8 shows an example of two-dimensional

convolution with a 2×2 kernel. The convolutional layer divides the input into multiple re-

gions. Within each region, it computes a dot product of the input with some weights. The

matrix containing the weights is called a kernel. The convolutional layer goes through the

input vertically and horizontally with the same kernel. The step size of the convolutional

layer moves each time is called a stride. SignFi uses three 3× 3 kernels and stride of 1 in

both vertical and horizontal directions. To preserve the output size of the convolutional

layer and ensure all inputs are used for the same number of times, SignFi uses a padding

of 1 in both vertical and horizontal directions. It pads a column/row of zeros around the

edges of the original input.
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size: 2×2
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Figure 3.8: An example of two-dimensional convolution with a 2×2 kernel and stride of
1, reproduced from [40].

The number of kernels controls the number of channels in the output of the convolu-

tional layer. For each input region, the convolutional layer adds a bias term to the dot

product of the input and the kernel. The kernel, along with its bias term, is also called
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a feature map. The convolutional layer learns the feature maps while going through the

input. Since the convolution layer shares the same feature map for multiple input regions,

it significantly reduces computation overhead for both training and testing. Convolutional

layers are very effective and widely used in complex problems such as computer vision and

natural language processing tasks. The impact of convolution on recognition accuracy of

SignFi is shown later in §3.5.3.
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Figure 3.9: Impact of batch normalization, ReLU, pooling, and dropout on recognition
accuracy using leave-one-subject-out validation for 25 sign gestures and 5 users.

Batch Normalization Layer. Batch normalization is used to speed up network

training and reduce the sensitivity to network initialization. It makes the optimization

problem easier. This allows a larger learning rate, making the network training much

faster. It also improves generalization of the neural network when the training dataset
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contains data from different users. It first normalizes its inputs xi over a mini-batch. The

normalized activation is

x̂i =
xi − µB√
σ2
B + ε

(3.9)

where µB and σB are the mean and variance of the mini-batch [63]. In case of near-zero

variances, a very small number ε, which is 10−6 in SignFi, is used to improve numerical

stability. The output of the batch normalization layer is yi = κx̂i + ρ, where κ is the scale

factor, ρ is the offset, and x̂i is the normalized activation in equation (3.9) [63]. Both

κ and ρ are learnable parameters that are updated during training. SignFi shuffles the

training data after each training epoch to take full advantage of batch normalization

Fig. 3.9a shows the impact of batch normalization on recognition accuracy. The batch

normalization layer helps prevent overfitting when the network sees a new user’s data that

is not shown in the training stage. Without batch normalization, the neural network tends

to overfit: the recognition accuracy is only 66% while training accuracy is nearly 100%.

With batch normalization but without shuffling the training data, the recognition accuracy

only improves by 1%. Batch normalization along with shuffling improves recognition

accuracy by 22%.

Rectified Linear Unit Layer. The Rectified Linear Unit (ReLU) layer provides

fast and effective training for deep neural networks, since its activation function is easy

to compute and optimize. It has been shown more effective than traditional activations,

such as logistic sigmoid and hyperbolic tangent, and is widely used in CNNs [40]. The

ReLU layer performs a threshold operation to each input, where any input value less than

zero is set to zero, as shown in equation (3.10). The size of the input is not changed after

the ReLU layer.
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ReLU:

g(x) =


x if x ≥ 0

0 if x < 0

(3.10)

Leaky ReLU:

g(x) =


x if x ≥ 0

scale ∗ x if x < 0

(3.11)

Clipped ReLU:

g(x) =



τ if x > τ

x if 0 ≤ x ≤ τ

0 if x < 0

(3.12)

There are some modified ReLUs, like leaky ReLU in equation (3.11) and clipped ReLU

in equation (3.12), but they have lower recognition accuracy than ReLU in our experi-

ments. As shown in Fig. 3.9b, ReLU has 6% to 9% higher accuracy than leaky ReLU and

6% to 14% higher accuracy than clipped ReLU. The possible reason is that leaky ReLU

introduces some noises when x < 0 and clipped ReLU loses some useful information when

x > τ where τ is the clipped threshold.

Average-Pooling Layer. The average-pooling layer reduces the number of connec-

tions to the following layers by down-sampling. It returns the average of the inputs within

a rectangular region. The pooling size of SignFi is 3 × 3. Since there is no weight or

bias, it does not provide any learning abilities. The major goal of average-pooling is to

reduce the number of parameters to be learned in the following layers. It also helps reduce

overfitting. Max-pooling returns the maximum, instead of the average, of selected inputs,

but it has 10% lower recognition accuracy than average-pooling, as shown in Fig. 3.9c.

The convolutional layer, ReLU layer, and average-pooling layer are usually combined

into one unit. There could be multiple of these units connecting with each other for large

and complex datasets. We tried two and three of these units in our experiments, but get

much lower recognition accuracy than using one unit.

Dropout Layer. The dropout layer is used to prevent overfitting. It randomly

replaces a portion of its inputs with zero. In other words, it drops some randomly selected

inputs, with a given dropout probability, and all the corresponding connections during

training. As shown in Fig. 3.9d, the dropout layer with dropout probability of 0.6 improves

recognition accuracy from 59% to 88%. Fig. 3.10 shows an example of the training and
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testing process for SignFi with and without dropout. SignFi without dropout tends to

overfit, since the training accuracy reaches 100% while the testing accuracy remains around

50% and does not increase much after the 100th iteration. Similar to the average-pooling

layer, the dropout layer does not provide any learning abilities.
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Figure 3.10: Training and testing accuracy. SignFi w/o dropout tends to overfit; there
is a huge gap between training accuracy and testing accuracy.

Fully-Connected Layer. The fully-connected layer connects all of its neurons to

the neurons in the previous layer, i.e., the dropout layer. The effect is to combine all the

features learned by previous layers to classify the input. The size of fully-connected layer

is equal to the number of all possible classes, i.e., 276 in our experiments.

Softmax Layer. A softmax layer and then a classification layer must follow the

fully-connected layer for classification problems. The softmax layer applies the softmax

function to the last fully connected layer:

P (cr|x, θ) = g(a(x, θ))r =
ear(x,θ)∑k
j=1 e

aj(x,θ)
=

P (x, θ|cr)P (cr)∑k
j=1 P (x, θ|cj)P (cj)

, (3.13)
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where g(a)r = ear/
∑k

j=1 e
aj is the softmax function with 0 ≤ g(a)r ≤ 1 and

∑k
j=1 g(a)j =

1. Moreover, ar(x, θ) = ln(P (x, θ|cr)P (cr)), where P (x, θ|cr) is the conditional probability

of the given class r, P (cr) is the class prior probability, and θ is the parameter vector.

Classification Layer. The classification output layer takes the values from the soft-

max function and assigns each input to one of the k mutually exclusive classes using the

cross entropy function

E(θ) = −
n∑
i=1

k∑
j=1

tij ln yj(xi, θ), (3.14)

where tij represents that the ith sample belongs to the jth class, and θ is the parameter

vector. yj(xi, θ) is the output for the ith sample, which is the value from the softmax

function. It represents the probability that the network associates the ith input with class

j, i.e., P (tj = 1|xi).

3.5 Evaluation

In this section, we first give the experiment setup, including measurement layout and

displacements, data collection procedure, and WiFi settings. We compare SignFi with

existing classification algorithms in different environments. Two performance metrics,

recognition accuracy and time consumption of training and testing, are evaluated. We also

check the impact of convolution, signal processing, and sampling rate on the recognition

accuracy of SignFi. Finally, we run user independence test for 150 sign gestures performed

by 5 different users.

3.5.1 Experiment Setup

We collect CSI traces for 276 sign gestures that are frequently used in daily life. CSI

traces are measured in both lab and home environments. Fig. 3.11 shows the measurement

settings for the lab and home environments. The dimension of the lab and home is

13m×12m and 4.11m×3.86m, respectively. The lab has more surrounding objects, leading

to a more complex multi-path environment than the home. The distance between the AP
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Figure 3.11: Floor plan and measurement settings of the lab and home environments.

and STA is 230cm and 130cm, respectively, for the lab and home environment. For the

home environment, the transmit antenna array is orthogonal to the direction from the

AP to STA. For the lab environment, the angle between the transmit antenna array and

the direct path is about 40 degrees. The major differences of these two environments are:

(1) dimension of the room, (2) distance between the AP and STA, (3) angle between the

transmit antenna array and the direct path, and (4) multi-path environments.

Fig. 3.12 shows the experiment setup in the lab environment. During the experiments,

each user first watches video on [141] to learn how to sign for one word. As long as the

user feels comfortable to conduct the sign gesture smoothly, we begin to collect CSI traces

for this sign gesture. The user repeats the sign gesture in front of a WiFi STA, which

exchanges packets with a nearby WiFi AP. The user begins to make the first sign as seeing

“Sign Starts ... 1” on the screen of the STA. At the same time, the AP sends 802.11n

packets periodically to the STA. The STA collects CSI measurements while the person

is making sign gestures. The user repeats the same sign gesture until the screen of the

STA shows “Sign Starts ... [n]”. Here n could be 11 or 21 depending on whether 10

or 20 gesture instances are collected. We repeat this procedure, i.e., watching the video,

repeating the sign gesture, and collecting CSI traces, for all the sign gestures.
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WiFi Receiver

WiFi Transmitter

Figure 3.12: Experiment setup for the lab environment.

Table 3.3: Number of sign words in different categories used in the experiments.

Common Animals Colors Descriptions Family Food Home People Questions School Time Others Total

16 15 12 32 31 54 17 13 6 26 31 23 276

Table 3.3 summaries the 276 sign words used in our experiments divided into different

categories. We select the 253 basic sign words from [141]. These sign words are the most

important words for ASL beginners and are frequently used in daily life. Some sign words

have different gestures; we only select one of the gestures that have the same meaning. We

do not select compound signs that are composed of more than three signs. For comparison,

we also run experiments on 25 sign gestures from [100]. Two sign words, “phone” and

“kitchen”, are already included in the 253 basic sign gestures. In total, 276 sign gestures

are tested in our experiments.

The WiFi AP and STA are two laptops with Intel WiFi Link 5300 installed. CSI

measurements are collected using openrf [76], which is modified based on the 802.11n CSI

tool [51]. The WiFi AP and STA operate at 5GHz, and the channel width is 20MHz.

Note that the 802.11n CSI tool only provides CSI values of 30 sub-carriers even though a

20MHz WiFi channel has 52 sub-carriers. The AP has 3 external antennas, and the STA
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has 1 internal antenna. The transmitting power is fixed at 15dBm. All experiments are

conducted in the presence of other WiFi signals. As shown in Fig. 3.12, the user is not on

the direct path between the STA and AP. This is a normal case in real life. It also makes

sign gesture recognition hard, since the strength of reflected signals is much lower than

that of the direct path signals. Training and testing are performed by a Linux desktop

with an 8-core i7-4790 CPU at 3.60GHz and 15.6GB of RAM.

Table 3.4: Data collection summary.

User Age Weight/Height
Data Collection Date (#
Signs × # Repetitions)

Gesture
Duration

#
Instances

Lab

User 1 39 90kg/170cm
Oct. 18, 2017 (25×10);
Nov. 2, 2017 (125×10)

1s-2.5s 1,500

User 2 28 61kg/174cm
Oct. 18, 2017 (25×10);
Oct. 30, 2017 (125×10)

0.5s-1.5s 1,500

User 3 31 55kg/168cm
Oct. 21, 2017 (25×10);
Nov. 6, 2017 (125×10)

0.5s-1.5s 1,500

User 4 26 65kg/180cm
Oct. 23, 2017 (25×10);
Oct. 31, 2017 (125×10)

1s-2.5s 1,500

User 5a 29 68kg/171cm
Jul. 18, 2017 (166×20);
Jul. 19, 2017 (110×20)

0.5s-1.5s 5,520

Home User 5 29 68kg/171cm

Jun. 8, 2017 (32×10);
Jun. 25, 2017 (68×10);
Jul. 4, 2017 (100×10);
Jul. 11, 2017 (25×10);
Jul. 12, 2017 (51×10)

0.5s-1.5s 2,760

a Compared with user 1 to 4, user 5 has different experiment settings, such as laptop dis-
placement, surrounding objects, desk and chair arrangements, etc., even though they are
in the same lab environment. The data collection time of user 5 is 3-4 months earlier than
that of user 1 to 4, so it is hard to recover the same settings.

We collect CSI traces from 5 male users who do not know how to sign before the

experiments. Table 3.4 shows the summary of data collection. Different users may have

different gesture durations and slightly different hand/finger movements for the same sign

word. For user 1 to 4, we collect CSI traces only in the lab environment. Each of the 4

users makes 150 sign gestures with each gesture repeated for 10 times. There are 6,000

gesture instances for these 4 users. For user 5, we collect CSI traces in both the lab and
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home environments. Each sign gesture has 20 instances for the lab environment and 10

instances for the home environment. In total, there are 8,280 gesture instances for user 5.

CSI traces, labels, and videos of the 276 sign words are available for download2.

3.5.2 Comparing SignFi with Existing Methods

We compare SignFi with the classification algorithm kNN with DTW used in [79, 100].

The input signals used in [100] are the Received Signal Strength (RSS) and the amplitude

and phase of 5 sub-carriers with the least average cross-correlation. We feed the same input

signals to kNN with DTW. CSI traces of different transmit antennas provides different

results for kNN with DTW. We select the transmit antenna that has the highest recognition

accuracy. We also use CSI traces from all the transmit antennas and all the 30 sub-carriers

as input signals. To check the impact of input signals on CNN, we also run CNN using CSI

traces from 5 or 30 sub-carriers. Table 3.5 gives a summary of the classification algorithm

and CSI size for each label used in our comparison. In this section, we only use the data of

user 5. We run 5-fold cross validation using 5,520 instances from the lab, 2,760 instances

from the home, and 8,280 instances from the lap+home environment.

Table 3.5: CSI size of different recognition algorithms (Fig. 3.13, 3.14, and 3.15).

Label Algorithm CSI Size

kNN+DTW+5subc kNN+DTW (1,1,5)

kNN+DTW+5subc+MIMO kNN+DTW (1,3,5)

kNN+DTW+30subc kNN+DTW (1,1,30)

kNN+DTW+30subc+MIMO kNN+DTW (1,3,30)

CNN+5subc CNN (1,1,5)

CNN+30subc CNN (1,1,30)

SignFi CNN (1,3,30)

Recognition Accuracy. Recognition accuracy is defined as the number of correctly

classified instances divided by the number of all testing instances. Fig. 3.13 shows recogni-

2https://yongsen.github.io/SignFi/
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tion accuracy results in different environments. SignFi provides high recognition accuracy

for all the datasets. For the 276 sign gestures, the average recognition accuracy of SignFi is

98.01%, 98.91%, and 94.81% for the lab, home, and lap+home environment, respectively.

With only 5 sub-carriers of non-MIMO CSI traces, CNN has average accuracy of 80.74%,

93.37%, and 83.00% for the lab, home, and lab+home environment, respectively. Using

the same input, with either 5 or 30 sub-carriers of non-MIMO CSI traces, CNN has much

higher accuracy than kNN with DTW in the lab and lab+home environments. For the

lab+home environment, SignFi still has 94.81% accuracy even though the lab and home

have very different experiment settings.
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Figure 3.13: Recognition accuracy in different environments.

For the 25 sign gestures, all classification algorithms have over 95% recognition accu-

racy for all the three environment settings. For the 276 sign gestures, the accuracy of kNN

with DTW decreases dramatically for the lab and lap+home environments. For the lab

environment, the average recognition accuracy is only 68.33% and 70.20% for kNN with

DTW using CSI traces of 5 and 30 sub-carriers, respectively. Adding MIMO CSIs further

decreases the average accuracy to 51.93% and 48.30%. The major reason is that the lab

has a complex multi-path environment, which heavily impacts MIMO. Another reason is

that the distance between the WiFi AP and STA in the lab is longer than that of the home

environment, so the strength of reflected signals is lower. This leads to more noise signals

for the lab environment. The average accuracy of kNN with DTW is increased to 82% for

the home environment. Using both MIMO and 30 sub-carriers of CSI traces, the accuracy
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of kNN with DTW is improved to 88.90%. The reason is that the home environment has

less multi-path signals and shorter distance between the AP and STA.
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Figure 3.14: Recognition accuracy in different categories for the lab+home environment.
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To get a better understanding about sign gesture recognition, we break down the

276 sign gestures into different categories and check the recognition accuracy in each

category, as shown in Fig. 3.14. All the evaluation results in Fig. 3.14 are from the

lab+home environment. The number of sign gestures in each group of each category for

the 276 sign gestures is shown in Fig. 3.3 in §3.3. All the sign gestures in the same group

of each category has similar patterns. The evaluation results show that: (1) whether

the classification algorithms can distinguish similar sign gestures; (2) what kinds of sign

gestures are hard to recognize. SignFi has high accuracy for all groups in each category.

This means that even for sign gestures with very similar patterns, SignFi is still able to

distinguish them from each other. For sign types in Fig. 3.14a and path movement types

in Fig. 3.14b, there is no significant difference for each group. For Fig. 3.14c, kNN with

DTW has the lowest accuracy when there are three moving/foregrounded fingers, “mrp”

and “imr”. For general hand locations in Fig. 3.14d, sign gestures with the dominate

hand near the non-dominate hand are the hardest to recognize, for both SignFi and kNN

with DTW. For general hand location of “Hand” and specific hand location of “Neck”,

the recognition accuracy of kNN with DTW is only 40% and 51% using 5 and 30 sub-

carriers’ CSI, respectively. For specific hand location of “HeadTop”, kNN with DTW

has comparable accuracy as SignFi, as shown in Fig. 3.14e. For all other groups in each

category, kNN with DTW has much lower accuracy than SignFi.

Time Consumption of Training and Testing. Fig. 3.15 shows the time consump-

tion of training and testing of different classification algorithms with different CSI inputs.

The testing time of SignFi is much shorter than that of kNN with DTW. For kNN with

DTW, the testing time of each sign gesture is 33.36ms using 5 sub-carriers of non-MIMO

CSI traces. It proliferates to 5,147.20ms if the input has 30 sub-carriers of MIMO CSI

traces. The testing time of SignFi is 0.62ms. However, SignFi does have longer train-

ing time than kNN with DTW. The maximum training time for kNN with DTW is only

0.046ms. SignFi takes 8.28ms for CSI processing and CNN training for each sign ges-

ture. It takes 0.05ms and 2.12ms for CNN to finish training using 5 and 30 sub-carriers
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Figure 3.15: Time consumption of training and testing for each sign gesture.

of non-MIMO CSI traces, respectively. Since training usually can be performed offline

and testing must be done in real-time, it is more important to reduce the testing time.

Therefore, SignFi is more practical than kNN with DTW to be implemented in real-time.

3.5.3 More Discussions on SignFi

In this section, we investigate the impact of convolution, signal processing, and sam-

pling rate on the recognition accuracy of SignFi. We run 5-fold cross validation using the

data of 276 sign gestures from user 5.

Impact of Convolution. The reason we use CNN as the classification algorithm

is that CNN has higher recognition accuracy than other neural networks that do not

have the convolutional layer. As shown in Fig. 3.16a, the recognition accuracy of SignFi

without convolution is 84.64%, 81.70%, and 70.34% for the lab, home, and lab+home

environment, respectively. For the lab+home environment, the accuracy improvement

due to convolution is 24.47%, which is the highest among all the three environments.

The evaluation results show that the convolution layer has a significant impact on the
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Figure 3.16: Impact of convolution, signal processing, and sampling rate of SignFi.

recognition accuracy of SignFi.

Impact of Signal Processing. We also check the impact of SignFi signal processing

that removes noises from raw CSI measurements, as shown in Fig. 3.16. Without SignFi

signal processing, the average recognition accuracy is 95.72%, 93.98%, and 92.21% for

the lab, home, and lab+home environment, respectively. SignFi signal processing has the

highest accuracy improvement, which is 4.93%, for the lab environment. The reason is

that SignFi signal processing only removes random phase offsets. It does not filter out

other noise signals. The layout, surrounding environment, and displacement of the AP

and STA of the lab and home are very different, leading to very different noise signals.

Impact of Sampling Rate. Another import factor that influences the recognition

accuracy of SignFi is the CSI sampling rate. For all the previous evaluation results, the

WiFi STA measures CSI about every 5ms. We change the sampling rate and run SignFi

with 5-fold cross validation for the CSI dataset of the lab environment. The evaluation

results are shown in Fig. 3.16b. When the sampling time interval increases from 5ms to

10ms, the average recognition accuracy decreases from 98.01% to 95.72%. SignFi still has
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high recognition accuracy using 10ms of sampling interval, considering there are 5,520

instances of 276 sign gestures. When the sampling time interval increases to 20ms, the

average recognition accuracy decreases to 91.12%. Based on these results, the sampling

time interval should be no larger than 20ms to get high recognition accuracy. For sampling

interval of 40ms and 80ms, the average accuracy further decreases to 87.05% and 84.17%.

3.5.4 User Independence Test

This section gives user independence test using CSI traces of 150 sign gestures from 5

different users. There are 7,500 gesture instances in total. We run self test, 5-fold cross

validation, and leave-one-subject-out validation. For self test, wherein training and testing

only include CSI traces from the same user, the recognition accuracy for each user is above

98%, as shown in Fig. 3.17a. In §3.5.4, we use CSI traces of just user 1 to 4 to separate the

impact of user 5. As shown in Table 3.4, CSI traces of user 5 were collected three to four

months before user 1 to 4. We were unable to use the exact same experiment settings,

such as laptop displacement, surrounding objects, desk and chair arrangements, etc., for

user 1 to 4 and user 5. User 1 to 4 have almost the same experiment settings, which are

different from that of user 5. We also show the impact of different data collection dates

and settings by including CSI traces of user 5 in §3.5.4.
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Figure 3.17: Recognition accuracy in different environments.

Users with Similar Data Collection Dates and Settings. We first run 5-fold

cross validation using CSI traces of user 1 to 4. In other words, CSI traces from different
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users are mixed together and randomly divided into training and testing datasets. The

average recognition accuracy is 96.68%, as shown in Fig. 3.17b. This means that SignFi

is robust to different users, considering these users have different body sizes and gesture

durations. For leave-one-subject-out cross validation, the recognition accuracy is in the

range of 73.73% and 79.80%, and the average recognition accuracy is 76.96%. Compar-

ing with 5-fold cross validation, the recognition accuracy of leave-one-subject-out cross

validation decreases by 20%.

Users with Different Data Collection Dates and Settings. When CSI traces of

user 5 are included, the recognition accuracy of 5-fold cross validation decreases to 86.66%,

as shown in Fig. 3.17c. This means that experiment settings have a significant impact on

SignFi. For leave-one-subject-out validation, the average accuracy drops to 67.36%. The

accuracy of user 1 to 3 decreases by 13.2%, 4%, and 4.7%, respectively. The recognition

accuracy of user 5 is only 49.3%. This is not adequate for practical usage, but is still very

good compared to a random algorithm, which only has 1/150=0.06% accuracy. From the

evaluation results, we can see that different users and different experiment settings have

a great impact on SignFi. When there is a new user, we may need the user first conduct

some sign gestures to train the neural network to get a good recognition accuracy.

3.6 Chapter Summary

This chapter presents a sign language recognition system, SignFi, to recognize fre-

quently used sign gestures using WiFi signals. SignFi measures CSI by WiFi packets and

uses a 9-layer CNN as the classification algorithm. The average recognition accuracy of

SignFi is 98.01%, 98.91%, and 94.81% for the lab, home, and lab+home environment,

respectively. For 7,500 instances of 150 sign gestures performed by 5 different users, the

recognition accuracy of SignFi is 86.66%.
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Chapter 4

Location and Person Independent

Activity Recognition with WiFi,

Deep Neural Networks and

Reinforcement Learning

4.1 Introduction

In recent years, WiFi signals are widely used for non-intrusive sensing purposes.

WiFi-based sensing applications are easy to deploy and have low costs by reusing the

infrastructure that is designed for wireless communications. Multiple-Input Multiple-

Output (MIMO) and Orthogonal Frequency-Division Multiplexing (OFDM) are two of

the most important technologies to provide high performance for modern WiFi systems.

MIMO-OFDM provides Channel State Information (CSI) which represents the power

attenuation and phase shift from the transmitter to the receiver at certain carrier fre-

quencies. In addition to improving the networking performance of WiFi networks, CSI

can also be used for WiFi-based sensing applications since it captures how WiFi sig-

nals travel from the transmitter to the receiver through surrounding objects and hu-
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mans. For example, when a person is moving or doing different activities around the

WiFi transmitter or receiver, the reflected WiFi signals are changed accordingly. The

CSI amplitude and phase are also impacted, and these CSI variations can be fed to

pre-defined models or machine learning algorithms for human motion detection [157,

110, 52, 214, 216, 147, 42, 87, 38, 81, 30, 202, 89, 90, 5, 232, 91] and activity recogni-

tion [6, 23, 27, 30, 33, 43, 66, 158, 165, 166, 173, 170, 176, 189, 211, 25, 125, 192, 29].

For WiFi-based activity recognition to be practical in real-world scenarios, the recog-

nition algorithm should be location and person independent. In the training stage, the

recognition algorithm is usually trained in a controlled environment. During testing in

real-world deployments, the location and orientation of WiFi devices are usually unknown

and testing persons are unseen during training. However, it is challenging for WiFi-based

activity recognition to be robust in different scenarios, since WiFi signals are very sensi-

tive to different factors. CSI is impacted by not only human activities but also the static

and motion status of WiFi transmitters, receivers, and the surrounding environment. For

example, the location and orientation of WiFi receivers and target persons have a great

impact on how CSI amplitude and phase change. When a recognition algorithm is trained

or modeled by CSI measurements from a certain WiFi receiver, it is challenging to make

the algorithm still work for another WiFi receiver placed at a different location with dif-

ferent antenna orientations. Moreover, different persons may have different motion and

activity patterns, so models trained on one person may not work for another person whose

data are not seen during training or modeling.

As shown in Fig. 4.1, CSI patterns of the same activity are very different for different

persons or different receiver locations/orientations. Modeling-based and instance-based

learning algorithms do not work if they are tested with unseen persons or unknown receiver

locations/orientations. For example, when person 1 changes the status from standing

to sitting, the CSI amplitude of receiver 1 decreases from ∼25dB to ∼10dB. But for

receiver 2, the CSI amplitude changes from ∼22dB to ∼20dB. Moreover, there are no

big differences for different activities for receiver 2 of person 2. Therefore, traditional
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Figure 4.1: CSI amplitude of TX0/RX0 of the 1st subcarrier from two WiFi devices for
different activities performed by two persons. Different persons or receivers have different
CSI patterns. It is challenging to distinguish different activities if the recognition algorithm
is trained or modeled with CSI data of receiver 1 for person 1 and tested with CSI data
of receiver 2 for person 2.

recognition algorithms can hardly work if they are trained or modeled with CSI data of

receiver 1 for person 1 and tested with CSI data of receiver 2 for person 2.

WiFi-based activity recognition can reuse Convolutional Neural Networks (CNNs) that

have high performance for computer vision tasks. But reusing existing CNNs may result

in low performance for WiFi-based activity recognition, since CSI has some unique char-

acteristics that are different from images. CSI has much smaller spatial resolutions than

images and contains noises and interferences from all directions. CSI amplitude and phase

are very sensitive to the surrounding environment and the location and orientation of WiFi

receivers and target persons. Therefore, pre-trained CNNs have low accuracy for unseen

persons or unknown receiver locations and orientations. As shown in Fig. 4.2, depthwise

separable 2D convolutions, or SeparableConv2D, achieves 99% accuracy when the data of

testing persons and receivers are seen during training. But the accuracy drops to 84% for

unseen persons and 62% for unseen persons and unknown receiver locations and orienta-
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Figure 4.2: Accuracy comparison of different deep learning solutions for WiFi-based
activity recognition. The recognition accuracy of SeparableConv2D drops dramatically for
unseen persons or unknown receiver locations & orientations. The accuracy is significantly
improved by the proposed design with reinforcement learning and state machine.

tions. Therefore, it is necessary to find the suitable CNN types, neural architectures and

learning parameters that are specially designed for CSI data.

In this chapter, we propose a novel deep learning solution for robust WiFi-based ac-

tivity recognition. The proposed design contains three neural networks: a 2D CNN as

the recognition algorithm, a 1D CNN as the state machine, and a Recurrent Neural Net-

work (RNN) with Long Short-Term Memory (LSTM) as the reinforcement learning agent

for neural architecture search. In summary, the proposed design has the following three

components.

Recognition Algorithm: 2D CNN. To learn location and person independent fea-

tures from different perspectives of 4D CSI tensors in time, spatial, and frequency

domains.

State Machine: 1D CNN. To learn temporal dependency information from previous

classification results for improving the recognition performance of static and transi-
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tion activities.

Neural Architecture Search: RNN with LSTM. To optimize the neural architec-

ture of the recognition algorithm by reinforcement learning.

The combination of these three deep learning components provides location and person

independent WiFi-based activity recognition with the following properties.

Robust: It is independent of the locations, placements, and orientations of WiFi devices

and target persons. The pre-trained model also works when WiFi receivers are

placed at unknown places with uncertain orientations and antenna placements and

for new persons whose data are not seen during training.

Automatic: It requires very little human efforts for data collection, ground truth label-

ing, and training. It only needs simple CSI pre-processing and does not require man-

ual efforts for ground truth labeling, feature engineering, signal processing, learning

parameters tuning, or neural architecture search.

Reusable and adaptable: It can be trained on-the-fly on additional data and pre-

trained models without restarting the training process from scratch. It can evolve

over time as there are more data measured in new scenarios with different settings.

The proposed design is evaluated by CSI measurements from real-world scenarios.

In total, there are 14555 instances of 5 activities, including sitting, standing, sit-down,

stand-up, and walking, performed by 7 persons. There are 4 WiFi receivers placed at

different locations with different antenna orientations. Each participant can sit or stand

at two locations with random facing directions and walk randomly in a constrained area.

As shown in Fig. 4.2, with reinforcement learning, the recognition accuracy is improved

from 62% to 77% for unknown receiver locations and orientations and for unseen persons.

The accuracy is further improved to 97% by adding both reinforcement learning and

state machine. The proposed design is also evaluated by two public datasets, S.Yousefi-
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2017 [205] and FallDeFi [110], with accuracy of 80% and 83%. In summary, we make the

following contributions.

• We propose a novel deep learning solution for robust WiFi-based activity recognition.

The proposed design uses a 2D CNN as the recognition algorithm, a 1D CNN as

the state machine, and an RNN with LSTM for neural architecture search with

reinforcement learning.

• The propose design recognizes 5 activities with 97% average accuracy when the

location and orientation of WiFi receivers and target persons are unknown and the

data of target persons are not seen during training.

• The propose design requires very little human efforts for ground truth labeling, signal

processing, and model training. It can be easily re-trained on new data to evolve

over time and be adaptive to different scenarios.

The rest of the chapter is organized as follows. §4.2 presents related works of on

WiFi-based motion detection and activity recognition. §4.3 presents the proposed design.

§4.4 shows the experiment setup and evaluation results. Section 4.5 presents some discus-

sions on overhead of neural architecture search and robustness of new environments. §4.6

presents the summary of the chapter.

4.2 Related Work

CSI captures how wireless signals propagate from the transmitter to the receiver

through the surrounding environment. CSI amplitude and phase are impacted by nearby

persons doing different motions or activities. Recently, CSI is widely used for human

motion detection and activity recognition. Readers may refer to the survey [94] for more

details of signal processing techniques, algorithms, applications, challenges, and future

trends of CSI-based sensing.
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Table 4.1: Related works of fall and motion detection with CSI.

Reference Signal Processing Algorithm Performance

WiFall [52]
Weighted Moving Average

(WMA), Local Outlier Filter
(LOF)

kNN, One-Class SVM Fall Detection Precision: 87%

FallDeFi [110]
Wavelet Filter, DWT, STFT,

PCA, Interpolation,
Thresholding

One-Class SVM
Fall Detection Accuracy:
93%/80% (same/different

environments)

RT-Fall [157]
STFT, Band-Pass Filter

(BPF), Interpolation,
Thresholding

One-Class SVM
True Positive Rate: 91%, True

Negative Rate: 92%

Anti-
Fall [214]

Interpolation, Low-Pass
Filter (LPF),

Threshold-Based Sliding
Window

One-Class SVM
Precision: 89%, False Alarm

Rate: 13%

WiSpeed [216]
Median Filter, `1 Trend

Filter, Thresholding
Statistical Modeling,

Peak Detection
Fall Detection Rate: 95%

WiKey [4, 5] LPF, PCA, DWT kNN+DTW Keystroke Detection: 97.5%

MAIS [30]
LPF, Outlier Filter,

Thresholding
kNN Anomaly Detection: 98.04%

FRID [38] N/A CSI Phase Coefficients
Motion Detection Precision:

90%

MoSense [42]
LPF, Euclidean Distance,

Thresholding
Binary Classification

Motion Detection Accuracy:
97.38%/93.33% (LoS/NLoS, 5

activities)

AR-
Alarm [81]

Interpolation, BPF,
Duration-Based Filter

Binary Classification
True Positive Rate:

98.1%/97.7%

Liu-2017 [87] Signal Isolation by Skewness One-Class SVM Motion Detection Rate: 90.89%

Wi-
Sleep [89, 90]

Hampel Filter, Wavelet
Filter, DWT, Interpolation

Pattern Matching
Posture Change Detection:

83.3%

SEID [91]
Signal Compression by CSI

Amplitude Variance
HMM

Motion Detection Precision:
98%

WiStep [202]
Long Delay Removal, DWT,

BPF, PCA

Peak Detection,
Threshold-Based

Detection

True Positive Rate: 96.41%,
False Positive Rate:1.38%

NotiFi [232] PCA

Dynamic Hierarchical
Dirichlet Process,

Bayesian
Nonparametric Model

Abnormal Activity Detection
Accuracy: 89.2%/ 85.6%/75.3%

(LoS/NLoS/through-wall)
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4.2.1 Motion Detection with CSI

In recent years, CSI is widely used for fall detection [157, 110, 52, 214, 216, 147] and

motion detection [42, 87, 38, 81, 30, 202, 89, 90, 5, 232, 91]. Table 4.1 shows a summary

of the signal processing techniques, algorithms, and performance results of CSI-based fall

and motion detection. Motion detection is a relatively simple task and sometimes has no

clear borderline between signal processing and the detection algorithm. After some signal

processing techniques such as low-pass filters and thresholding, the detection result can

be directly derived without further detection or classification algorithms. Modeling-based

algorithms, e.g., threshold-based detection and peak detection, and very simple learning-

based algorithms, e.g., one-class Support Vector Machine (SVM), are widely used for WiFi-

based motion detection. Theoretical and statistical models are usually very sensitive to

noises and outliers, so noise reduction is usually needed, such as the Hampel filter, wavelet

filter, and local outlier filter. Aryokee [147] also uses CNNs and state machine, but its

objective is fall detection with radar signals while ours is activity recognition with WiFi

signals. Radar is designed for sensing and has finer granularity than WiFi which is designed

for communication but not for sensing. So activity recognition with WiFi is much harder

than fall detection with radar. Our goal is to not only detect motions but also recognize

different motion and static activities with high and robust performance. The proposed

design can distinguish different static and motion activities with 97% average accuracy for

leave-one-person-out and leave-one-device-out validation. Besides, Aryokee uses HMM as

the state machine which needs to be trained separately and has low performance for CSI

data that involve non-linearities and long-term temporal dependencies. Our design has

the recognition algorithm and state machine trained together and the neural architecture

automatically optimized by reinforcement learning.
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Table 4.2: Related works of activity recognition with CSI.

Reference Signal Processing Algorithm Accuracy

Wi-Chase [6] LPF kNN, SVM 97% (3 activities)

WIBECAM [23] N/A Autoregressive Model
73% to 100% (4

activities)

BodyScan [27] LPF, PCA, Thresholding SVM 72.3% (5 activities)

MAIS [30]
LPF, Outlier Filter,

Thresholding
kNN 93.12% (3 activities)

DFLAR [33] N/A Sparse Auto-Encoder 90% (8 activities)

HuAc [43]
Outlier Filter, WMA; LPF,

Thresholding, k Means
SVM 93% (16 activities)

EI [66] Hampel Filter; Thresholding CNN
<75% (10 users, 6

activities)

Wang-
2018 [158]

Median Filter, Linear
Fitting, LPF

SOM, Softmax
Regression

>85% (8 activities)

CARM [165,
166]

DWT, Thresholding, PCA HMM >96% (8 activities)

Wang-
2015 [173]

Gaussian Filter, LOF, k
Means

DTW, SVM 80% (13 activities)

E-eyes [170]
LPF, Thresholding,

Clustering

Multi-Dimensional
DTW, Pattern

Matching

90%/95% (single device/
multiple devices, 13

activities)

Wei-2015 [176] Exponential Smoothing
Sparse

Representation
<90% (8 activities)

ARM [189] Wavelet Filter; DWT DTW, HMM >75% (6 activities)

Zeng-2015 [211] BPF
Decision Tree, Simple
Logistic Regression

89.6%/94.75
(entrance/in store, 4

activities)

WiDriver [25]
Signal Compression by

Neural Network
Fresnel Zone Model,

Finite Automata
96.8% (11 postures),
90.76% (7 activities)

HeadScan [29] LPF, PCA
Sparse

Representation, `1
Minimization

86.3% (5 activities)

WiBot [125] LPF, PCA kNN
94.5%/90.5% (3/5

activities)

SEARE [192]
LPF, Median Filter, PCA,

Thresholding
DTW

97.8%/91.2%
(LoS/NLoS, 4 activities)
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4.2.2 Activity Recognition with CSI

CSI is commonly used for recognizing human activities, including daily activities [6,

23, 27, 30, 33, 43, 66, 158, 165, 166, 173, 170, 176, 189], shopping [211], driving [25, 125],

exercising [192], and head & mouth activities [29]. Table 4.2 shows a summary of the

signal processing techniques, algorithms, and recognition accuracy of CSI-based activity

recognition. Almost all the recognition applications use learning-based algorithms as the

classifier. SVM and k Nearest Neighbor (kNN) are two of the most used classifiers for

CSI-based activity recognition. Dynamic Time Wrapping (DTW) is usually used for

kNN as the distance metric. Learning-based algorithms are usually not very sensitive

to noises and outliers. Many learning-based algorithms use none or very simple noise

reduction methods such as averaging and median filter. Noise reduction is usually used

for modeling-based algorithms which are typically sensitive to noises. The major issue

for modeling-based and instance-based learning algorithms is that they are not location

or person independent when the data of testing devices or persons are not seen during

training or modeling. Another issue for instance-based learning algorithms is that they

need to calculate the distance from the testing instance to all the training instances. This

introduces expensive overhead when there are multiple classes and each class instance has

many CSI data points. SVM, kNN, and DTW have high inference costs for calculating

the distance of different samples, so they usually employ feature extraction, subcarrier

selection, or dimension reduction to reduce the input size. EI [66] uses a CNN as the

recognition algorithm, but its recognition accuracy is less than 75%. SignFi [95] also

uses a CNN for gesture recognition with WiFi, but it is tested with known WiFi receiver

locations and orientations and has low accuracy for leave-one-person-out tests. Since CSI

data are different from images and videos, it may result in low recognition performance

by just reusing CNNs that are designed for computer vision tasks. It is necessary to find

the suitable CNNs, including the CNN type, neural architecture, and neural weights, that

are specifically designed for CSI data. To address this issue, we use different convolutions
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as the recognition algorithm for learning location and person independent features from

different perspectives of CSI data. Moreover, we use reinforcement learning for optimizing

the neural architecture of the recognition algorithm and a lightweight 1D CNN as the

state machine for learning temporal dependencies. The proposed deep learning design has

97% average accuracy for leave-one-person-out and leave-one-device-out validation.

4.3 Design

previous classification scores
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Figure 4.3: The training process of the proposed design. The input is a time series
of CSI matrices measured by WiFi packets. The recognition algorithm is a 2D CNN.
The state machine is a 1D CNN. The final classification results are calculated by the
concatenation of the recognition algorithm and the state machine. The neural architecture
of the recognition algorithm is updated by the reinforcement learning agent by an RNN
with LSTM. Motion tracking devices and audio signals are used for ground truth labeling
during off-line training. During the inference stage, only CSIs are used as the input.

This section presents the details of the proposed design, including pre-processing,

recognition algorithm, state machine, and neural architecture search. The overview of

the proposed design is shown in Fig. 4.3. During data collection, each participant follows

the audio scripts to perform different activities. At the same time, CSI measurements are

collected by WiFi receivers. A motion tracking system, HTC Vive, along with the audio

scripts, are used to label the CSI data. Note that motion tracking devices and audio

scripts are used only for off-line training. During the inference stage, only CSI measure-

ments are used as the input. The proposed design has the following components. First, a

time series of CSI matrices is synchronized and segmented by ground truth labels and then

normalized by the training data. Second, the recognition algorithm uses a 2D or 3D CNN
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to learn features from different perspectives of 4D CSI tensors in time, spatial, and fre-

quency domains. Third, the state machine uses a 1D CNN to learn temporal dependency

information from previous classification results. Finally, the reinforcement learning agent

uses an RNN with LSTM to optimize the neural architecture of the recognition algorithm.

The combination of these components provides location and person independent WiFi-

based activity recognition. The recognition algorithm is responsible for learning location

and person independent features from different domains within one CSI segment. The

state machine tries to learn temporal dependencies across multiple CSI segments. The

reinforcement learning agent optimizes the neural architecture of the recognition algorithm

to maximize the accuracy. As a result, the proposed design is robust in new scenarios when

the locations and orientations of WiFi devices and target persons are unknown and for

new target persons whose data are unseen during training. It requires very little human

efforts for ground truth labeling, signal processing, feature engineering, parameter tuning,

and neural architecture search.

4.3.1 Pre-Processing: Normalization of CSI Amplitude

CSI represents how wireless signals travel from the transmitter to the receiver at certain

carrier frequencies along multiple paths. For a MIMO-OFDM channel with Nt transmit

antennas, Nr receive antennas, andNc subcarriers, the CSI is a 3D matrixH ∈ CNr×Nt×Nc .

Each CSI entry is a complex number representing the Channel Frequency Response (CFR)

of the multi-path channel:

h(f ; t) =
∑N

i=1
ai(t)e

−j2πfτi(t), (4.1)

where ai(t) and τi(t) are the power attenuation and propagation delay, respectively, of the

i-th path, f is the carrier frequency, and N is the number of multi-path components [148].

The CSI amplitude and phase represent the power attenuation and phase shift of the

multi-path channel, which are impacted by the multi-path effects and the static/mobility
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status of the transmitter, receiver, and nearby humans/objects. CSI phase is too sensitive

to very small environmental changes, so we only use CSI amplitude as the input.

During data collection, CSI measurements are collected from multiple WiFi receivers

every 10 milliseconds and are synchronized with the timestamps of audio scripts. During

off-line training, raw CSI measurements are segmented based on the corresponding ground

truth labels from the audio scripts. Each CSI segment has time duration of 2 seconds

containing 200 samples of CSI matrices. Shorter CSI segments are discarded. There are

Nt = 3 transmit antennas, Nr = 3 receive antennas, and Nc = 30 subcarriers in our

experiments, so the size of each CSI matrix is (3, 3, 30). Each training and testing sample

is a time series of 3D CSI matrices, resulting in a 4D CSI tensor with size of (200, 3, 3,

30). Each training and testing CSI segment is normalized by the CSI amplitude of training

segments:

xitrain =
|csiitrain| −mean(|csitrain|)

std(|csitrain|)
, i = 1, · · · , Ntrain; (4.2)

xjtest =
|csijtest| −mean(|csitrain|)

std(|csitrain|)
, j = 1, · · · , Ntest, (4.3)

where mean(|csitrain|) and std(|csitrain|) are the mean and standard deviation of the

CSI amplitude of training samples. Each dimension of the 4D CSI tensor is normalized

separately. Note that mean(|csitrain|) and std(|csitrain|) do not include any testing CSI

samples, so the information of testing CSI samples is not leaked to the normalized training

data xitrain.

We use as little pre-processing as possible to retain as much raw information as possible.

CSI amplitude normalization is the only pre-processing before feeding the input to the

recognition algorithm. We leverage the power of DNNs and reinforcement learning for

extracting useful information from the normalized CSI input. When there are more pre-

processing involved, there will be a higher probability of losing information embodied

in the unprocessed data. Moreover, the CSI pre-processing has very low computation

overhead, so it runs fast for both off-line training and real-time inference. Fig. 4.4 shows

an example of the pre-processed CSI segment. It contains CSI amplitude variations in
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Figure 4.4: A time series of CSI amplitude measurements provides information in time,
spatial, and frequency domains. The CSI tensors are fed to different CNNs to automati-
cally find location and person independent features.

the time, spatial, and frequency domains. The pre-processed 4D CSI tensors are fed to

different CNNs to learn useful features from different perspectives of the CSI data for

location and person independent activity recognition.

4.3.2 Recognition Algorithm: 2D/3D CNN

CSI matrices have some similar attributes as digital images, so WiFi-based activity

recognition can reuse the algorithms that have high performance for computer vision

tasks. For a MIMO-OFDM channel with Nt transmit antennas, Nr receive antennas,

and Ns subcarriers, the CSI matrix is similar to a digital image with spatial resolution of

Nt×Nr and Ns color channels. Convolutional Neural Networks (CNNs) are proven to have

very good performance and are used in almost all modern neural network architectures.

Therefore, WiFi-based activity recognition can reuse the CNN models and architectures

designed for computer vision tasks.

However, CSI has some unique characteristics that are different from images and

videos, so reusing existing CNNs may result in low performance for WiFi-based activ-

ity recognition. For example, the spatial resolution, which is 3 × 3 in our case, is much

smaller than that of images. A digital image usually have 3 (RGB) or 1 (grayscale) color

channels, while an uncompressed CSI matrix has 52 subcarriers, including 48 data subcar-

riers and 4 pilot subcarriers, for a 20MHz WiFi channel. Besides, unlike images and videos
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that usually contain light signals from visible directions and distances, CSI may contain

noises and interferences from all directions. So CSI amplitude and phase are very sensitive

to the surrounding environment and the location and orientation of WiFi receivers and

target persons. Therefore, we need to find which types of DNNs are suitable for CSI data.

A time series of CSI matrices characterizes MIMO channel variations in different do-

mains, i.e., time, frequency, spatial, as shown in Fig. 4.4. CSI can be processed, modeled,

and trained in different domains for different WiFi sensing applications. Different CNNs

can infer information from their specific aspects of the training data. Our task is to find

the best type of CNNs and the corresponding neural architecture that provide robust

WiFi-based activity recognition for unknown receiver locations/orientations and unseen

persons. We consider the following three types of convolutions: 2D convolutions, 3D

convolutions, and depthwise separable 2D convolutions.

2D Convolution (Conv2D) is calculated by

S(i, j) = (I ∗K)(i, j) =
∑
x

∑
y

I(x, y)K(i− x, j − y), (4.4)

where S is the convolution output, I is the input, and K is the kernel [40]. The convo-

lutional layer learns the weights and biases while going through the input vertically and

horizontally with the same kernel. For Conv2D, the same kernel is shared for different

color channels.

3D Convolution (Conv3D) uses 3D kernels, instead of 2D kernels in Conv2D, as

going through cubic regions of the input data. Conv3D is calculated by

S(i, j, d) =
∑
x

∑
y

∑
z

I(x, y, z)K(i− x, j − y, d− z). (4.5)

Compared with Conv2D, Conv3D learns features combined in all three domains: time,

spatial, and frequency. Besides, CSI tensor reshaping is not needed for Conv3D, while it

is necessary for 2D convolutions. One potential issue for using Conv3D for CSI data is
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that CSI matrices have too small spatial resolutions, i.e., 3×3 in our case. To address this

issue, we reshape the CSI tensors from RNs×Nr×Nt×Nc to RNs×Nc×Nt×Nr , with Ns as the

number of CSI samples for each segment. Another issue of Conv3D is that it has much

higher computation overhead than Conv2D.

Depthwise Separable 2D Convolution (SeparableConv2D) first uses different

kernels (depthwise convolutions) for each color channel and then uses a 1×1 kernel (point-

wise convolutions) along the input depth to get the combined features. SeparableConv2D

is calculated by:

D(i, j, d) =
∑
x

∑
y

I(x, y)Kd(i− x, j − y), S(i, j, d) =
∑
d

D(i, j, d)Kp(k − d), (4.6)

where D(i, j, d) is the output of the first step, Kd is the kernel of the d-th color chan-

nel, Kp is a 1 × 1 pointwise convolution kernel [18, 10], and S(i, j, d) is the convolution

output of the second step. For computer vision tasks, SeparableConv2D has about 10

times less computation cost with a small reduction of accuracy compared with normal

convolutions [18, 10]. For CSI data, SeparableConv2D has the best recognition accuracy,

as shown in Section 4.4.

DNNs are organized into multiple layers, and the convolutional layer is only one of the

layers. Each convolutional layer is usually followed by other layers such as batch normal-

ization, ReLU, max-pooling, and dropout. Before the output layer, a flatten layer and a

softmax layer are needed to calculate the loss rate of the classification algorithm. CNNs

learn the training parameters of each layer, using an optimization algorithm, to minimize

the loss rate. Since the convolution layer shares the same kernel for multiple input regions,

it significantly reduces computation overhead for both training and inference.

4.3.3 State Machine: 1D CNN

There is temporal dependency information within a single CSI segment and across

multiple CSI segments. Each CSI segment is a 4D tensor containing 200 samples of CSI
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matrices measured in 2 seconds. The temporal dependencies within each CSI instance

are learned by the recognition algorithm. There are also temporal dependencies among

neighboring CSI segments that are not learned by the recognition algorithm. For example,

if the classification result of the current CSI segment is stand-up, the next CSI segment

has a high probability to be classified as standing. Therefore, we add a state machine

to learn the temporal dependencies across CSI segments for improving the recognition

accuracy. Fig. 4.5 shows the state transition diagram of 5 human activities. Each state

is in corresponding to a 4D CSI tensor with size of (200, 3, 3, 30). The state machine is

used to learn the state transition probabilities and to predict the current state based on

previous states. The final classification results are obtained by the concatenation of the

output of the state machine and the classification scores of the recognition algorithm.

Standing

Sit-Down

Sitting

Stand-Up

WalkingP1,1

P1,2

P3,1

P3,2P4,1

P5,2
P5,1

P2,2P2,1

P5,3
P3,3

P2,3

P4,2

Figure 4.5: State machine of 5 activities in the experiments.

The state machine can be modeled by a Markov chain which represents a time series

of possible activities. The probability of each activity depends on the state of the previous

activity. Hidden Markov Model (HMM) is a widely used Markov model wherein the states

are modeled by a Markov process with unobservable states, i.e., hidden states. HMM has

a strong assumption that state transitions only depend on the current state which can

be modeled by a linear transformation of the previous state. This assumption does not

hold for the CSI data wherein state transitions have non-linear relationships with the

current and previous states. Besides, HMM needs parameter learning to find the best set

of state transitions and emission probabilities. The learned parameters of HMM are highly
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dependent on the training data. When the state transitions of training and testing data

have different distributions, the learned HMM will overfit to training data and give low

accuracy for testing data. Moreover, the HMM needs to be trained separately in addition

to the training of the recognition algorithm.

Recently, DNNs, especially RNNs, are popular replacements of HMM for sequential

problems. RNNs provide good performance for complex sequential inputs that involve

non-linearities and long-term temporal dependencies, which are hard to handle for HMM.

DNNs do not have the Markov assumption. Instead, DNNs rely on the learning param-

eters, or neural weights, to extract complex features and state transitions. RNNs are

good at capturing non-linearities and long-term temporal dependencies and are proven to

have good performance for sequential inputs. However, RNNs have have extremely high

computation costs. Besides, we run experiments and find that RNNs have much lower ac-

curacy than CNNs for CSI data. The major reason is the low spatial resolution of a single

CSI matrix. It is hard for RNNs to capture short-term temporal dependencies within a

CSI segment. We use a 1D CNN, i.e., Conv1D, as the state machine. 1D CNNs run much

faster than RNNs and offer comparable or higher performance for CSI data. It has only

one Conv1D layer with 5 kernels of size 1× 1. The state machine is very lightweight with

only 140 parameters, including 10 from the Conv1D layer and 130 from the softmax layer.

It offers 20% accuracy improvements with very low computation and training costs, which

is shown in Section 4.4. Moreover, the state machine is trained together with the recogni-

tion algorithm, so it does not require extra efforts to train the recognition algorithm and

state machine separately.

Fig. 4.6 shows the confusion matrices of SeparableConv2D with and without the state

machine. Both confusion matrices are obtained from leave-one-person-out and leave-one-

device-out validation for person 2. Without the state machine, the recognition algorithm

has difficulties in distinguishing sitting and standing from each other. The reason is that

CSI measurements have similar patterns for static activities. This issue is addressed by

the state machine, which improves the overall recognition accuracy from 78% to 99%. As
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Figure 4.6: Confusion matrix of leave-one-person-out and leave-one-device-out testing
results. The recognition performance for static activities, i.e., sitting and standing, is
significantly improved by the state machine.

shown in Fig. 4.6b, the recognition performance of sitting and standing has significant

improvements. This is accomplished by utilizing the high accuracy of motion transition

activities and the temporal dependencies learned by the state machine. More details of

the impact of the state machine are shown in Section 4.4.

4.3.4 Neural Architecture Search: Reinforcement Learning

Although the features, or learning weights, of CNNs can be automatically learned

during training, it is non-trivial to find the best neural architecture, especially for CSI

data. The neural architecture of a CNN refers to a set of hyperparameters including

the number of convolutional layers, number of convolutional kernels, size of convolutional

kernels, size of max-pooling, and dropout rate. One way is to reuse the neural architectures

that are trained by a lot of data and proven to provide high performance for computer

vision and natural language tasks. But these neural architectures do not necessarily give

good performance for WiFi-based activity recognition, since CSI data are different from

images, videos, and texts. Another approach is using neural architecture search which

tries to optimize the CNN architecture for improving the classification performance.
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We use a reinforcement learning agent for neural architecture search [237]. It needs al-

most no human efforts for hyperparameters tuning. The reinforcement learning agent tries

to maximize a numerical reward signal by learning how to interact with the environment

in discrete time steps [145]. In the context of neural architecture search, the environment

is the recognition algorithm which updates the state and reward to the agent. The action

signal is the neural architecture of the recognition algorithm, and the reward signal is the

classification accuracy.

Permute+ReshapeInput

(200,3,3,30)

SeparableConv2D 
(10@15x15)

Batch Normalization+
Rectified Linear Unit

Max-Pooling (4x4)+ 
Dropout (p=0.5)

SeparableConv2D 
(23@4x4)

Batch Normalization+
Rectified Linear Unit

Max-Pooling (6x6)+ 
Dropout (p=0.6)

Conv1D (5@1x1) Flatten Softmax

Recognition Algorithm

State Machine

Concatenate Softmax Output
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(50,23,23) (50,23,23) (9,4,23)

(5,5) (25,1) (5,1) (10,1) (5,1)
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Flatten Softmax

(828,1) (5,1)

(5,1)

Figure 4.7: Neural architecture of the best performing recognition algorithm. The input
is pre-processed 4D CSI tensors, and the output is one of the five activities. The numbers
inside the brackets indicate the output size of each layer.

We use NASCell [237] from TensorFlow as the reinforcement learning agent. The

recognition algorithm is selected from three types of convolutions: Conv2D, Conv3D, and

SeparableConv2D. The reinforcement learning agent uses an RNN with LSTM to update

the neural architecture of the recognition algorithm. For each training cycle, the training

results and neural architecture of the recognition algorithm are fed to the reinforcement

learning agent. The reinforcement learning agent uses the previous neural architecture as

the state signal and the recognition accuracy as the reward signal to find the action output.

The reinforcement learning agent updates actions to maximize the expected reward, which
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is done by the policy gradient of the empirical approximation of the expected reward

5θcJ(θc) ≈
1

m

m∑
k=1

T∑
t=1

5θc logP (at|a(t−1):1; θc)(Rk − b), (4.7)

where 5θcJ(θc) is the policy gradient of the expected reward J(θc) with learning param-

eters θc, m is the number of neural architectures that NASCell samples in one batch, T

is the number of hyperparameters needed to design a neural architecture, at is the list

of actions, Rk is the training accuracy of the k-th neural neural architecture, and b is

the average training accuracy of previous neural architectures for preventing high vari-

ances [237]. The action output of NASCell is mapped to the neural architecture of the

recognition algorithm to start the next training cycle. The recognition algorithm is imple-

mented by Keras with Conv2D, Conv3D, and SeparableConv2D, and the reinforcement

learning agent is implemented by TensorFlow with NASCell.

Fig. 4.7 shows the best performing neural architecture of the recognition algorithm

and state machine optimized by the reinforcement learning agent. Note that the neural

architecture of the state machine is fixed and is not updated by the reinforcement learning

agent. The recognition algorithm has two SeparableConv2D layers with each followed by

batch normalization, Rectified Linear Unit (ReLU), max-pooling, and dropout layers. The

first SeparableConv2D layer has 11 kernels of size 22×22, and the second one has 10 kernels

of size 15 × 15. The size of the two max-pooling layers is 3 × 3 and 6 × 6, respectively.

The dropout rates are 0.5 and 0.6. The input of the recognition algorithm is 4D CSI

tensors of size (200, 3, 3, 30), and the output is the classification scores of 5 activities.

The state machine contains a Conv1D layer with 5 kernels of size 1× 1. The input of the

state machine is the classification scores of the previous CSI segment, and the output is

the classification scores of 5 activities. The final classification output is calculated by the

concatenation of the outputs of the recognition algorithm and state machine. The neural

architecture of the recognition algorithm and state machine has 5534 trainable and 66

non-trainable parameters in total. Non-trainable parameters are the mean and variance
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of batch normalization layers which are not trained with backpropagation.

4.4 Evaluation

Table 4.3: Overview of Performance Evaluation for Different Test Scenarios

Dataset
Size
(GB)1 Test Scenario

# (TXs,
RXs,

Rooms,
Persons)

# In-
stances

Size of Each
Instance

Test Accuracy
(CNN,

CNN+RL,
CNN+RL+SM)

§4.4.1 This paper 17.05

Same environment;
unseen persons;

unknown receiver
location/orientation

(1, 4, 1, 7) 14555 (200, 3, 3, 30) 62%, 77%, 97%

§4.4.2

S.Yousefi-
2017 [205]

2.78

Same environment;
unseen persons;
known receiver

location/orientation

(1, 1, 1, 6) 2079 (2000, 3, 30) 45%, 63%, 80%

FallDeFi [110] 1.06

Unseen environment;
unseen persons;

unknown receiver
location/orientation

(5, 5, 6, 5) 397 (2000, 3, 30) 51%, 64%, 83%

1 Size of numpy array of CSIs of 5 activities. Other activities of S.Yousefi-2017 [205] and FallDeFi [110] are not included.

An overview of performance evaluation of different testing scenarios is shown in Ta-

ble 4.3. The proposed design is evaluated by leave-one-person-out and leave-one-device-out

tests with CSI measurements of 5 activities performed by 7 persons with different receiver

locations and orientations in Section 4.4.1. We also evaluate the proposed design with

other public datasets including FallDeFi [110] and S.Yousefi-2017 [205] in Section 4.4.2.

4.4.1 Evaluation Results of Unseen Persons and Unknown Receiver Lo-

cations/Orientations

This section presents evaluation results of the impact of convolution types, state ma-

chine, and reinforcement learning for unseen persons and unknown receiver locations/ori-

entations.

Experiment Setup and Data Collection
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Figure 4.8: Experiment setup. CSI measurements of receiver 1 are for testing and other
receivers for training. There are 4 WiFi receivers placed at different locations with different
heights and antenna orientations. Each participant can walk randomly within the walking
area, sit or stand at two chair locations with random facing directions.

The experiment setup is shown in Fig. 4.8. There are 4 WiFi receivers placed at dif-

ferent locations with different antenna orientations. CSI measurements of 3 receivers are

used for off-line training and the other receiver is used for testing. There are 5 activities,

sitting, standing, sit-down, stand-up, and walking, performed by 7 persons. The 7 partic-

ipants have a wide variety of heights (from 64 to 75 inches) and weights (from 160 to 210

pounds), as shown in Table 4.4. In total, there are 14555 CSI segments, each with size

of (200, 3, 3, 30), measured from 4 WiFi receivers. WiFi receivers are placed at different

places with different heights and antenna orientations. During data collection, each person

follows the audio instructions to perform different activities. Each person can walk ran-

domly in the walking area and sit/stand at two locations with different facing directions.

All activities are performed normally as in the real-life. For example, the person can have

minor motions, such as interacting with the smartphone, as sitting, standing, and walking.

CSI measurements are collected at different dates.

There are 4 WiFi receivers collecting CSI measurements as the participant is per-

forming different activities following the audio instructions. Before each round of CSI
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Table 4.4: Height and weight of experiments participants.

Height (inches) 67 75 64 70 75 66 66

Weight (pounds) 190 200 160 180 185 195 210

measurements, the timestamps of audio instructions and the 802.11n CSI tool of multiple

devices are synchronized by the Network Time Protocol (NTP) with millisecond-level ac-

curacy. The motion tracking devices and audio instructions are used later for ground truth

labeling and segmentation of CSI measurements. Each WiFi device is a HummingBoard

Edge [139] with an Intel 5300 WiFi card installed. The 802.11n CSI tool [51] is used for

sending WiFi packets and measuring CSIs every 10 milliseconds. There are three antennas

for each WiFi device, and the antenna spacing of each WiFi device is 2.6cm.

Raw CSI measurements are fed to Python scripts for extracting CSI matrices and

pre-processing including segmentation and normalization. Both CNNs and NASCell use

the Adam optimizer with learning rate of 0.01 and 0.001, respectively. The off-line net-

work training is performed on a GTX 1080 Ti GPU. The performance is evaluated with

leave-one-person-out tests, i.e., the data of testing persons are not seen during training,

and leave-one-device-out tests, i.e., the location and orientation of testing receivers are

unknown. The following performance results are evaluated with both leave-one-person-

out and leave-one-device-out tests, i.e., neither testing devices nor persons are seen during

training, unless stated otherwise. Performance metrics include accuracy, recall, precision,

and F1-measure scores [133].

Impact of Different Convolutions

Fig. 4.9 shows the performance results of Conv2D, Conv3D, and SeparableConv2D

with and without the state machine. Both leave-one-person-out and leave-one-device-out

validation are used, i.e., CSI samples of the testing persons and testing devices are not seen

during training. SeparableConv2D provides the best recognition performance. First, the

average score, including accuracy, precision, recall, and F1-measure, of SeparableConv2D
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Figure 4.9: Average testing results of different convolution types for leave-one-person-out
and leave-one-device-out validation. SeparableConv2D has the highest average score and
the smallest standard deviation of recognition performance.

is the highest for both with and without the state machine. This means SeparableConv2D

gives the most accurate recognition results. Second, the stand deviation of Separable-

Conv2D is the smallest, which means it gives consistent recognition results for different

persons. Conv2D shares the same kernel for different color channels, so it does not learn

features in the depth axis. Conv3D uses a 3D kernel to go through the CSI data and

learn features in time, spatial, and frequency domains. But the CSI tensor has very small

spatial resolution, i.e., 3× 3, so it does not help much learning spatial features. Conv3D

learns features of different domains simultaneously using one shared kernel, while Sepa-

rableConv2D uses different kernels for different color channels and learns features in the

depth axis separately in different kernels. So SeparableConv2D has the best recognition

performance for CSI-based activity recognition.

Impact of State Machine

Comparing Fig. 4.9a and 4.9b, the state machine has a significant impact on the

recognition performance. The average recognition accuracy of SeparableConv2D is 77%

without the state machine and 97% with the state machine. The major contribution of the

state machine is on improving the recognition performance for static activities, i.e., sitting

and standing, by taking advantage of the temporal dependencies of multiple CSI segments.
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Motion activities have different CSI patterns, so they have relatively high recognition

accuracy even without the state machine. The state machine learns temporal dependencies

of neighboring CSI segments and utilizes the high accuracy of motion activities to improve

the accuracy of static activities. The probability of transition activities being misclassified

as walking is also decreased by the temporal dependencies learned by the state machine.
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Figure 4.10: Testing results of different persons for leave-one-person-out and leave-one-
device-out validation.

Recognition scores of the best performing SeparableConv2D architecture with and

without the state machine are shown in Fig. 4.10. Without the state machine, the recog-

nition accuracy is 78%, 78%, 74%, 76%, 79%, 81%, and 75% for each testing person, as

shown in Fig. 4.10a. With the state machine, the recognition accuracy is improved to

97%, 99%, 97%, 97%, 95%, 99%, and 93% for each testing person, as shown in Fig. 4.10b.

The overall recognition accuracy is improved by 20% when the state machine and rein-

forcement agent are added. More details of why and how the state machine improves the

recognition performance are shown in the following.

Fig. 4.11 shows the confusion matrices of the best performing SeparableConv2D ar-

chitecture without the state machine. First, walking has close to 100% accuracy for all

testing persons. Second, sitting and standing have very low recognition accuracy for all

testing persons. Sitting and standing are very easy to be misclassified with each other
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Figure 4.11: Confusion matrix of leave-one-person-out and leave-one-device-out testing
results for all persons. The recognition performance for static activities, i.e., sitting and
standing, is significantly improved by the state machine.

because they have similar CSI patterns. The only difference between them is the heights

of siting and standing. Some persons have no big differences between siting and standing

heights. Sitting and standing are static activities, so almost none of them are misclassified

as motion activities. Finally, transition activities, i.e., sit-down and stand-up, have higher

accuracy than static activities but lower accuracy than walking. Both sit-down and stand-

up are motion activities and they have different impacts on CSI patterns, so they are easier

to recognize compared with static activities. The issue for transition activities is that they

are sometimes misclassified as walking. Some testing persons have some different static/-

motion patterns compared with other persons. For example, one person could be playing

with a smartphone during data collection. This introduces minor movements which could

confuses the recognition algorithm to misclassify transition activities as walking, as shown

in Fig. 4.11. Therefore, the major issue is how to improve the recognition performance of

static and transition activities.

The recognition accuracy of static and transition activities is significantly improved

by the state machine, as shown in Fig. 4.11. This is achieved by using the state machine
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to learn time dependencies and context information from neighboring CSI segments. The

recognition algorithm utilizes the relatively high accuracy of transition activities and the

temporal dependencies to improve the recognition performance of static and transition

activities. Person 5 and 7 have slightly lower recognition accuracy than other persons.

For person 5 and 7, 14% to 20% of sitting are misclassified as standing, and 11% to 17%

of sit-down are misclassified as standing. The major reason is that the state machine

sometimes gives wrong classification results of the temporal dependency information. The

state machine of the proposed design is a small 1D CNN with fixed neural architecture.

It is possible to improve the recognition performance by using a deeper 1D CNN as the

state machine and with its neural architecture optimized by the reinforcement learning

agent. We leave the optimization of the state machine as future work.

Table 4.5: Number of parameters and inference time consumption per instance for dif-
ferent convolution types.

Convolution State Number of Parameters Inference Time Average

Type Machine Trainable Non-Trainable Consumption per Instance Accuracy (std)

Conv2D 426324 82 18.5 milliseconds 69.14% (6.8%)

Conv3D None 127167 65 20.6 milliseconds 71.29% (4.0%)

SeparableConv2D 7992 72 18.7 milliseconds 76.86% (2.3%)

Conv2D 7500 50 11.3 milliseconds 92.57% (5.5%)

Conv3D Conv1D 39911 60 14.3 milliseconds 83.29% (9.9%)

SeparableConv2D 13743 46 12.2 milliseconds 96.60% (2.0%)

Table 4.5 shows the details of the trained model with and without the state machine.

SeparableConv2D has a higher recognition accuracy and comparable inference time con-

sumption as Conv2D and Conv3D for both with and without the state machine. The

inference time consumption per instance is calculated by running the trained CNN on

each testing CSI instance one by one. Non-trainable parameters are from batch normal-

ization layers. These parameters are updated with the mean and variance of the batch

normalization input, but are not trained with backpropagation.

Impact of Reinforcement Learning
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To check the impact of reinforcement learning, we use SeparableConv2D as the recog-

nition algorithm with or without reinforcement learning for neural architecture search.

Fig. 4.2 shows the average recognition accuracy of SeparableConv2D with or without re-

inforcement learning. When the location and orientation of the WiFi receiver is known,

the accuracy is 99% if the data of testing persons are seen during training. But the accu-

racy drops to 84% for leave-one-person-out validation wherein the data of testing persons

are not seen during training. When the location and orientation of the WiFi receiver is un-

known during training, the recognition accuracy of SeparableConv2D drops to 62%. When

reinforcement learning is used for neural architecture search, the recognition accuracy of

SeparableConv2D is improved to 77% for unknown receiver locations and orientations.

When Conv1D is added as the state machine, the accuracy of SeparableConv2D with

reinforcement learning is improved to 97%.

4.4.2 Evaluation Results of New Datasets and New Environments

This section presents evaluation results of two public datasets from S.Yousefi-2017 [205]

and FallDeFi [110].

Dataset Overview

A summary of the two datasets is shown in Table 4.3. For S.Yousefi-2017 [205], CSI

measurements are collected in 1 room from 6 persons with 1 transmitter and 1 receiver.

For FallDeFi [110], there are 6 rooms, 5 persons, 5 transmitters and 5 receivers. There

are 2079 and 397 instances for S.Yousefi-2017 [205] and FallDeFi [110], respectively. The

size of each instance for both datasets is (2000, 3, 30) representing 2000 CSI matrices

with 3 receive antennas and 30 subcarriers measured in 2 seconds. Both datasets have

CSI measurements of other activities, like fall, bend and pickup, but only 5 activities, i.e.,

sitting, standing, sit-down, stand-up and walking, are included in the evaluation. More

details of these two datasets can be found in [205] and [110].

These two datasets only have ground truth labels for sitting, standing and walking but

do not have ground truth labels for transition activities including stand-up and sit-down.

114



0 5 10 15 20
Time (seconds)

0

5

10

15

20

25

30

CS
I A

m
pl

itu
de

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
an

da
rd

 D
ev

ia
tio

n

sit-down

abs(csi), subc0
abs(csi), subc10

abs(csi), subc20
std(abs(csi))

(a) Standing→ sit-down→ sit-
ting

0 5 10 15 20
Time (seconds)

0

5

10

15

20

25

30

CS
I A

m
pl

itu
de

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
an

da
rd

 D
ev

ia
tio

n

stand-up

abs(csi), subc0
abs(csi), subc10

abs(csi), subc20
std(abs(csi))

(b) Sitting → stand-up →
standing

0 5 10 15 20
Time (seconds)

0

5

10

15

20

25

30

CS
I A

m
pl

itu
de

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
an

da
rd

 D
ev

ia
tio

n

walking

abs(csi), subc0
abs(csi), subc10

abs(csi), subc20
std(abs(csi))

(c) Standing → walking →
standing

Figure 4.12: CSI segmentation of different activities using standard deviation of CSI
amplitude. CSI data is from S.Yousefi-2017 [205].

To address this issue, we use the standard deviation of CSI amplitude to calculate the start

and end time of transition activities. This is similar to the method used in FallDeFi [110]

for CSI segmentation. Fig. 4.12 shows some examples of CSI segmentation of different

activities. The standard deviation is calculated by the amplitude of CSI measurements

within a 2 seconds time window with a sliding window of 0.5 second. The start and end of

transition activities are calculated by comparing the standard deviation with a pre-defined

threshold which is 0.8 ×max(std(csi)) in our case. Based on the ground truth label of

the CSI sequence, the ground truth labels of the calculated transition window and the

CSI segments before and after the transition window can be determined. For example,

because the ground truth label of the CSI sequence in Fig. 4.12a is known as sitting, after

the transition window is detected within the time window from 5 seconds to 7 seconds,

the labels can be determined as standing before 5 seconds, sit-down from 5 seconds to 7

seconds, and sitting after 7 seconds. The labeled CSI segments are fed to different neural

networks for evaluation.

Evaluation Results

The evaluation results of new datasets and new environment are shown in Fig. 4.13.

The recognition accuracy of the proposed design, i.e., SeparableConv2D with state ma-

chine and reinforcement learning, is 80% and 83% for S.Yousefi-2017 [205] and FallDeFi [110],
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(a) Evaluation Results of S.Yousefi-2017 [205]
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(b) Evaluation Results of FallDeFi [110]

Figure 4.13: Evaluation results of new datasets and dew environments: (a) test of
unseen persons, (b) test of unseen environments, unseen persons, and unknown locations
and orientations of the WiFi transmitter and receiver.

respectively. For SeparableConv2D with reinforcement learning but without Conv1D as

the state machine, the accuracy drops to 63% and 64% for S.Yousefi-2017 [205] and

FallDeFi [110], respectively. For SeparableConv2D without state machine or reinforce-

ment learning, the accuracy further drops to 45% and 51%. Although the accuracy of the

proposed design for these two datasets is 14% to 17% lower than when it is evaluated by

our dataset, the reinforcement learning agent and state machine provide similar accuracy

improvements for all the three datasets.

4.5 Discussions

4.5.1 Overhead of Neural Architecture Search

The neural architecture search agent, NASCell, has very high overhead. For computer

vision tasks, NASCell takes hundreds of GPU hours to find a good neural architecture.

For our dataset with 14555 CSI instances each with size of (200, 3, 3, 30), NASCell takes

about three weeks for a 1080 Ti GPU to find the neural architecture for SeparableConv2D

without state machine. For the SeparableConv2D with Conv1D as the state machine, the

searching time is about 10 days. Recently, there are some new approaches for more efficient
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neural architecture search, such as Efficient Neural Architecture Search (ENAS) [115] and

Differentiable Architecture Search (DARTS) [84], for computer vision tasks. Compared

with NASCell, these two approaches has about 1000 times less overhead with comparable

accuracy. These efficient neural architecture search approaches can also be used to find

the suitable neural architecture for CSI data. Moreover, since CSI is different from images,

new neural architectures and new neural architecture search methods are needed to design

and search for the best neural network models that are specifically designed for CSI data.

4.5.2 Robustness in New Environments

The accuracy of the proposed design is 97% for our dataset, and it drops to 80% and

83% for S.Yousefi-2017 [205] and FallDeFi [110], respectively. The major reasons of lower

accuracy for the two public datasets are the dataset size and the quality of CSI segmen-

tation and labeling. There are 14555 instances for our dataset, while there are only 2079

and 397 instances, respectively, for S.Yousefi-2017 [205] and FallDeFi [110]. Increasing the

dataset size should also bring performance improvements. In our dataset, motion tracking

devices and audio instructions are used to calculate fine-grained CSI segmentation and

accurate ground truth labeling. But the two public datasets do not have accurate labeling

information for transition activities, which could also impact the recognition performance.

Besides, the length of CSI sequences of the two datasets is less than 10 seconds, so these

two datasets contain less temporal dependency information for the state machine to learn.

Collecting more CSI data with fine-grained labeling information and enough temporal

dependency information could improve the performance of the proposed design.

4.6 Chapter Summary

In this chapter, we propose a novel deep learning solution for robust activity recogni-

tion with WiFi. The proposed solution uses a 2D CNN as the recognition algorithm, a 1D

CNN as the state machine, and a reinforcement learning agent to find the best neural ar-
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chitecture for the recognition algorithm. We evaluate the proposed design with real-world

traces of 14555 instances of 5 activities performed by 7 persons. The proposed design pro-

vides 97% average recognition accuracy for unknown receiver locations/orientations and

for unseen persons. The reinforcement learning agent provides 15% accuracy improvement

compared with when the neural architecture is manually searched. The state machine,

along with the reinforcement learning agent, provides another 20% accuracy improvement

by learning temporal dependencies from history classification results. The proposed de-

sign requires very little human efforts for ground truth labeling, signal processing, feature

engineering, parameter tuning, and neural architecture search.
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Chapter 5

RoFi: Rotation-Aware Channel

Feedback for WiFi

5.1 Introduction

WiFi has a very rapid growth with the increasing popularity of wireless devices and

the growing demands of wireless data traffic. Multiple-Input Multiple-Output (MIMO)

is one of the key technologies for WiFi to achieve high throughput. Specifically, 802.11n

employs single-user MIMO to improve the receiving Signal-to-Noise Ratio (SNR) and data

rates [61]. 802.11ac uses multi-user MIMO, which allows transmitting multiple packets

concurrently to different receivers, to further improve throughput [62]. Both 802.11n and

802.11ac employ transmit beamforming to improve SNR by concentrating radio energy

on the targeted receivers. Furthermore, MIMO provides Channel State Information (CSI)

per sub-carrier, which is used for combating multi-path and frequency-selective fading

effects, to accurately predict Packet Delivery Ratio (PDR) and select the best transmission

strategies [50, 46].

However, CSI introduces high measurement and feedback overhead for WiFi, especially

for mobile and handheld devices. The WiFi Access Point (AP) needs CSI measurements

and feedback to calculate the beamforming matrix and select the best transmission strate-
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Figure 5.1: Transmit beamforming is impacted differently when the STA is in different
mobility scenarios.

gies. The transmission time for data packets is dramatically sacrificed for sending CSI and

control packets, since the size of CSI grows rapidly as the number of antennas and chan-

nel width increase. Multi-user MIMO has even higher overhead since it needs higher

frequency of CSI measurements and feedback to deal with inter-user interference [34].

Moreover, the WiFi station (STA) consumes much energy for sending CSI feedback to the

AP. CSI feedback overhead accounts up to 91% of the total energy consumption of WiFi

receivers 1. Thus it is crucial to eliminate unnecessary CSI feedback, especially for mobile

and handheld devices, because they are typically battery powered.

For WiFi networks with transmit beamforming enabled, the AP needs to steer the

signal to the direction of the STA, so it has different feedback requirements if the STA is

in different mobility scenarios. For instance, the AP does not need frequent CSI feedback

for the STA that is only rotating, such as a mobile device running games that only require

device rotation. As shown in Fig. 5.1, the distance and Angle of Departure (AoD) between

the AP and STA do not change if the STA is rotating along the X axis (marked as RotateX,

shown in Fig. 5.4b), but either one changes if the STA is moving vertically (MobileV) or

horizontally (MobileH) to the circle around the AP. The AP has very different CSI feedback

requirements when the STA is rotating compared with when it is moving or static.

If the STA sends CSI feedback only when it is needed, the CSI feedback overhead can

1The result is calculated by energy consumption measurements of the Intel 5300 WiFi chipset with data
packet of 1,500 bytes. The calculation and parameter settings are shown in equation (5.13).
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Figure 5.2: SNR results of the STA show different feedback requirements when the STA
is in different mobility scenarios.

be significantly reduced while maintaining high throughput. Fig. 5.2a shows SNR results

of the STA with different feedback intervals in different mobility scenarios. For RotateX,

the AP is able to tolerate long feedback intervals with negligible SNR decrease for the

STA. Besides, the STA has more stable SNR variations when it is rotating than when it

is moving, as shown in Fig. 5.2b. If the STA is rotating, the normalized overhead, which

is computed as the ratio of transmission time for control packets to the total transmission

time, can be reduced by 85-94% by using feedback interval of 100ms, as shown in Fig. 5.2c.

Therefore, different feedback intervals and transmission strategies should be used if the

STA is in different mobility scenarios.

There are many mobile and Internet-of-Things (IoT) systems that require wireless

connections and device rotation at the same time. For example, some wireless cameras

need to rotate to get a better view angle. Home and industrial robots need rotation for

certain tasks. Wireless Virtual Reality (VR) devices sometimes require the user to rotate

the headset or handheld controller. Wireless drones sometimes rotate because of in-device

or remote control commands; remote controllers/monitors of drones also rotate in some

cases. We run four racing and simulation games on an Android smartphone and show

the percentage of the running time of different mobility types in Fig. 5.3b. The total
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Figure 5.3: Some game applications need users to rotate the device. (a) Games that
require device rotation. Top-left: Flight Pilot Simulator; top-right: Traffic Rider; bottom-
left: Asphalt 8 Airborne; bottom-right: Bike Race. (b) Percentage of running time of each
mobility type for each game.

running time for each game is about 20 minutes. The mobility status of the smartphone is

detected by the geomagnetic field sensor and accelerometer every 5 milliseconds. For each

game, the device is in the rotation state for about 50% of the running time. Thus, it is

necessary to distinguish whether the device is rotating, considering different CSI feedback

requirements in different mobility scenarios.

Existing mobility-aware metrics, like CSI similarity [46, 143], Time-of-Flight (ToF) [143,

99, 98, 35], and compression noise [195], cannot distinguish rotation from other mobility

scenarios. CSI similarity and ToF are used for mobility-aware rate selection in [143].

Experiments show no significant difference for CSI similarity in rotation and mobile sce-

narios. ToF results are also similar when the STA remains static, rotates locally, or moves

horizontally to the circle around the AP, since the distance between the AP and STA

does not change for these three scenarios. Compression noise is used to adjust feedback

compression levels for mobile and static scenarios in [195], but experiments show indis-

tinguishable compression noise results for rotation and mobile scenarios. For these three

metrics, the AP still needs per-packet CSI feedback if the STA is rotating. Therefore, ro-
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tation detection is needed to eliminate unnecessary CSI feedback. The challenge is how to

detect STA rotation just based on CSI and how to give efficient CSI feedback in different

mobility scenarios.

We propose RoFi, rotation-aware WiFi channel feedback, to eliminate unnecessary CSI

feedback by addressing this challenge. RoFi uses Power Delay Profile (PDP) similarity

to distinguish device rotation from other mobile scenarios. The STA sends CSI to the

AP with the proper feedback interval according to the mobility detection result. The

STA calculates the Power of the Strongest Path (PSP) from PDP to refine CSI feedback

when the STA is detected in the status of rotation and static. The AP calculates the

beamforming matrix and selects the data rate based on the most recent CSI feedback. In

summary, we make the following contributions:

• We conduct CSI measurements and show that the AP has different CSI feedback

requirements when the STA is in the mobility status of rotation, mobile, or static.

• We show the failure of CSI similarity, ToF, and compression noise, in distinguishing

rotation from other mobility scenarios. Therefore, we propose PDP similarity to

detect the mobility status of the STA by just using CSI.

• We present rotation-aware CSI feedback to reduce unnecessary CSI feedback with

negligible SNR decrease. It improves the performance and efficiency of WiFi STAs.

RoFi does not need frame format modifications and is compatible with legacy 802.11

protocols. RoFi is evaluated with CSI traces collected in different mobility scenarios.

Performance metrics, including overhead, throughput, and energy consumption, are used

to compare RoFi with state-of-the-art feedback compression and rate selection algorithms.

For fixed data rates, RoFi reduces 7-38% feedback overhead in different mobility scenarios,

and the maximum SNR decrease introduced by RoFi is lower than 1dB. RoFi also provides

up to 52% higher throughput and 48% lower energy consumption. In rotation scenarios,

with rate selection enabled, RoFi has up to 22% higher throughput and 47% less energy

consumption than existing rate selection algorithms that do not use CSI.
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The rest of the chapter is organized as follows. §5.2 summaries related works. §5.3

gives the motivation of RoFi with SNR measurements in different mobility scenarios. §5.4

presents the RoFi design, including rotation detection and rotation-aware CSI feedback.

Evaluation results of overhead, throughput, and energy consumption are shown in §5.5.

§5.6 summaries the chapter.

5.2 Related Work

5.2.1 CSI Feedback Compression

The 802.11 protocol allows feedback compression by sharing the same CSI for multiple

packets or sub-carriers, or representing each CSI value with less bits of data [61, 62, 195].

For example, Intel 5300 only reports CSI for 30 sub-carriers with each entry represented

by 16 bits [51], while the default CSI requires 32 bits each for 52 sub-carriers for a 20MHz

channel. Different quantization techniques [162] can be used to reduce the size of the CSI

matrix. CSI-SF [22] predicts multi-stream CSI values using CSI of single-stream packets

to reduce CSI sampling overhead. AFC [195] adaptively selects compression levels based

on the SNR decrease caused by compression noise. But it does not distinguish whether

the receiver is rotating or moving and requires per-packet feedback for both cases. Thus,

it fails to eliminate unnecessary CSI feedback if the STA is rotating. RoFi provides CSI

feedback only when it is needed by rotation-aware channel feedback.

5.2.2 MIMO Rate Selection

There are many works on WiFi rate selection, where the data rate is determined by

channel width, antenna selection, code rate, and modulation scheme. Each data rate

selection has the maximum rate and the corresponding PDR it can delivery. The problem

is how to select the rate index satisfying certain requirements, such as high throughput,

low delay, low energy consumption, etc. A simple yet effective solution is to predict the

PDR based on per-packet SNR and the PDR-SNR curve [128]. For MIMO, the SNR-based
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algorithm performs poorly since the PDR-SNR model is not accurate due to frequency-

selective fading effects. Effective SNR [46, 50] accurately predicts PDR using CSI, instead

of per-packet SNR, and provides high throughput for MIMO networks. But it needs

to measure and exchange CSI continuously, introducing huge measurement and feedback

overhead. The Linux WiFi driver uses PDR-based rate selection that measures PDR

by probing packets every 50ms [101, 59]. The PDR-based algorithm has high probing

overhead. It is not suitable for mobile environments since the MIMO channel changes

quickly during the 50ms measurement period.

5.2.3 Mobility-Aware WiFi Protocols

Sensors are used to enhance WiFi protocols by providing movement information [127],

but it only provides boolean movement hints and requires modifications of WiFi frame for-

mats and protocols. CSI similarity is used to enable mobility-aware rate selection in [143].

The aforementioned mobility-aware methods are not able to distinguish whether the STA

is in the status of rotation or mobile. CSI provides detailed information of attenuation

and phase shifts [148, 36] to calculate AoA and Time-of-Flight (ToF) in decimeter-level

accuracy [75, 151]. AoA and ToF can be used to detect rotation, but it requires extensive

CSI measurements from multiple packets and APs [75] or scanning of all available fre-

quency bands [151, 197]. ToF can also be measured by the time interval between data and

ACK packets using off-the-shelf WiFi chipsets [143, 99, 98, 35], but the accuracy cannot

be guaranteed at nanosecond level, which makes it hard to distinguish whether the STA

is rotating. BeamAdapt [206] brings beamforming to mobile devices, and performance

considering device rotation is studied. Unlike RoFi considering the STA as the receiver,

BeamAdapt uses the STA as the transmitter, and it does not consider the accuracy and

overhead of CSI feedback.
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5.3 Motivation

This section presents experiment measurements to analyze receiving SNR of the STA

in different mobility scenarios. We found that rotation needs to be separately addressed

to eliminate unnecessary CSI feedback.

AP STA

Indoor Outdoor

P7

P5

P6
P4

P2

P3

P1

(a) Indoor and Outdoor Deployments

!"#$#%&

!"#$#%'
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)+ ), )-

(b) Rotation Directions (c) STA Placements w/ or w/o Human Blocking

Figure 5.4: Experiment setup for CSI measurements in different mobility scenarios.

5.3.1 Experiment Setup

We conduct CSI measurements using Intel WiFi Link 5300 and 802.11n CSI tool [51]

in various real-world scenarios. Deployment locations of the AP and STA are shown in

Fig. 5.4a. Indoor and outdoor experiments are conducted separately, and there is only

one AP and one STA at the same time. At each STA position, i.e., P1 to P7, the STA

moves vertically (MobileV) or horizontally (MobileH) to the circle around the AP, with the

speed of about 1.2 meters per second. The STA rotates along X/Y/Z axis (RotateX/Y/Z),

as shown in Fig. 5.4b, or remains static (Static). The rotation speed for RotateX/Y/Z

126



is about 180 degrees per second. Mobile stands for either MobileV or MobileH, and

Rotate represents either RotateX, RotateY, or RotateZ. For each mobility scenario, CSI

is measured with or without human blocking, as shown in Fig. 5.4c. CSI measurements

for each scenario at each position are repeated for at least 20 times.

The WiFi AP and STA operate at 5GHz, and the channel width is 20MHz. The AP

has 3 external antennas. The STA has 3 internal antennas spaced 3 inches apart, which

can be installed on smartphones and tablets, as shown in Fig. 5.4b. The transmitting

power of the AP is fixed at 17dBm, and there are no other interference sources. The

AP continuously sends packets to the STA, which collects CSI measurements about every

0.5 milliseconds. Each received packet has a preamble that contains training symbols

for calculating the transmitted signal X. When the STA receives the packet, it gets the

corresponding received signal Y . The STA calculates the feedback CSI Hf for each sub-

carrier by the MIMO channel model Y = HfX+N , where N is the noise signal. Note that

802.11n CSI tool [51] only provides CSI values of 30 sub-carriers even though a 20MHz

WiFi channel has 52 sub-carriers [61, 62, 34, 114]. Hf is sent back to the AP to calculate

the beamforming matrix Q for transmitting data packets.

For a data packet, the transmitted signal is QX instead of X. The AP calculates Q

as a function of Hf to map X to different spatial streams, so that it can steer the radio

signal to the target receivers. In Zero Forcing BeamForming (ZFBF) [49, 195], which

is widely used for both single- and multi-user beamforming, the beamforming matrix is

Q = H∗f (HfH
∗
f )−1, where (·)∗ is the conjugate transpose operation. Now the channel

model for data packet transmission is Y = HdQX + N , where Hd is the CSI matrix

measured by the data packet. Note that there is a time interval between Hf and Hd.

After receiving Y , the STA uses Minimum Mean Square Error (MMSE) [49, 46, 50] to

decode the received signal. The SNR for the kth sub-carrier of the jth spatial stream is

snrk,j = 1/Yjj−1, where Y = (H∗kHk+IS)−1, Hk = HdQ is the effective CSI of sub-carriers

k for the ZFBF transmitter, and IS is a S × S identity matrix with S = min(Nt, Nr) as

the maximum number of streams supported by the MIMO channel [46, 50]. The difference
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between Hd and Hf introduces beamforming errors to ZFBF and influences the receiving

SNR for the STA. The receiving SNR at time t with feedback interval δ is

snr(t, δ) = db(
∑

snrk,j/
√
S), (5.1)

where δ is the time interval between Hd and Hf , and
√
S is the scaling factor [51].

5.3.2 Measurement Results

We show SNRs in terms of feedback interval and time in different mobility scenarios.
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Figure 5.5: Rotate has smaller SNR differences than MobileH and MobileV.

SNR vs. Feedback Interval. Fig. 5.2a shows SNRs with different feedback intervals
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in different mobility scenarios. Rotate has much smaller SNR differences when using long

feedback intervals compared with Mobile. For MobileV, SNR with feedback interval of

1ms is about 3dB higher than that of 10ms. MobileH has 8dB lower SNR when feedback

interval is changed from 1ms to 1,000ms. For Rotate, there is no significant SNR difference

for feedback intervals less than 100ms. To quantify the impact of feedback intervals, we

define SNR difference as

snrdiff(t, δ) = snr(t, 0)− snr(t, δ), (5.2)

where snr(t, δ) is the SNR at time t with feedback interval δ and is calculated by equa-

tion (5.1). Here snr(t, 0) represents the optimal SNR at time t without feedback delay,

which means that Hf and Hd are measured at the same time, i.e., Hf = Hd.

Fig. 5.5 shows the average SNR difference for different mobility scenarios. The average

SNR difference for Rotate is less than 2.1dB. For a certain feedback interval, Rotate

has much smaller SNR differences than Mobile. Thus, if the STA is rotating, it should

choose a long feedback interval, e.g., 100ms, to reduce CSI feedback overhead. In other

words, rotation-awareness could significantly reduce feedback overhead with negligible

SNR decrease.

SNR vs. Time. Fig. 5.2b shows SNR variations over time in different mobility

scenarios. Rotate has more stable and predictable SNR variations compared with Mobile.

Both MobileV and MobileH have random and large SNR variations. At 0.6s, for exam-

ple, the SNR after 50ms changes 7dB and 9dB, respectively, for MobileV and MobileH.

However, SNR variations are within 1dB and 2dB for Static and RotateX, respectively.

To quantify statistical results of SNR variations, we define SNR variation as

snrvari(t, δ) = |snr(t+ ∆t, δ)− snr(t, δ)|, (5.3)

where snr(t, δ) is the SNR at time t with feedback interval δ, and ∆t is the time interval
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Figure 5.6: Rotate has more stable SNR variations than MobileH and MobileV.

between two SNR measurements.

Statistical results of SNR variations of different mobility scenarios are shown in Fig. 5.6.

The measurement interval ∆t is 50ms. For Indoor, the average SNR variation of Rotate is

about 0.5-1dB lower than that of Mobile. The average SNR variation of RotateX is 1dB

lower than that of Mobile for feedback interval of 100ms. For Outdoor, SNR variations of

both Rotate and Mobile are smaller than that of Indoor. The average SNR variation for

Mobile and Rotate slightly increases for Indoor but remains almost the same for Outdoor,

as the feedback interval increases from 1ms to 1,000ms.

To sum up, Rotate has smaller SNR differences and SNR variations than Mobile.

WiFi should select different CSI feedback and transmission strategies for Rotate and
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other mobility scenarios to improve the performance and efficiency of WiFi STAs. For

this purpose, we are motivated to propose RoFi: Rotation-aware WiFi channel feedback.

5.4 RoFi Design

This section presents RoFi design and how it can be used to optimize feedback com-

pression and rate selection.

5.4.1 RoFi Overview

(a) AP (b) STA

Figure 5.7: RoFi design with added components in dashed rectangles.

The overview of RoFi design for the AP and STA is shown in Fig. 5.7. When the AP has

an outgoing data packet pi for the STA, it first notifies the STA to measure the current CSI
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Hi and then polls CSI feedback from the STA. If the AP does not receive the CSI feedback,

it assigns history CSI Hi−1 as the current CSI Hi. The AP calculates beamforming matrix

Qi and effective SNR esnri(m) for each Modulation and Coding Scheme (MCS) index m

based on Hi. The AP selects the MCS index mi with the maximum throughput based on

esnri(m). Finally, the AP sends the data packet to the STA using beamforming matrix

Qi and MCS index mi.

The STA extracts CSI Hi from the CSI measurement packet. Based on Hi, the STA

calculates Power Delay Profile (PDP) similarity Si to detect whether the STA is in the

status of Mobile, Rotate, or Static. If it is Mobile, the STA sends CSI feedback to the

AP for each data packet. If it is Rotate or Static, the STA calculates the Power of the

Strongest Path (PSP) Pi based on PDP hi(t). The STA only sends CSI feedback when

the change of PSP is larger than a threshold ThrP , or the time interval since the previous

CSI feedback is greater than 50ms and 100ms for Rotate and Static, respectively.

5.4.2 Rotation Detection

Existing Methods. There are three mobility-aware methods using CSI Similarity [46,

11, 143], Compression Noise [195], and Time-of-Flight (ToF) [143, 99, 98, 35]. However,

we found that none of these three methods is able to tell whether the STA is in the status

of Rotate, as shown in Fig. 5.8. CSI Similarity is calculated as:

CSi =

∑Ns
k=1(hi(k)− hi)(hi−1(k)− hi−1)√∑Ns

k=1(hi(k)− hi)2

√∑Ns
k=1(hi−1(k)− hi−1)2

, (5.4)

where hi(k) is the CSI magnitude of the kth sub-carrier, and hi is the average CSI mag-

nitude across Ns sub-carriers of the ith packet [46, 11, 143]. CSI Similarity can detect

Static, but it can hardly distinguish Rotate from Mobile, as shown in Fig. 5.8a. Compres-

sion Noise is defined as:

CNi =
∑K

k=1|(Hi(k)−Hi−1(k))(Hi(k)−Hi−1(k))∗|, (5.5)
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where Hi(k) is the CSI value of the kth sub-carrier of the ith packet [195]. Static, Mobile,

and Rotate show indistinguishable Compression Noise results, as shown in Fig. 5.8b. The

measured ToF tofm between the data and ACK packet is given by

tofm = 2 ∗ tofa + tSIFS + tACK , (5.6)

where tofa is the propagation time of the radio signal, tSIFS is the Short InterFrame Space

(SIFS) time between the data and ACK packet, and tACK is the transmission time for the

ACK packet [98, 35]. tofm is measured by the elapsed time from the departure time of

the data packet to the arrival time of the ACK packet. The detail of how to measure tofm

can be found in [98, 35]. Fig. 5.8c shows that the measured ToF is not able to distinguish

Rotate from either Static or MobileH.
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Figure 5.8: Neither CSI Similarity nor Compression Noise is able to distinguish whether
the STA is in the status of rotation or mobile.

The Proposed Method. We propose Power Delay Profile (PDP) similarity to detect

the mobility status of the STA. Since the AoD and distance (shown in Fig. 5.1) between

the AP and STA remain unchanged for Rotate while either one changes for MobileV

and MobileH, Rotate and Mobile should have different multi-path fading results. PDP

characterizes multi-path channel dynamics of MIMO channels, so PDP similarity provides
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better rotation detection results than CSI Similarity, ToF, and Compression Noise.

PDP is the time-domain transformation of channel frequency response by applying

Inverse Fast Fourier Transformation (IFFT) on the frequency-domain CSI [197, 134]. The

corresponding PDP of CSI H(f) is h(t) =
∑K

k=1 αkδ(t − τk), where K is the number

of paths, αk and τk are the attenuation and delay for path k, respectively. δ(·) is the

delta function. The norm of h(t), ‖h(t)‖2, represents the signal strength of each path

along which the transmitted signal arrives at the receiver with different time delays. Let

fi(k) = ‖αkδ(t− τk)‖2 be the signal strength of the kth path of the PDP derived from the

ith packet, then the PDP similarity between the ith and (i− 1)th packet is

Si =

∑K
k=1(fi(k)− fi)(fi−1(k)− fi−1)√∑K

k=1(fi(k)− fi)2

√∑K
k=1(fi−1(k)− fi−1)2

, (5.7)

where fi is the average PDP norm of the ith packet.
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Figure 5.9: Power Delay Profile Similarity of different mobility traces.

Fig. 5.9 shows the CDF of PDP similarity in different mobility scenarios. The time

interval between two adjacent packets is 100ms. The PDP similarity for MobileV and

MobileH is much lower than that of Rotate and Static. This means that the multi-path
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channel of Mobile is less stable than that of Rotate and Static. We use different thresholds

of PDP similarity to distinguish Mobile, Rotate, and Static. Since 90% of PDP similarity

are larger than 0.9 for Rotate and 0.95 for Static, while 60% are smaller than 0.9 for

Mobile, we use the threshold of ThrS = 0.95 and ThrM = 0.9. If the PDP similarity Si is

greater than ThrS , the STA is detected as Static; if Si is smaller than ThrM , the STA is

detected as Mobile; otherwise the STA is detected as Rotate.

5.4.3 Rotation-Aware Channel Feedback

The STA determines the CSI feedback interval based on the rotation detection result.

For Mobile, the STA sends CSI feedback for each packet. For Rotate and Static, the

feedback interval is 50ms and 100ms, respectively. If the rotation detection result is

changed, the STA resets the feedback timer Ti to 50ms or 100ms. Otherwise, the STA

checks the feedback timer Ti. If Ti > 0, the STA changes to receiving state without

sending CSI feedback; otherwise the STA sends CSI feedback and transforms to receiving

state. The reason for selecting feedback interval of 50ms and 100ms is that it has a good

trade-off of feedback overhead and SNR. As shown in Fig. 5.2c, the normalized overhead

is significantly reduced using feedback interval of 50ms, but it does not change much when

the feedback interval is larger than 50ms. The average SNR decrease for Rotate is less

than 2dB by choosing feedback interval 50ms. For Static, the average SNR decrease is

less than 1dB for feedback interval of 100ms, as shown in Fig. 5.5.

The AP calculates the beamforming matrix Qi and selects the MCS index mi using

CSI feedback Hi before sending packet pi. If no CSI feedback for packet pi is received,

the AP uses history CSI Hi−1 as the current CSI Hi. In this paper, ZFBF is used as

the beamforming algorithm, i.e., Qi = H∗i (HiH
∗
i )−1. The AP calculates effective SNR

(eSNR) [50, 46] for each MCS index using Hi, and selects the MCS mi with the maximum
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achievable throughput by solving

arg max
m

pdri(m) ∗ rate(m),

subject to pdri(m) > Thrpdr(m),

0 ≤ m ≤ mMax,

(5.8)

where pdri(m) is the Packet Delivery Ratio (PDR) using MCS m calculated before trans-

mitting packet pi, Thrpdr(m) is the corresponding PDR threshold, rate(m) is the the-

oretical data rate of MCS m, and mMax is the maximum MCS index. For a 20MHz

MIMO channel with three transmitting antennas (Nt = 3) and three receiving antennas

(Nr = 3), the maximum MCS is mMax = 23. The AP predicts pdri(m) based on the

eSNR threshold Thresnr, above which pdri(m) is larger than Thrpdr, i.e., pdri(m) > Thrpdr

if esnri(m) > Thresnr, for each MCS index m. After calculating the beamforming matrix

Qi and selecting the MCS index mi, the AP sends the data packet to the STA using Qi

and mi.

The threshold-based rotation detection algorithm sometimes classifies Mobile as Rotate

or Static, since PDP similarity of Mobile could be greater than 0.9 in some cases, as shown

in Fig. 5.9. Consequently, the STA does not send CSI feedback, while it is needed for

the AP. Furthermore, Rotate has small SNR differences and stable SNR variations only

during the rotation process but not at the beginning or end of rotation, in which cases

CSI feedback is still needed for Rotate. Thus, the STA needs to send CSI feedback to the

AP when necessary if the STA is detected as Rotate or Static.

To further refine the aforementioned CSI feedback design, we here define the Power

of the Strongest Path (PSP) as Pi = max fi(k), 1 ≤ k ≤ K, where fi(k) is the signal

strength of the kth multi-path component from the PDP norm of the ith packet, and

K is the total number of multi-path components. Fig. 5.10a shows one example of PSP

and SNR difference for different mobility traces. For Rotate, there is a negative relation

between PSP and SNR difference: if PSP remains stable, SNR difference is very low; if
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Figure 5.10: PSP is a good indicator of SNR difference and the optimal MCS selection
for Rotate traces, but not for Mobile traces.

PSP decreases a lot, SNR difference increases accordingly.

PSP also has a close relation with SNR variation since the strongest path contributes

the most to the receiving SNR. Rotate has stable SNR variations, and it should have less

frequent rate selection correspondingly. Fig. 5.10b shows the relation between PSP and

the optimal MCS selection, which assumes that the AP knows the packet delivery ratio of

each MCS at any time and selects the MCS with the maximum throughput. For Rotate,

there is a positive relation between PSP and the optimal MCS selection: when PSP is at

a high level, the optimal MCS selection stays at 23; when PSP drops a lot, it leads to a

lower MCS selection.

Based on these two observations, we use PSP to refine CSI feedback when the STA is

detected as Rotate or Static. If the PSP change between two adjacent packets is larger

than the threshold ThrP , the STA sends CSI feedback to the AP. PSP is used only if

the STA is detected as Rotate or Static, and it does not work for Mobile. Different from

Rotate that keeps the STA in the main beam, Mobile changes either the distance or AoD

from the AP to STA. For Mobile, there are many variations for SNR difference and the

optimal MCS selection even when PSP remains stable, as shown in Fig. 5.10. PSP is not

the major factor for Mobile. Therefore, both PDP similarity and PSP are needed so that

137



CSI feedback is sent only when it is needed.

5.4.4 Overhead Analysis

We present overhead analysis of RoFi to explore potential performance improvements

on throughput and energy consumption. Normalized overhead is defined as

τ = tc/(tc + td), (5.9)

where tc is the transmission time for control packets and td for data packets. The AP

selects the MCS index m, each with a theoretical data rate rate(m), for each data packet.

So td =
∑N

i=1
size(pi)
rate(mi)

, where N is the number of data packets and size(pi) is the size of

data packet pi. tc is calculated as:

tc =
∑N

i=1(
size(ctri) + size(csii)

rate(0)
+ n ∗ SIFS) +

∑M
j=1(

size(proj)

rate(mj)
+ SIFS), (5.10)

where size(ctri) is the size of control packets, size(csii) is the size of CSI, n is the number

of SIFSs (Short InterFrame Spacing) for data packet pi, size(proj) is the size of the

jth probing packet, and M is the number of probing packets. CSI and control packets,

including Null Data Packet Announcement, Null Data Packet, Poll, and ACK, are always

transmitted using the lowest data rate, i.e., rate(mi)|mi=0 = rate(0). The size of CSI is

size(csii) = Nt ∗Nr ∗Ns ∗ bits(csi) + size(hdr), where bits(csi) is the number of bits used

for each CSI entry and size(hdr) is the size of packet header. The normalized overhead

is significantly reduced when using long feedback intervals, as shown in Fig. 5.2c. RoFi

eliminates unnecessary CSI feedback, so the number of CSI packets is much smaller and

the normalized overhead is significantly reduced.

The STA spends much less time for CSI and control packets by using RoFi, so it has

more time for transmitting data packets to achieve higher throughput, which is calculated
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by

tpt =
∑N ′

i=1size(pi)/(tc + td), (5.11)

where N ′ is the number of received packets. Using long feedback intervals introduces only

small SNR decrease if the STA is rotating, as shown in Fig. 5.5 in §5.3. The number of

received packets for RoFi is not significantly influenced. RoFi has much smaller tc, so it

provides higher throughput.

RoFi also improves energy efficiency for the STA by sending less CSI packets. Energy

efficiency of the STA is evaluated by energy consumption per data bit

eb =

∑N
i=1 (er(0) ∗ size(ctri) + et(0) ∗ size(csii))∑N ′

i=1 size(pi)
+∑N

i=1 er(mi) ∗ size(pi) +
∑M

j=1 er(mj) ∗ size(proj)∑N ′

i=1 size(pi)
,

(5.12)

where et(m) and er(m) stand for energy consumption per bit for transmitting and receiv-

ing, respectively, as using MCS index m [48, 131]. For the Intel 5300 WiFi chipset with

et(0) = 90nJ/bit and er(23) = 11nJ/bit [48], size(pi) = 1, 500 bytes, and size(csii) =

1, 872 bytes, the percentage of energy consumption of CSI feedback is about

ecsi = 90 ∗ 1872 ∗ 8/(90 ∗ 1872 ∗ 8 + 11 ∗ 1500 ∗ 8) = 91%. (5.13)

RoFi reduces the number of CSI packets
∑N

i=1 size(csii) to increase the transmission time

for data packets. Besides, et(mi)|mi=0 for CSI packets is much larger than er(mi) for data

packets [48, 131], so RoFi remarkably improves the energy efficiency of the STA.

5.5 Evaluation

This section shows evaluation results of overhead, throughput, and energy consumption

of RoFi compared with existing feedback compression and rate selection algorithms.
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Table 5.1: Existing methods for feedback compression and rate selection

Feedback Compression (Fig. 5.11-5.13) Rate Selection (Fig. 5.14)

CSI Similarity, CoNEXT’14 [143] SNR-based, SIGCOMM’06 [128]

Compression Noise, MobiCom’13 [195] PDR-based, Linux Minstrel [101]

Full Feedback, 802.11ac [62] eSNR-based, SIGCOMM’10 [50]

5.5.1 Evaluation Methodology

The performance of RoFi is evaluated using CSI measurement traces as illustrated in

§5.3. Three performance metrics, including overhead, throughput, and energy consump-

tion (equation (5.9), (5.11), and (5.12)), are quantified in different mobility scenarios.

Energy consumption parameters, et(m) and er(m) (used in equation (5.12)), for the Intel

5300 WiFi chipset are from [48]. The channel width is 20MHz, and the MCS index m can

be selected from 0 to 23 with the data rate ranging from 6.5Mbps to 195Mbps [60]. The size

of data packets is 1,500 bytes. The AP uses ZFBF [49, 195] for transmit beamforming and

the STA uses the MMSE receiver [49, 46, 50]. The transmitting power is fixed at 17dBm.

We compare RoFi with state-of-the-art methods, as shown in Table 5.1, by CSI traces

in four mobility scenarios: Mobile, Static, Rotate, and Gaming. The Gaming scenario

contains the mobility traces of four games shown in Fig. 5.3. For the Gaming scenario,

the ratio of Rotate, Static, and Mobile traces is about 47%, 49%, and 4%, respectively.

Existing feedback compression methods. We compare RoFi with three feedback

compression methods: CSI Similarity [46, 143, 11], Compression Noise [195], and Full

Feedback [62]. ToF measured by WiFi chipsets has very low accuracy and it provides

much worse rotation detection results than CSI Similarity and Compression Noise, so we

omit the evaluation of ToF due to space constraints.

CSI Similarity, which is calculated by equation (5.4), is used to detect the mobility

status of the STA. The STA sends CSI feedback for each packet if it is moving; otherwise it

sends CSI feedback every 100ms. Compression Noise, which is calculated by equation (5.5),

is used to calculate the SNR decrease caused by feedback compression. The AP polls for
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CSI feedback only if the SNR decrease is large enough to reduce the current data rate. Note

that Compression Noise is defined in three domains: time, frequency, and quantization,

in [195]. We only use Compression Noise in the time domain since the 802.11n CSI tool [51]

provides non-compressed CSI neither in frequency nor quantization domain. The number

of sub-carriers is Ns = 30 and the number of bits for each CSI entry is bits(csi) = 16.

There is also a Full Feedback scheme that requires the STA to send CSI feedback for each

data packet.

Existing rate selection methods. We compare RoFi with rate selection algorithms

based on PDR [101], SNR [128], and eSNR [50, 46]. These rate selection algorithms select

the MCS by solving the same problem in equation (5.8), but measure or predict pdri(m)

differently. The PDR-based algorithm measures pdri(m) by probing packets. For probing

packets using MCS index m, PDR is calculated by pdri(m) = α ∗ pdrt−1(m) + (1 − α) ∗

pdrt(m), where pdrt(m) is the PDR measured during the most recent time window and

pdrt−1(m) for the previous time window, and α is the averaging weight. It is the default

rate selection algorithm for Linux WiFi driver, wherein the time window length is 50ms

and the averaging weight α is 0.125 [101, 59].

The SNR-based algorithm predicts pdri(m) based on the SNR threshold Thrsnr(m)

for each MCS index m, i.e., pdri(m) > Thrpdr(m) if snri(m) > Thrsnr(m) [128]. The

eSNR-based algorithm uses effective SNR to predict pdri(m), which is the same as RoFi,

for each packet pi [50, 46]. Unlike RoFi, the eSNR-based algorithm requires CSI feedback

before transmitting each data packet pi. To avoid unnecessary CSI feedback, the eSNR-

based rate selection uses CSI Similarity to detect the mobility status of the STA. If the

CSI Similarity is greater than 0.9, the STA sends CSI feedback for each packet; otherwise

it sends CSI feedback every 100ms. Both PDR- and eSNR-based rate selections require

sending probing packets. There is also an optimal rate selection algorithm. It assumes

that the AP knows CSI and PDR for each MCS index at any time and selects the MCS

with the highest throughput. Results of the PDR-based algorithm are from real-world

measurements, and other rate selection algorithms are calculated from CSI traces.
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5.5.2 Performance Results of Feedback Compression

We first compare RoFi with existing feedback compression schemes. Results show

that RoFi has lower overhead and energy consumption and higher throughput in different

mobility scenarios.
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Figure 5.11: Normalized overhead. (a) Using fixed data rates for Rotate. (b) Statistical
results for data rate of 65Mbps in different mobility scenarios. The average normalized
overhead for Full Feedback is fixed at 0.82 for 65Mbps.

Overhead. Fig. 5.11a shows the normalized overhead, as defined in equation (5.9),

using fixed data rates. It is evaluated from the RotateX trace measured at P6 (shown in

Fig. 5.4a). Both CSI Similarity and Compression Noise have much higher overhead than

RoFi. At data rate of 6.5Mbps, the normalized overhead of RoFi is 0.12, which is only 60%

of that of CSI Similarity and Compression Noise. At higher data rates, the normalized

overhead of RoFi is 75% of that of CSI Similarity and Compression Noise. In other words,

RoFi reduces the transmission time CSI packets by 25-40%. At the same time, there is

no obvious SNR difference between RoFi, CSI Similarity, Compression Noise, and Full

Feedback. The maximum SNR decrease of RoFi is lower than 1dB.

Statistical results of the average normalized overhead for each mobility scenario are

shown in Fig. 5.11b. For Rotate, the normalized overhead of RoFi is 89% and 63% of

that of CSI Similarity and Compression Noise, respectively. RoFi also reduces overhead
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when the STA is not rotating. The normalized overhead of RoFi is 63% and 60% of that of

Compression Noise for Mobile and Static, respectively. For Gaming traces, the normalized

overhead of RoFi is 93% and 62% of that of CSI Similarity and Compression Noise. RoFi

and CSI Similarity have comparable overhead for Mobile, Static, and Gaming scenarios.

The average normalized overhead of Full Feedback is 0.82 for data rate 65Mbps for all

mobility scenarios.
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Figure 5.12: Average throughput. (a) Using fixed data rates for Rotate. (b) Statistical
results for data rate of 65Mbps in different mobility scenarios.

Throughput. Fig. 5.12a shows throughput, as defined in equation (5.11), for the

RotateX trace using fixed data rates. RoFi eliminates unnecessary CSI feedback with

negligible SNR decrease, so it provides higher throughput. Full Feedback has the lowest

throughput because of sending CSI feedback for each data packet. The throughput of

CSI Similarity, Compression Noise, and RoFi is 70%, 60%, and 140%, respectively, higher

than that of Full Feedback. Fig. 5.12b shows statistical throughput results for all traces.

For Rotate, the throughput of RoFi is 1.52× and 2.16× of that of CSI Similarity and

Compression Noise. RoFi has 21%, 43%, and 35% higher throughput than CSI Similarity

for Mobile, Static, and Gaming, respectively. RoFi introduces smaller SNR decrease as CSI

Similarity, so it still provides higher throughput, even though RoFi has higher normalized
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overhead for Static traces as shown in Fig. 5.11b.
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Figure 5.13: Energy consumption. (a) Using fixed data rates for Rotate. (b) Statistical
results for data rate of 65Mbps in different mobility scenarios.

Energy Consumption. Fig. 5.13a shows energy consumption, as defined in equa-

tion (5.12), for the RotateX trace with fixed data rates. At data rate of 6.5Mbps, energy

consumption is almost the same for all feedback compression methods. For data rates

of greater than 50Mbps, energy consumption is about 20nJ/bit for RoFi, 30nJ/bit for

CSI Similarity and Compression Noise, and 49nJ/bit for Full Feedback. Fig. 5.13b shows

statistical results of energy consumption for different mobility scenarios. For Rotate, the

energy consumption of RoFi is 48% and 66% lower than that of CSI Similarity and Com-

pression Noise. RoFi consumes less energy by sending less CSI packets for the STA. For

Mobile, energy consumption of RoFi is 24nJ/bit, which is 45% and 53% lower than that

of CSI Similarity and Compression Noise, respectively. For Static, RoFi consumes 29%

and 69% less energy than CSI Similarity and Compression Noise, respectively. The energy

consumption results of Gaming are similar to that of Static.

5.5.3 Performance Results of Rate Selection

Next, we show performance results of RoFi and existing rate selection algorithms based

on SNR, PDR, and eSNR. Results show that RoFi has higher throughput and lower energy
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consumption in Rotate and Static scenarios.
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Figure 5.14: Performance results of different rate selection algorithms in different mo-
bility scenarios.

Throughput. Fig. 5.14a shows statistical results of throughput for different mobility

scenarios. The throughput of eSNR-based rate selection is the lowest in all mobility

scenarios, since it needs extensive CSI measurements and feedback. For Mobile and Static,

RoFi has lower throughput than the SNR-based algorithm, since RoFi has much higher

normalized overhead as shown in Fig. 5.14b. For Rotate and Gaming, RoFi has 8% and

22% higher throughput than PDR- and SNR-based algorithms, respectively. The reason

is that RoFi is able to select much higher data rates with high PDR to send more data

packets during the same transmission time. For Static, the average throughput of RoFi

is slightly lower than SNR- and PDR-based algorithms. For Gaming traces, RoFi has

slightly higher throughput than SNR- and PDR-based rate selections.

Overhead. The results of normalized overhead are shown in Fig. 5.14b. SNR-based

rate selection has the lowest normalized overhead in all mobility scenarios, since it does

not need CSI feedback or probing packets. The PDR-based algorithm has higher overhead

than SNR-based rate selection due to probing packets. The eSNR-based algorithm has

the highest overhead since it requires extensive CSI measurements and feedback. The

normalized overhead of RoFi is greater than that of SNR-based rate selection, but it

is much lower than that of eSNR-based rate selection, in all mobility scenarios. The

normalized overhead of PDR- and eSNR-based rate selections is stable across different
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Table 5.2: Average energy impact of CSI feedback compression methods

Energy Impact

Full Feedback 106.45 (100.00%)

CSI Similarity 114.29 (107.37%)

Compression Noise 113.79 (106.90%)

RoFi 112.69 (105.86%)

mobility traces.

Energy Consumption. Fig. 5.14c shows the results of energy consumption in differ-

ent mobility scenarios. For Mobile and Static, the energy consumption of eSNR-based rate

selection is similar to that of RoFi. For Static, the energy consumption of RoFi is 25%

and 37% lower than that of SNR- and PDR-based algorithms, respectively. For Rotate,

the energy consumption of RoFi is 47%, 31%, and 15% lower than that of SNR-, PDR-,

and eSNR-based algorithms, respectively. For Gaming traces, RoFi consumes 43%, 25%,

and 17% less energy than SNR-, PDR-, and eSNR-based algorithms, respectively.

5.5.4 Energy Impact of PDP Similarity Calculation

RoFi needs to calculate PDP similarity which may introduce computation overhead

for MIMO receivers. In this section, we investigate the energy impact of PDR similarity

calculation. We run different CSI feedback schemes, including full feedback, CSI similar-

ity, compression noise, and RoFi, using CSI traces collected in different scenarios. At the

same time, we measure the Energy Impact of the simulation process by the Linux com-

mand top. Energy Impact measures per-process power consumption by CPU usage and

wakeup frequency, and it has no physical unit [181]. Fig. 5.15 shows energy impact of four

CSI feedback schemes in running time. RoFi has slightly higher energy impact than full

feedback, which does not need calculations to determine when to send CSI feedback. The

average energy impact as running all CSI traces is summarized in Table 5.2. Compared

with full feedback, RoFi only introduces 5.86% extra energy impact. Besides, RoFi has

slightly less energy impact than CSI similarity and compression noise.
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Figure 5.15: Energy impact of different CSI feedback schemes.

5.6 Chapter Summary

This chapter presents rotation-aware WiFi channel feedback to eliminate unnecessary

CSI feedback while maintaining high SNR in different mobility scenarios. It firsts shows

that WiFi has different CSI feedback requirements when the STA is in different mobility

scenarios, including rotation, mobile, and static. Then it shows the failure of existing

mobility-aware methods, including CSI similarity, Time-of-Flight, and compression noise,

in distinguishing rotation from other mobility scenarios. Finally, it presents RoFi using

power delay profile similarity to detect the mobility status of the STA by just using

CSI. The STA provides CSI feedback only when it is needed based on rotation detection

results. At the same time, RoFi uses the power of the strongest path, which is calculated

from power delay profile, to refine CSI feedback when the STA is detected in the status

of rotation or static. RoFi brings rotation-awareness to WiFi and helps the AP select

the best data rate accurately without extensive CSI measurements and feedback. RoFi

significantly improves the performance and efficiency of WiFi STAs in different mobility

scenarios by reducing unnecessary CSI feedback with negligible SNR decrease.
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Chapter 6

EliMO: Eliminating Channel State

Information Feedback from MIMO

6.1 Introduction

Multiple-Input Multiple-Output (MIMO) is the key technology for WiFi to achieve

high throughput. Along with Orthogonal Frequency-Division Multiplexing (OFDM),

MIMO provides Channel State Information (CSI) per sub-carrier, so that beamforming

can be used to improve Signal-to-Noise Ratio (SNR) and throughput [34, 114]. MIMO

beamforming provides high throughput by steering the radio energy to the direction of

the target receiver, or sending multiple packets concurrently to different receivers. This

is done by precoding the transmit signal to different spatial streams and antennas. More-

over, MIMO is able to select the best transmission strategies efficiently assisted by CSI,

which helps combat multi-path and frequency-selective fading effects [50, 46].

However, CSI introduces extremely high overhead for MIMO receivers, especially for

smart devices like smartphones, smartwatches, and wireless drones. To calculate the

beamforming matrix and select the best transmission strategies, the transmitter needs

CSI feedback that introduces a lot of computation and communication costs for MIMO

receivers. First, MIMO receivers require computation resources to measure and estimate
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the CSI matrix. Second, the transmission time for data packets is dramatically sacrificed

due to CSI feedback. For channel width of 80MHz, the size of CSI matrix is 1,700 bytes

for 3×3 MIMO and 53,000 bytes for 8×8 MIMO [34, 61]. Moreover, multi-user MIMO has

even higher overhead since it needs higher frequency of CSI measurements and feedback to

deal with inter-user interference [34, 62]. Finally, MIMO receivers consume much energy

for sending CSI feedback, which consumes up to 4 times energy as sending a data packet

for a MIMO receiver. Thus it is crucial to reduce CSI feedback overhead, especially for

smart devices like smartphones, smartwatches, and wireless drones.

There are many methods on reducing CSI feedback overhead [57, 195, 162, 126], but

they are not optimized for smart devices and still introduce high computation and com-

munication costs for MIMO receivers. First, MIMO receivers still need to continually

measure and estimate the CSI matrix. Second, the STA needs to calculate when to send

the CSI matrix and how much feedback is needed, which involves expensive matrix cal-

culations. Finally, MIMO receivers still need to send CSI matrices to the transmitter,

even though the feedback frequency and/or feedback size could be reduced. All these

computation and communication costs of CSI feedback consume a lot of energy of the

STA. The AP can use implicit CSI feedback, which uses the transpose of uplink CSI as

the downlink CSI, to reduce feedback overhead [61]. But it has very low beamforming

gains, since real-world MIMO channels are not reciprocal due to baseband-to-baseband

channels and interferences [61, 114].

We propose EliMO to completely Eliminate CSI feedback from MIMO without sacrific-

ing beamforming gains. EliMO completely eliminates the communication costs of sending

the CSI matrix for MIMO receivers. In addition, the computation costs for MIMO re-

ceivers are significantly reduced. The challenge is how the WiFi AP could accurately

estimate the downlink CSI without explicit CSI feedback. EliMO works as follows. The

AP sends Long Training Field (LTF) in the packet header to the STA. The STA inserts

the received signal of downlink LTF as Feedback Training Field (FTF) into the packet

header and sends it back to the AP. The AP is able to estimate the downlink CSI based
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on the received signal of FTF, combined with the uplink CSI that is estimated by uplink

LTF sent from the STA. In summary, we make the following contributions.

• We present two-way channel estimation allowing the AP to accurately estimate

downlink CSI without explicit CSI feedback.

• We propose Feedback Training Field to completely eliminate CSI feedback without

sacrificing beamforming gains.

We evaluate EliMO by experiment measurements in both static and mobile scenar-

ios. Evaluation results show that EliMO is able to provide as low overhead as implicit

CSI feedback and comparable SNR as explicit CSI feedback. The average throughput of

EliMO is 5× and 4× of that of implicit and explicit CSI feedback, respectively, in static

scenarios. In mobile scenarios, EliMO provides 3.6×/4.5× throughput as implicit/explicit

CSI feedback. Energy consumption of EliMO is 85%/91% of that of implicit CSI feedback

in static/mobile scenarios. The average energy consumption of EliMO is only 30% and

17% of that of explicit CSI feedback, in static and mobile scenarios, respectively.

The rest of the chapter is organized as follows. §6.2 summaries related works. §6.3

shows the key idea of EliMO and compares it with existing CSI feedback schemes. §6.4

presents the EliMO protocol design, including frame format, two-way channel estimation,

and MAC-layer operations. Experiment setup and evaluation results of EliMO for both

static and mobile scenarios are given in §6.5. §6.6 summaries the chapter.

6.2 Related Work

There are many papers on reducing the overhead of CSI feedback. IEEE 802.11n/ac

protocols allow feedback compression to share the same CSI for multiple data packets or

multiple sub-carriers [61, 62]. CSI-SF [22] uses CSI values of one antenna to estimate

CSI values of other antennas, which reduces overhead of CSI measurements and feedback.

The STA can also use less bits of data for each CSI value [195, 162] to reduce the size of
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CSI matrix. AFC [195] adaptively selects feedback compression levels to reduce feedback

overhead in different scenarios. Some papers use CSI similarity to detect whether the STA

is moving or not, and adjust the frequency of CSI measurements accordingly [143, 11]. This

helps to reduce feedback overhead if the STA is not moving. However, all these feedback

compression schemes still need CSI feedback from the STA. It introduces high computation

and communication overhead for the STA to calculate and send the CSI matrix. Besides,

the STA needs to calculate when to send the CSI matrix and how much feedback is needed.

This introduces computation overhead for the STA. The calculation and transmission of

the CSI matrix consumes a lot of energy for the STA. EliMO completely eliminates CSI

feedback and significantly improves the energy efficiency for the STA.

IEEE 802.11n allows implicit CSI feedback [61] to reduce CSI feedback overhead. This

is based on the assumption that downlink and uplink channels of the same carrier fre-

quency are reciprocal. But this assumption does not hold in real-world MIMO systems

wherein digital baseband channels [61, 114] and interferences are not reciprocal [114]. R2-

F2 eliminates CSI feedback for cellular networks [152]. It estimates downlink CSI using

uplink CSI at different carrier frequencies. But it does not consider the impact of digi-

tal baseband channels, which reduces CSI estimation accuracy seriously. Signpost [224]

eliminates CSI feedback for uplink multi-user MIMO. It allows each user to predict its

orthogonality to other users by its own CSI. But it only works in the uplink and elimi-

nates CSI feedback from the AP for multi-user MIMO communications. EliMO eliminates

CSI feedback in the downlink and reduces computation and communication overhead for

the STA. Similar to EliMO, Echo-MIMO [182] also employs two-way channel estimation

to eliminate downlink CSI feedback. But it is designed for narrow-band MIMO channels

without frequency-selective effects, while WiFi has wide-band MIMO-OFDM channels

with frequency-selective effects. It does not consider the impact of digital baseband chan-

nels. Besides, Echo-MIMO only focuses on theoretical analysis but does not test with

real-world MIMO devices. EliMO is tested with real-world WiFi devices with the impact

of wide-band channels, frequency-selective effectives, and baseband-to-baseband channels.
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6.3 Motivation

This section presents the background and limitations of existing CSI feedback schemes.

The key idea of EliMO is introduced to eliminate CSI feedback without scarifying beam-

forming gains. The effectiveness of EliMO is presented by SNR and overhead analysis.

The received signal of beamforming at each sub-carrier is

Y = HQX +N, (6.1)

where H is the CSI matrix, Q is the beamforming matrix, X is the transmit signal, and N

is the noise signal. The beamforming matrix Q, which is usually a function of H, is used

for mapping spatial streams to antennas. For Zero-Force BeamForming (ZFBF), which

is a widely used beamforming algorithm, the beamforming matrix is Q = H∗(HH∗)−1,

where (·)∗ is the conjugate transpose operation. Due to power constraint of each transmit

antenna, the beamforming signal must satisfy E[|[QX]j |2] ≤ Pj , where Pj is the power

constraint for the jth transmit antenna [69]. Since the transmitter does not know H, it

needs CSI feedback from the receiver.

AP

STA

Data

time

… LTF

ACK… LTF

Data… LTF

ACK… LTF

SIFSDIFS

Hu

Yu

(a) Implicit CSI Feedback. The AP uses the transpose of Hu as Hd.

AP
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NDP

time

… LTF

CSI… LTF

Data… LTF

ACK… LTF

SIFS

Hd

Yd

(b) Explicit CSI Feedback. The STA sends Hd in the CSI packet to the AP.

Figure 6.1: MAC-layer operations for implicit and explicit CSI feedback.
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IEEE 802.11n defines two CSI feedback methods, i.e., implicit and explicit [61], as

shown in Fig. 6.1. The CSI matrix is estimated using Long Training Field (LTF), which

is part of the packet header. The transmitter sends LTF, which contains predefined signal

X, to the receiver. The receiver estimates downlink/uplink CSI Hd/Hu using received

signal Yd/Yu. For implicit CSI feedback, the AP uses the transpose of Hu as Hd. This is

based on the assumption that Hd and Hu are reciprocal. As shown in Fig. 6.1a, the AP

measures Hu by the previous ACK packet, and Hu is used to calculate the beamforming

matrix for the following data packet. Fig. 6.1b shows MAC-layer operations for explicit

CSI feedback. The AP first sends Null Data Packet (NDP) to the STA to measure the

downlink CSI. The STA estimates Hd and sends it in the CSI packet back to the AP. The

AP calculates the beamforming matrix based on Hd for transmitting the data packet.

MIMO provides high throughput for WiFi networks, but it also leads to high overhead

due to Channel State Information (CSI) feedback.

AP STA

At Br

Ar Bt

X

Yu

YdȞd

Ȟu

Hd

Hu

X

(a) Downlink/uplink CSI estimation for ex-
plicit/implicit CSI feedback

AP STA

At Br

Ar Bt

X

Yf

Yd

Ȟd

Ȟu

Hd

Hu

(b) Two-way CSI estimation for EliMO

Figure 6.2: Downlink/uplink CSI estimation separately and two-way CSI estimation.

Both implicit and explicit CSI feedback have limitations that influence the performance

and efficiency of WiFi STAs. The reason is that they estimate downlink and uplink CSI

separately, leading to either low beamforming gains or high overhead. For implicit CSI

feedback, the transpose of Hu is not an accurate estimation of Hd, since Hd and Hu

are not reciprocal in real-world MIMO systems. As shown in Fig. 6.2a, baseband-to-
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baseband channels Hd and Hu are not reciprocal, even though over-the-air channels Ȟd

and Ȟu are reciprocal [61]. Besides, downlink and uplink interferences are usually not

reciprocal [114]. The channel reciprocity of multi-user beamforming is even worse due to

inter-user interference. For explicit CSI feedback, the STA has very high communication

and energy overhead. Since the STA needs to send the CSI matrix to the AP, the STA

spends much time and energy for transmitting none-data frames. The communication

costs of CSI feedback is very high, since the size of CSI is very large and it grows rapidly

as the number of antennas and channel width increase [34, 195].

6.3.1 Key Idea of EliMO

We EliMO to completely Eliminate CSI feedback from MIMO without sacrificing

beamforming gains. The goal of EliMO is to provide as high beamforming gains as ex-

plicit CSI feedback and as low overhead as implicit CSI feedback. EliMO significantly

reduces computation, communication, and energy overhead for STAs without sacrificing

beamforming gains. Fig. 6.2b shows the procedure of two-way channel estimation. The

AP sends the training signal X to the STA, and the STA sends the received signal Yd,

in a amplify-and-forward way, back to the AP. The received signal of Yd at the AP is

Yf , and the AP estimates the two-way channel based on X and Yf . The STA does not

need to demodulate Yd. Besides, the STA does not need to calculate when and how to

send CSI feedback. Thus the computation overhead of the STA is significantly reduced.

Moreover, the STA does not need to send CSI back to the AP, so the communication

overhead of sending CSI packets for the STA is completely eliminated. The only extra

overhead of EliMO compared with implicit CSI feedback for the STA is sending Yd, which

is only 8µs. Finally, the energy consumption of sending CSI packets for the STA is also

eliminated. In the following we show SNR and overhead analysis to show that two-way

channel estimation is able provide high SNR with low overhead.
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6.3.2 SNR Analysis

Since the transmit signal after using beamforming is QX, the effective MIMO channel

is Heff = HQ [46]. In practical MIMO systems, there is always a time delay between

when downlink CSI is measured and when the measured CSI is used to send the data

packet. In this case, the effective CSI is

Heff = HddQ = HddĤ
∗
d(ĤdĤ

∗
d)−1, (6.2)

where Hdd is the downlink CSI of the data packet, and Ĥd is the measured downlink CSI.

Both Hdd and Ĥd are baseband-to-baseband channels, which consist of digital baseband

and over-the-air channels. For over-the-air channels with multiple paths, the CSI value

from the ith transmit antenna to the jth receive antenna at the kth sub-carrier is

ȟijk =
N∑
n

ane
−j2πdijn/λk , (6.3)

where an is the attenuation along the nth path, dijn is the distance between the ith

transmit and the jth receive antenna along the nth path, λk is the wavelength of the kth

sub-carrier, and N is the number of paths [148]. For baseband signal x(t), the correspond-

ing RF signal is xrf (t) = Re{x(t)e−j2πfct}, where fc is the carrier frequency, and Re{·}

returns the real part of the input [61].

The STA uses Minimum Mean Square Error (MMSE) [46, 50, 49] to decode the received

signal. The SNR of the kth sub-carrier of the jth spatial stream is snrk,j = 1/Yjj − 1,

where Y = (Heff,k
∗Heff,k + IS)−1, Heff,k is the effective CSI of the kth sub-carrier, and

IS is an S × S identity matrix with S = min(Nt, Nr) as the maximum number of streams

supported by the MIMO channel. The beamforming errors between Hdd and Ĥd influences

the receiving SNR: snr = dB(
∑
snrk,j/

√
S), where

√
S is the scaling factor [46, 50].

Fig. 6.3a shows the Cumulative Distribution Function (CDF) of SNR using implic-

it/explicit CSI feedback and two-way channel estimation. The initial distance between
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Figure 6.3: SNR and communication overhead analysis. EliMO provides as high SNR
as explicit CSI feedback and as low overhead as implicit CSI feedback.

the AP and STA is 5 meters, and the STA moves away from the AP at the speed of 1.2

meters/second. The size of the CSI packet is 3 ∗ 3 ∗ 52 ∗ 32/8 = 1, 872 bytes for a 20MHz

WiFi channel with 3/3 transmitting/receiving antennas, 52 sub-carriers, and 32 bits of

data for each CSI value. The size of the data packet is 1,500 bytes. EliMO has 7dB higher

SNR than implicit CSI feedback, and only 0.8dB lower SNR than explicit CSI feedback.

SNR analysis results in Fig. 6.3a demonstrate that EliMO provides as high SNR as explicit

CSI feedback. This is validated by CSI traces from real-world experiments, which will be

shown later in §6.5.

6.3.3 Overhead Analysis

For each data packet, control packets are needed for MAC-layer coordinations and

beamforming matrix calculations, as shown in Fig. 6.1. Sending and receiving these

control packets introduce computation and communication overhead for the STA. The
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communication overhead is defined as

τ =
tcontrol

tcontrol + tdata
, (6.4)

where tcontrol is the transmission time for control frames, and tdata is for data frames.

Control frames are always transmitted using the lowest data rate, while data frames can

use higher data rates. For a certain CSI feedback scheme, tcontrol is relatively stable.

When the data rate for data frames is much higher than that of control frames, which

is the common case for 802.11n/ac, tdata is much smaller than tcontrol. In this case, the

communication overhead is extremely high.

Fig. 6.3b shows the results of communication overhead of implicit/explicit CSI feedback

and EliMO. The channel width is 20MHz, and the data rate for data frames is in the range

of 6.5-195Mbps for up to 3/3 transmitting/receiving antennas [61]. The communication

overhead of EliMO is comparable as that of implicit CSI feedback, and is only 40% to 90%

lower than that of explicit CSI feedback. Fig. 6.3b demonstrates that EliMO introduces

as low overhead as implicit CSI feedback.

To sum up, FTF has comparable SNR as explicit CSI feedback and much higher SNR

than implicit CSI feedback, as shown in Fig. 6.3a. The communication overhead of FTF

is similar to that of implicit CSI feedback, and it is much lower than that of explicit CSI

feedback, as shown in Fig. 6.3b.

6.4 EliMO Protocol Design

This section presents the EliMO protocol including frame format, two-way channel

estimation, and MAC-layer operations. There are two challenges for EliMO to get high

beamforming gains: (1) the AP needs to accurately estimate the downlink CSI in the

presence of two-way channel propagations and interferences. (2) the AP needs to determine

whether the measured downlink CSI is stale and when to request feedback training.
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6.4.1 Frame Format

…L-STF DataL-LTF L-SIG
HT-
STF

HT-
LTF1

HT-
LTFn

HT-SIG FTR FTF1 FTFn…

Legacy (802.11a/g) HT (802.11n)

20µs ≥16µs ≥8µs Variable

(a) 802.11n High Throughput (HT) mixed mode with FTR and FTF

…L-STF DataL-LTF L-SIG
VHT-
STF

VHT-
LTF1

VHT-
LTFn

VHT-SIG-A FTR FTF1 FTFn…

Legacy (802.11a/g) VHT (802.11ac)

20µs ≥20µs ≥8µs Variable

VHT-
SIG-B

(b) 802.11ac Very High Throughput (VHT) with FTR and FTF

Figure 6.4: Frame format of 802.11n/ac packets with FTR and FTF.

EliMO reuses the frame format of 802.11n/ac packet headers. Fig. 6.4 shows the

frame format of EliMO for 802.11n mixed mode and 802.11ac packets. Two new fields,

i.e., Feedback Training Request/Response (FTR) and Feedback Training Field (FTF),

are inserted after 802.11n/ac packet headers. FTR indicates whether feedback training

is requested or not and whether FTF is sent back or not. FTR is inserted right after

the 802.11n/ac preamble. If the request field of FTR is 1, the AP sets the response field

to 0, which means there is no FTF sent after FTR. When the STA receives the request

of feedback training, it sets the response field of FTR to 1 and sends FTF following

FTR. FTF is in corresponding with each HT/VHT-LTF. The length of FTR and FTF

are both 4µs. If there is only one HT-LTF or VHT-LTF, the length of FTR plus FTF is

8µs. Comparing with implicit CSI feedback that typically has 150µs of control overhead,

EliMO introduces only 8µs extra overhead.

6.4.2 Two-Way Channel Estimation

The AP estimates the downlink CSI using the received signal of FTF, i.e., the received

signal of downlink LTF that goes through both the downlink and uplink MIMO channel.

The AP needs to accurately estimate the downlink CSI in the presence of two-way channel

propagations and interferences. To address this issue, the STA amplifies the received signal
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of downlink LTF and sends duplicated FTFs back to the AP.
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Figure 6.5: Block diagram of two-way channel estimation using FTF.

Fig. 6.5 shows the block diagram of two-way channel estimation. White blocks are

components in existing 802.11n/ac systems, and blue blocks are added in EliMO. The AP

sends LTF to the STA, which performs FFT on the received signal. The STA performs

analogy/RF, Guard Interval (GI) removal, and FFT to include the impact of digital base-

band of both the AP and STA. Since the STA does not need to demodulate the received

signal, it has lower computation overhead. The STA amplifies the received signal and

sends it back to the AP in FTF. The AP estimates two-way channel, i.e., Htw := HuHd,

by the received signal and the original LTF. The AP also estimate the uplink CSI Ĥu by

the received signal of uplink LTF from the STA. We use the pseudo-inverse of Ĥu and

two-way channel Htw to estimate the downlink CSI Ĥd, i.e.,

Ĥd = Ĥ+
u Htw = (Ĥ∗uĤu)−1Ĥ∗uHtw = (Ĥ∗uĤu)−1Ĥ∗uHuHd, (6.5)

where Ĥ+
u = (Ĥ∗uĤu)−1Ĥ∗u is the pseudo-inverse of Ĥu.

The estimation accuracy of Ĥd is impacted by two-way channel propagations and

interferences. The received signal of FTF at the AP is

Yf = HuYd +Nu = Hu(HdX +Nd) +Nu, (6.6)
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where Nd and Nu are downlink and uplink noise signals, respectively. The power of Yf is

impacted by two-way channel propagations, so the CSI estimation accuracy could be sig-

nificantly influenced by the power of Nu. The STA sends the amplified signal αYd, instead

of Yd, to the AP to improve estimation accuracy. The amplify factor α is constrainted

by E[|[αYd]i|2] ≤ Pi, where Pi is the power constraint for the ith transmit antenna of the

STA [69]. To reduce the impact of two-way channel interferences, the AP sends duplicated

LTFs to the STA, and correspondingly the STA also sends duplicated FTFs to the AP.

The received signals for the kth sub-carrier at the AP are Yf (k, 1) and Yf (k, 2). The AP

first estimates uplink noise by N̂u =
∑Ns

k=1 |(Yf (k, 1)−Yf (k, 2))(Yf (k, 1)−Yf (k, 2))∗| [195].

The AP estimates two-way channel Htw and uplink channel Ĥu based on N̂u, and finally

estimates downlink channel Ĥd using Ĥu and Htw.

AP

STA

Data

time

… LTF

ACKFTF

Data

ACK

SIFSDIFS

Hd

… LTF

… LTF

… LTF
Yd

Yu Yf

Hu

FTF

Figure 6.6: MAC-layer operations of EliMO.

6.4.3 MAC-Layer Operations

Timeline of MAC-layer operations of EliMO is shown in Fig. 6.6. The AP sends

downlink LTF to the STA, and the STA puts the received downlink LTF signal Yd in

FTF. The STA sends FTF, along with uplink LTF, back to the AP. The received signal

of uplink LTF is Yu, and the received signal of FTF is Yf . The AP estimates uplink CSI

Ĥu using Yu and two-way CSI using Yf .

The beamforming performance of EliMO is influenced by the difference between Ĥd and

Hdd. The AP needs to determine when to request feedback training to reduce beamforming

errors. EliMO addresses this issue by sending feedback request when the AP detects that
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the previous measured downlink CSI is stale. If Ĥd is stale, the AP needs to send Null

Data Packet (NDP) with FTR to measure the current downlink CSI. The AP uses two

metrics, CSI similarity and estimation delay, to determine whether Ĥd is stale or not. CSI

similarity is calculated by

ρ =

∑Ns
k=1(h(k, 1)− h̄1)(h(k, 2)− h̄2)√∑Ns

k=1(h(k, 1)− h̄1)2

√∑Ns
k=1(h(k, 2)− h̄2)2

, (6.7)

where h(k, 1) and h(k, 2) are the CSI magnitude of the kth sub-carrier, and h̄1 and h̄2

are the average CSI magnitude across Ns sub-carriers of two CSI measurements [46, 143].

When CSI similarity of either downlink or uplink CSI is larger than the threshold Thrρ, the

AP sends NDP with FTR to the STA to measure the current downlink CSI. Based on ex-

periment measurements, which will be shown in the next section, we find that Thrρ = 0.98

is able to distinguish whether the STA is moving or not. This is also in consistent with

measurement results in [143]. Thus we use Thrρ = 0.98 as the CSI similarity threshold.

Estimation delay δ is the time interval between when the previous downlink CSI is esti-

mated and when the next data packet is transmitted. The AP also sends NDP when the

estimation delay is larger than the threshold Thrδ. Based on experiment results in both

static and mobile scenarios, we choose Thrδ = 100ms as the threshold of estimation delay.

Note that all calculations of detecting whether Ĥd is stale or not are done by the AP. No

extra computation overhead is introduced for the STA.

Fig. 6.7 and 6.8 show the flow chart of EliMO for the AP and STA. For each data

packet to be sent, the AP checks whether the previous downlink CSI Ĥd is stale or not

based on CSI similarity ρ and estimation delay δ. If Ĥd is stale, the AP sends NDP with

FTR to the STA to measure the current downlink CSI. If Ĥd is not stale, the AP calculates

the beamforming matrix based on Ĥd and sends the data packet to the STA. In the packet

header of the data packet, the AP sets the request field of FTR to 1. This is for estimating

the downlink CSI for the next data packet. For each received packet, the AP estimates

the uplink CSI Ĥu by uplink LTF and two-way CSI Htw by FTF. The downlink CSI Ĥd
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Figure 6.7: Flow chart of MAC-layer operations of the AP side.

is calculated by Ĥu and Htw. At the STA side, each received packet is checked whether it

contains data payload or not. If the received packet has no data payload, demodulation

is not needed. If the packet has data payload, the STA demodulates and decodes the

received signal to get the data bits. The STA checks correctness of the data packet and

adds ACK payload to the packet to be sent to the AP. If feedback training is requested,

the STA gets the received signal of downlink LTF, puts it in FTF, and sets the response

field of FTR to 1. Finally, the STA adds packet header with FTR and FTF, and sends

the packet, either with or without ACK payload, to the AP.

6.5 Evaluation

This section presents evaluation results, including throughput and energy consumption,

of EliMO by experiment measurements in both static and mobile scenarios.
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Figure 6.8: Flow chart of MAC-layer operations of the STA side.

6.5.1 Experiment Setup

We conduct experiment measurements in indoor environments for both static and

mobile scenarios. The AP is static, and the STA is either static or moving at the speed

of about 1.2m/s. The AP and STA operate at 5GHz, and the channel width is 20MHz.

The AP has 3 external antennas, and the STA has 3 internal antennas spaced 2.4 inches

apart. The transmitting power of the AP/STA is fixed at 17/15dBm. The AP and STA

are two laptops with Intel WiFi Link 5300 installed. Since we cannot program the power

signal of the WiFi chipset, we are not able to implement EliMO in real-time. Thus we

employ trace-driven evaluation by collecting CSI traces and evaluates EliMO off-line by

Matlab implementations using the collected CSI traces.

Downlink and uplink CSI measurements are collected using openrf [76], which is based

on 802.11n CSI tool [51]. Note that 802.11n CSI tool only provides CSI values of 30

sub-carriers even though a 20MHz WiFi channel has 52 sub-carriers [61, 62, 34, 114].
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Two performance metrics, throughput and energy consumption, are evaluated in different

scenarios comparing EliMO with implicit and explicit CSI feedback. The AP uses ZFBF

as the transmit beamforming algorithm and the STA uses the MMSE receiving algorithm.

The MCS index can be selected from 0 to 23 with the data rate ranging from 6.5 to

195Mbps [61]. We compare EliMO with implicit and explicit CSI feedback. There are two

options for explicit CSI feedback: non-compressed, i.e., 1 CSI packet per data packet, and

compressed, i.e., 1 CSI packet per 10 data packets.

6.5.2 Experiment Validation
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Figure 6.9: Experiment validation of SNR results.

We first validate the effectiveness of two-way channel estimation by experiments in real-

world MIMO systems. Fig. 6.9 shows the CDF of SNR of experiment measurements in the

mobile scenario. The SNR of EliMO is 1.5dB higher than that of implicit CSI feedback,

and 1dB lower than that of explicit CSI feedback, as shown in Fig. 6.9a. EliMO is able to

provide comparable SNR as explicit CSI feedback in real-world mobile environments. We

also check the impact of beamforming delay, as shown in Fig. 6.9b. The average SNR of

implicit CSI feedback does not change much as beamforming delay increases. The reason

164



is that channel reciprocity has more impact on the accuracy of downlink CSI estimation

than mobility. The average SNR of EliMO and explicit CSI feedback decreases when

beamforming delay increases. This is because that the difference between the estimated

CSI and data packet CSI increases as beamforming delay increases when the STA is

moving. For beamforming delay of 1,000ms, the SNR decrease is 1dB for EliMO and

2.8dB for explicit CSI feedback. EliMO has lower SNR decrease since the time delay

between uplink CSI and data packet CSI is very small and two-way channel estimation

helps reduce the impact of mobility.

6.5.3 Throughput

The effective throughput is calculated by

tpt =

∑N ′

i=1 size(pkti)

tcontrol + tdata
, (6.8)

where pkti is the ith data packet, and N ′ is the number of received packets. Implicit CSI

feedback has low accuracy of downlink CSI estimation, so it provides low beamforming

gains. This reduces the number of received packets N ′ and leads to low throughput

for implicit CSI feedback. The transmission time of control frames tcontrol is extremely

high, which results in low throughput, for explicit CSI feedback. EliMO provides high

throughput by reducing tcontrol significantly while N ′ is not seriously influenced.

Fig. 6.10a shows the average throughput for data packets of different sizes and data

rates. The average throughput of EliMO is 5×, 4×, and 1.7× of that of implicit, non-

compressed explicit, and compressed explicit CSI feedback, respectively. The average

throughput of the mobile scenario is lower than that of static scenarios for all feedback

schemes. In the mobile scenario, EliMO still provides the highest throughput. The average

throughput of EliMO is 3.6×/4.5× of that of implicit/explicit CSI feedback. Fig. 6.10b

shows the average throughput as the size of data packets changes. For data size of 1,024

bytes, the average throughput of EliMO is 6Mbps, 7Mbps, and 5Mbps higher than that
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Figure 6.10: Evaluation results of average throughput.

of implicit, non-compressed explicit, and compressed explicit CSI feedback. For data size

of 16,384 bytes, EliMO has 6Mbps, 5Mbps, and 1Mbps higher throughput than the other

three feedback schemes.

6.5.4 Energy Efficiency

Energy efficiency of the STA is evaluated by energy consumption per data bit

eb =

∑N
i=1 (er(0) ∗ size(ctri) + et(0) ∗ size(csii))∑N ′

i=1 size(pkti)
+

∑N
i=1 er(mi) ∗ size(pkti)∑N ′

i=1 size(pkti)
, (6.9)

where et(m) and er(m) stand for energy consumption per bit for transmitting and re-

ceiving, respectively, as using MCS index m [48, 131]. Energy consumption parameters,

et(mi) and er(mi), for the Intel 5300 WiFi chipset are from [48]. For data packet of

size(pkti) = 1, 500 bytes and mi = 23, explicit CSI feedback accounts 80% of the total en-

ergy consumption. Besides, et(mi)|mi=0 for CSI packets is much larger than er(mi)|mi≥0

for data packets [48, 131], so explicit CSI feedback consumes a lot of energy for the STA.

For implicit CSI feedback, the number of received packets is smaller than EliMO due to

low accuracy of downlink CSI estimation. This reduces the energy efficiency of the STA
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for implicit CSI feedback. EliMO remarkably improves the energy efficiency of the STA

by eliminating explicit CSI feedback without sacrificing beamforming gains.
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Figure 6.11: Evaluation results of energy consumption.

Energy consumption results are shown in Fig. 6.11. As shown in Fig. 6.11a, EliMO

has slightly lower energy consumption as implicit CSI feedback in both static and mobile

scenarios. For the static scenario, the average energy consumption of EliMO is only 30%

and 50% of that of non-compressed and compressed explicit CSI feedback, respectively.

For the mobile scenario, the average energy consumption of EliMO is 17%/57% of that

of non-compressed/compressed explicit CSI feedback. Fig. 6.11b shows average energy

consumption in terms of the size of data packets. For data packets of less than 2,048

bytes, EliMO consumes slightly higher energy than implicit CSI feedback. As packet size

increases, energy consumption of EliMO is lower than that of implicit CSI feedback. For

packet size of 16,384 bytes, EliMO has comparable energy consumption as compressed

explicit CSI feedback. EliMO consumes much less energy than both non-compressed and

compressed explicit CSI feedback when packet size is less than 16,384 bytes.
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6.6 Chapter Summary

In this chapter, we show that implicit CSI feedback has low beamforming gains and

explicit CSI feedback has high computation and communication overhead. We propose

EliMO to eliminate CSI feedback without sacrificing beamforming gains. We propose

Feedback Training Field and two-way channel estimation to enable the AP to accurately

estimate downlink CSI without explicit CSI feedback. Based on both theoretical analysis

and experiment measurements, EliMO provides as low overhead as implicit CSI feed-

back and as high SNR as explicit CSI feedback. Experiment evaluation results show that

EliMO provides much higher throughput and lower energy consumption for the STA than

implicit and explicit CSI feedback. EliMO significantly reduces computation and commu-

nication costs of measuring and sending CSI feedback for smart devices, like smartphones,

smartwatches, and wireless drones.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

This dissertation presents how CSI can be used for improving WiFi sensing and net-

working. For WiFi sensing, the dissertation first presents a survey of signal processing

techniques, algorithms, applications, performance results, challenges, and future trends of

WiFi sensing with CSI. It gives a summary of the advantages and limitations of different

algorithms for different WiFi sensing applications. It presents three key challenges for

WiFi sensing and three future trends for improving existing WiFi sensing applications

and enabling new WiFi sensing opportunities. Second, the dissertation presents SignFi

for recognizing 276 sign gestures with CSI and CNNs. It proposes a signal processing

technique for removing CSI phase offsets and a 9 layer CNN for recognizing 276 sign ges-

tures with high accuracy and low testing cost. Third, the dissertation presents a deep

learning solution with neural networks and reinforcement learning for person and location

independent activity recognition with WiFi. The proposed solution uses a 2D CNN as the

recognition algorithm for learning person and location independent features, a 1D CNN

as the state machine for learning time dependency information, and an RNN with LSTM

as the reinforcement learning agent for neural architecture search.

For improving WiFi networking, the dissertation first presents RoFi to reduce CSI
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feedback based on the mobility status of WiFi receivers. It shows that WiFi has different

CSI feedback requirements when the receiver is in different mobility status, i.e., static,

moving, and rotating. It demonstrates that existing approaches cannot distinguish be-

tween moving and rotating and proposes a new metric to recognize whether the receiver is

rotating or not. RoFi sends CSI feedback only when it is necessary based on the mobility

status of the receiver. It reduces about 20% CSI feedback overhead compared with ex-

isting methods in different mobility scenarios. RoFi and other CSI feedback compression

approaches reduces overhead, but they still require WiFi receiver measure CSI, calculate

when to send CSI and how much CSI to send, and send CSI back to the transmitter.

This dissertation presents EliMO with two-way channel estimation to eliminate CSI feed-

back without sacrificing beamforming gains. EliMO achieves as high SNR as explicit

CSI feedback and as low overhead as implicit CSI feedback. It significantly reduces the

computation and communication overhead for WiFi receivers.

7.2 Future Works

For SignFi, CSI measurements are manually segmented for each sign gesture, so it only

supports word-level sign language recognition. For sentence-level sign language recogni-

tion, CSI measurements should be automatically segmented which introduces many new

challenges. RNN with LSTM could help for automatic sentence-level sign language recog-

nition. SignFi is tested to be robust for two environments and five users. There are many

other factors that may influence the recognition performance. For example, the distance

between the person and the AP/STA could be different. The direction and orientation of

the person with respect to the AP/STA could also change. There could be multiple per-

sons or other moving objects around. The person or other objects could block the direct

path from the AP to STA. More CSI traces could be collected in different environments

and scenarios for performance evaluation and tests considering these factors.

Currently EliMO is evaluated by CSI measurement traces and off-line Matlab imple-
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mentations. EliMO could be implemented on real-world MIMO systems and be evaluated

in real-time. EliMO could be adapted to be compatible with multi-user MIMO systems in

the future. EliMO can also be used by other applications, such as motion tracking [144],

activity recognition [28], and localization [75, 151, 200], using off-the-shelf WiFi chipsets.

For example, existing CSI-based localization methods require extensive CSI measurements

from multiple APs [75] or across multiple channels [151, 200], which could introduce high

overhead for WiFi receivers. EliMO can help reduce both computation and communi-

cation costs for WiFi receivers, like smartwatches and drones, for CSI-based localization

approaches. Finally, WiFi sensing results, along with machine learning and reinforcement

learning, can be used to improve the performance and efficiency of WiFi networking.
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